4

Implementation of Strategies

as Distributed Agents

he clear analogy between a trading strategy and a robot opens the way to
think further and visualize a set of trading agents coexisting at any point
in time in the computing environment. The trading agents consume events,
update their states, and communicate internally and with the external world.
For each trading agent an efficient top-level code can be designed on the
basis of Figure 4.1. Although additional code is given in the Appendix, this
section provides the detailed explanation of its most important features, and
focuses on the top-level implementation of the chain:

Event — Sensor — Preprocessor — - - -
-+« — Control System — Postprocessor

4.1 TRADING AGENT

The core class for a trading agent is AGENT:

(defclass AGENT ()
((name
raccessor name
:initarg :name)
(timestamps
taccessor timestamps
:initform NIL)
(revalprices
taccessor revalprices
:initform NIL)
(orders
:accessor orders
:initform NIL)

o7

98 STRATEGY DESIGN AND TESTING

AGENT

name
timestamps
revalprices
positions
pls
fitnesses
trades
Specific Agent Subclass data SENSE Method
produces relevant EVENT data

UPDATE: BEFORE Method
updates timestamps and revalprices for AGENT

PREPROCESSOR
computes PRE_INDICATORS for AGENT and stores in
specific Subclass data

FSM
computes State Transition for AGENT and updates
positions

POSTPROCESSOR
computes POST_INDICATORS for AGENT and stores in
specific Subclass data

UPDATE: AFTER Method
updates pls and trades for AGENT

FIGURE 4.1 Top-Level Agent Architecture

Implementation of Strategies as Distributed Agents

(positions

taccessor positions
:initform NIL)
(pls

taccessor pls

:initform NIL)

(fitnesses

:accessor fitnesses
:initform NIL)

(trades

taccessor trades
:initform NIL)
(tradestats

:accessor tradestats
:initform NIL)
(incomingmessages
:accessor incomingmessages
:initform NIL)
(outgoingmessages
:accessor outgoingmessages
:initform NIL)
(recipientslist

taccessor recipientslist
:initarg :recipientslist
:initform NIL)))

This class is just a data repository for each individual agent. At incep-
tion, when the class is created, the only input field required is the agent’s

name:

(defparameter *a* (make-instance ’AGENT
:name "MyFirstAgent"))

The data lists appearing in the agent class are divided in three main

categories:

1. Data received from market update events: timestamps and reval-

prices

2. Data calculated through trading activity: orders, positions, pls,

fitnesses, trades, and tradestats

3. Data pertaining to communication with other agents: incomingmes-
sages, outgoingmessages, and recipients, the latter being the
list of agents that are declared as receivers of the agent’s potential com-

munications.

60 STRATEGY DESIGN AND TESTING

4.2 EVENTS

Events can be of different sources and have different natures. They all have
the commonality that they carry information and that this information had
been timestamped by some universal clock when emitted. The EVENT class
reflects that abstract generality and contains slots for a timestamp and a
value that can be anything:

(defclass EVENT ()
((timestamp
:initarg :timestamp
:raccessor timestamp)
(value
:initarg :value
:raccessor value)))

It is specialized for market update events by the subclass MARKETUPDATE
that contains the name or identifier of the security:

(defclass MARKETUPDATE (EVENT)
((security
:initarg :security
raccessor security)))

This class has child classes PRC for a single quote, TICK, BOOK, and BAR
that are all discussed in Chapter 6, “Data Representation Techniques.” The
generic function price has methods defined to extract the price informa-
tion from each type of market update object. This function also optionally
contains the slippage in the context of a simulation environment as discussed
later.

This section focuses on explaining the mechanics of the consumption
by agents of market update events. More general events that contain the
communication between agents is covered in the next section.

4.3 CONSUMING EVENTS

The top-level function that implements the reaction of an agent to an event
IS consume:

(defun consume (a e)
(when (observe a e)
(update a e)))

Implementation of Strategies as Distributed Agents 61

The observe generic function is the primary sensor of the agent and
acts as a filter. The agent is only interested in certain events, for example mar-
ket price updates for a particular security or communications from a partic-
ular other agent. Hence events that do not meet the “observable” criterion
are simply not sensed by the agent. The example below of communicating
agents will show how this method can be implemented. The most generic
method of observe is simply all eyes open:

(defmethod observe ((a AGENT) (e EVENT))
T)

Only relevant events are passed to update, which is the central and most
important method, reponsible for the bulk of the logic of event processing.

