
CHAPTER 3
Analogies between Systematic

Trading and Robotics

T his chapter introduces the central concept that underpins the book,
namely the direct analogy between robotics and systematic automated

trading strategies. This approach proves fruitful for an efficient understand-
ing of the field, and opens the door to a much wider scope of research and
development in finance that is naturally suggested by progress in the fields
of complexity, self-organization, artificial life, and artificial intelligence. Part
Two of the book concentrates on that bridge and suggests some future
avenues.

3.1 MODELS AND ROBOTS

Similar to robots thrown into the real world, trading strategies need to sur-
vive the complexity of real markets. It is exactly the success of modern
developments in robotics and artificial life that have inspired me to ap-
ply a variety of such techniques to systematic trading. In this chapter, the
groundwork is set for the approach to building trading strategies that ex-
hibit the features of adaptive autonomous agents (AAA). Part One of the
book focuses on the autonomous feature and Part Two on the adaptive
feature.

An AAA is a physical or software decision-making process that is com-
posed of the following three elements.

1. Sensors: Any device that receives information from the external world.
Robot: cameras, microphones, positioning devices, speed devices, etc.

49



50 STRATEGY DESIGN AND TESTING

Trading strategy: various indicators as well as performance measures of
a range of simulated strategies.

2. Actuators: Any device by which the agent outputs information and acts
on the external world. Robot: wheels, arms, guns, etc. Trading strategy:
order management system that ensures current desired market position
and emits current desired passive or aggressive orders

3. Adaptive Control System: A goal-oriented decision-making system
that reads sensors and activates actuators. Robot: feedback and sub-
sumption architecture that achieves optimal foraging behavior under
constraint of power utilization and minimal damage to machinery.
Trading strategy: feedback and subsumption architecture that achieves
optimal profit under constraints of capital utilization and minimal
drawdown.

In the above list, device is used instead of mechanism to draw a further
and deeeper analogy with living organisms, which are the most sophisticated
AAAs known.

The control system is of course of central importance: It is the brain
of the AAA that achieves the required convergence from the current to the
desired state. It is a goal-oriented system, in the sense that it has a final task in
mind. It tries to achieve that task by balancing between short-term setbacks
and long-term rewards, and closes the feedback loop between the real world
and the internal world of the AAA. By internal world is meant the implicit
or explicit representation of the real world that the AAA achieves via the
input of sensor data into its control system.

3.2 THE TRADING ROBOT

Let us set the stage by introducing a direct parallel between a robot and a
trading strategy by describing the flow of information from an observation
to an action.

First of all, the trading robot has sensors that observe ticks, prices, bars,
or any other compressed or uncompressed market event data. It then assem-
bles this data into a representation that is usually a set of indicators that are
computed via a preprocessor.

The indicators act as the first semantic layer of the robot—they filter
and pre-interpret the data that is hitting the raw sensors. They can be, as
a simple example, moving averages of the data observed. They are passed,
along with the current state of the robot, to the control system that is its
decision-making mechanism.



Analogies between Systematic Trading and Robotics 51

The control system makes the decision as to the position and orders
to have in the market. The decison is enacted into the outside world by
actuators that are typically a set of order management systems (OMS) that
interface between the trading robot and the electronic commerce networks
(ECNs) such as exchanges, dark pools, over-the-counter electronic markets,
and so on.

The OMS sends the trade orders into the ECNs and manages the outputs
from the ECNs. Once the trade is done, the OMS feeds that information back
into the decision-making system of the robot.

Finally a postprocessor mechanism gathers the relevant data to compute
the new state of the robot and makes it ready to observe the next event.

Figure 3.1 illustrates the information flow.

Market Data

Trades Outgoing
Communications

Other Agents
Incoming

Communications

Sensors
Filters, Indicators

Adaptive Control System
Strategy Logic

Fitness Feedbacks
Learning Feedbacks

Actuators
Order Management System

F IGURE 3.1 Block Diagram of Trading Strategy
as an AAA



52 STRATEGY DESIGN AND TESTING

3.3 F IN ITE-STATE-MACHINE REPRESENTATION
OF THE CONTROL SYSTEM

As per the discussion above, once the incoming data has been preprocessed
and the relevant indicators calculated, the onus of the decision making falls
onto the control system. Once that decision is made, an order is (or is not)
generated and passed to the actuator that manages the interface with the
external world.

What are the desirable features of a control system? Of course, the first
and foremost is its ability to make money! Besides that, the principal feature
is completeness, meaning a clear mechanism that enables the control system
at every point in time to know what the current step should be. This, in
itself, helps ensure recoverability from faults and hence reduces operational
brittleness.

Assume the following real-world situation, where an automated trading
strategy is connected to an ECN but suddenly the connection is lost for sev-
eral minutes due to external unforseen circumstances. The strategy is short
term, so every minute of data may be relevant to its successful operation.
When the connection comes back, what state is the strategy in? Should it
be buying? Selling? The control system should be built on the principle that
whenever a gap in time or data occurs, it should have a defined plan to
proceed with. The same actually holds for the design of the OMS and is
discussed in Part Four.

Built-in completeness is key and should be the central design pattern
for an AAA. Once a structure for completeness has been defined, the AAA
stands on a solid basis, and then efforts can be concentrated on the quest for
profitability.

This section focuses on the efficient representation of the control system
by way of a finite-state machine that ensures completeness of its decision-
making process.

Definition 1. Let S be a finite set of symbols representing abstract states,
E a possibly infinite set of outside observable events. A finite-state machine
FSM(S, F ) is defined by its complete set of transitions F (sin, sout, e) with
sin, sout ∈ S. The transition functions are such that ∀e ∈ E and ∀sin ∈ S and
there exists only one sout such that F (sin, sout, e) = TRUE and F (sin, s, e) =
FALSE, ∀s ̸= sout. The FSM, at any point in time, has a current state sin.
When a new event e arrives it changes to a potentially different state sout, and
that change is completely unambiguous, meaning that only one transition
function is true and all others false. The set of transition functions can be
represented by an N ∗ N-matrix where N = Card(S) is the number of states.



Analogies between Systematic Trading and Robotics 53

To illustrate how an FSM representation is implemented for a trading
strategy, a simple example is discussed here. A set of more complicated real-
world trading strategies is presented in the next chapter.

Consider a simple trend-following trading strategy that is always in the
market. The strategy is long 1 unit when the price is above a simple moving
average of length L, and short when it is below.

Initially, before any position is opened, at least L price update events
P(ei ) need to be received to calculate the simple moving average

SMA(L, i ) = 1
L

L∑

j=1

P(ei− j )

During that initial time the position of the strategy is zero.
One needs to preprocess the incoming data before presenting it to the

FSM. Let E = {e} the set of incoming market update events received since
inception and ! = {P(e)} the set of calculated prices. Here the price calcula-
tion function P(e) returns the relevant price update depending on the nature
of the event received. For example if e is an order book update that does not
change the best bid and the best offer then it would be ignored, and the price
calculation function would not return a value. On the other hand, trades or
changes in the mid-price would be processed and added to !.

Hence, a necessary and sufficient set of states for this strategy is

S = {INIT, LONG, SHORT}

Define the indicators COUNTER and MA that are calculated on each
new addition P to the set of price updates ! as follows:

COUNTER = Card(!)
MA = SMA(L, COUNTER − 1) when COUNTER > L

When an event e is received that yields a price update P, the indicators are
recalculated—this is the function of the preprocessor explained above. They
are then passed to the strategy’s F SM as parameters. The FSM’s transitions
are explained here and the corresponding matrix representation is shown in
Figure 3.2. In that matrix, the initial states are in the columns and the final
states are in the rows. For clarity, this particular style of representing the
FSMs has been adopted throughout.

The FSM starts in the INIT state. It continues in that state until L
price updates are gathered. At the next price update P the COUNTER



54 STRATEGY DESIGN AND TESTING

F(INIT, INIT, P) = (COUNTER <= L)
F(INIT, LONG, P) = (AND(COUNTER > L)(P > MA))

F(INIT, SHORT, P) = (AND(COUNTER > L)(P <= MA))
F(LONG, INIT, P) = NIL

F(LONG, LONG, P) = (P > MA)
F(LONG, SHORT, P) = (P <= MA)

F(SHORT, INIT, P) = NIL
F(SHORT, LONG, P) = (P > MA)

F(SHORT, SHORT, P) = (P <= MA)

F IGURE 3.2 FSM Matrix for the Moving-Average Model

indicator becomes L + 1. The preprocessor calculates the MA on the pre-
vious L price updates (not including this one) and passes the result to the
transition matrix. Only the F (I NIT, ∗, P) row is considered by the proces-
sor and it consecutively starts computing the three Boolean functions.

The first one, F (INIT, INIT, P) is false because COUNT > L. Hence
either F (INIT, LONG, P) = TRUE and F (INIT, SHORT, P) = FALSE or
vice versa. Notice the complementarity in the strict and nonstrict inequali-
ties that ensure a nonoverlapping partition of the real line R = {P > MA} ∪
{P <= MA}. This, in plain English, means that there is no chance for the
F SM to fall through the cracks and find itself in an undefined state. This
also means that at each price update there is no possibility for the FSM to si-
multaneously want to transition to two or more different states. There is one
and only one transition possible (that of course may be to the same current
state). Hence, depending on P, the F SM transitions to either the LONG or
the SHORT state. Assume here that the strategy transitions to the LONG
state.

At this point, the final job of the control system is to emit a signal to
the actuator to execute the buy trade. The OMS takes control and sends an
order to the ECN. Once the trade execution confirmation comes back from
the ECN, the OMS passes back control to the sensor, which is allowed to
open its eye again for the next price update.

The actual details of the process of interacting with the ECN are far
more involved and are covered in a later part. The OMS has to embed a
finite-state machine of its own design to deal with complications arising from
situations of partial fills, disconnects, and the like. Here and in Part Two the
idea is to focus on the strategy’s core decision making assuming that all trade
executions are performed without such complications.

When that next price update comes, the process is restarted and the
strategy will either remain LONG or switch to the SHORT state. If that is
the case, the OMS will have to execute a sale of 2 units.



Analogies between Systematic Trading and Robotics 55

There are at least two recovery mechanisms possible in the case of a
disconnect or any other operational problem that keeps the strategy off-line
for a while:

1. The preprocessor takes the next available price P and computes the
COUNTER and MA indicators as if nothing happened, thus ignoring
the gap.

2. The preprocessor queries a historic external database to fill as much
missing data possible, thus repopulating the E and ! sets. Once done,
it would use them and the next available P to compute the indicators.

Whichever way the recovery from fault is handled by the preprocessor, the
FSM just takes its input and performs its decision-making work. In sum, the
FSM embeds the core logic behind the trading strategy and disentangles it
from any upstream and downstream operational issues. The FSM is the main
element to focus on when researching and designing potentially profitable
strategies.

Seeing trading strategies in the AAA context makes the representation
of their brains as finite-state machines all the more natural. It puts them
into a framework where a direct analogy with robotics can be exploited. It
also emphasizes the event-driven nature of trading strategies as opposed to
calendar-time driven.

In Part One various simple strategies will be exhibited via their FSMs.
The control mechanism there is simply a position size decision-making ma-
trix, based on the current state and the relationship between an indicator
and the current price. The sensors observe the current price and the indi-
cators are computed on a history of observed prices and other data. The
actuators are not explicit; they will be covered in Part Four when an order
management system and its connectivity to the electronic marketplace are
described.

The representation of the strategy’s core logic by way of a finite-state
machine fosters a necessary degree of discipline for the design process. The
goal is not to complicate that process but to ensure the strategy’s stability
and recoverability. These essential features are key for reducing the opera-
tional and management costs over time, let alone market-related losses. The
less time spent on disentangling recovery problems, the more time spent on
research and development of profitable strategies.

In order to put the above theory into practice, the next chapter
jumps straight into a programmatic implementation of agent-based trading
strategies.