4.4 UPDATING AGENTS

This section explains the update method for market update events. The next
section handles inter-agent communication events for which similar meth-
ods apply. The method update is composed of three parts, the :before,
:main, and :after methods that correspond to the preprocessing, main
calculation, and postprocessing stages.

As soon as the agent starts listening to market update events, the
timestamps and prices of the events received are recorded and stored in
the timestamps and revalprices lists. These lists are kept in reverse-
chronological order because their handling is greatly simplified by the use of
the push and pop LISP functions and yields more efficient methods to com-
pute indicators, especially when using recursion. When the above generic
function is called it first calls the :before method:

(defmethod update :before ((a AGENT) (e MARKETUPDATE))
(when (null (timestamps a))
(push 0 (pls a))
(push 0 (fitnesses a)))
(push (timestamp e) (timestamps a))
(push (price e) (revalprices a))
(preprocess a e)
(format T ":BEFORE completed for agent "A and event "A"%" a e))

At the initial phase when the agent is receiving its first market update the pls
and fitnesses are initialized to zero. Those lists have the same length as
the timestamps and revalprices.

62 STRATEGY DESIGN AND TESTING

Once this basic housekeeping has been done, the method calls the pre-
processor that is specific to the agent and has to be defined separately. The
preprocessor is responsible for computing indicators to pass to the agent’s
control system.

The agent’s control system is also defined separately and constitutes the
specific main method of the update generic function. Before those details
are discussed, let us first complete the logical loop. Assume that instead of a
robot, a human trader is sitting and watching the price updates. The trader
decides on whether to trade and its main update method would simply be
an input request of the following sort

(defmethod update ((a AGENT) (e MARKETUPDATE))
(format T "Enter New Position for T= “A and P= "A ~%"
(timestamp e) (price e))
(let ((newposition (read)))
(push newposition (positions a))))

that simply records the trader’s new desired position in the market (no error
checking is performed—this is just an example).

Once the positions is updated, the control system has done its job.
Now the process needs to complete in order to be open to receiving a new
event. The :after method of the update generic function takes care of
that:

(defmethod update :after ((a AGENT) (e MARKETUPDATE))
(let* ((L (length (timestamps a)))
(lastposition (first (positions a)))
(prevposition (if (< L 2) 0 (second (positions a))))
(tradequantity (- lastposition prevposition))
(lastprice (first (revalprices a)))
(prevprice (if (< L 2) 0 (second (revalprices a))))
(pl (if (< L 2)
0
(* prevposition (- lastprice prevprice)))))
(push pl (pls a))
(unless (zerop tradequantity)
(push (make-TRADE :timestamp (timestamp e)
:price (+ (price e)
(slippage a e tradequantity))
:quantity tradequantity)
(trades a))
(push (compute-tradestats (trades a)) (tradestats a)))
(postprocess a e)
(format T ":AFTER completed for agent A and event "A"%"
ae)))

Implementation of Strategies as Distributed Agents 63

This method starts by computing the incremental PL on this price update
and appends it to the pls list. Here it is clear that the reverse-chronological
representation is optimal as only the first and second elements of a list
are traversed, which bears a low computational overhead.

The resulting trade from the change in position is computed and stored
as a structure in the trades list, only if the resulting trade quantity is
nonzero. In that case, the function compute-tradestats is also invoked
to compute trade-by-trade statistics (pecent profitable, win-to-loss ratio,
etc.) and the resulting structure is appended to the tradestats list. The
slippage generic function is by default 0 but could be set to simulate fric-
tional trading costs. The details of slippage and trade statistics calculations
are discussed later in this part.

Finally the specific postprocessor to the agent is called. It may calcu-
late another set of indicators that can only be defined once the position has
changed. It also may or may not include a specific fitness calculation and
update the fitnesses list. The concept of fitness will be relevant to Part
Two and will be revisited there.

4.5 DEFINING FSM AGENTS

Having explained the top-level workings of the update method, it is now
time to specialize the agent to contain a finite-state machine (FSM) repre-
sentation of its control system. In the Common Lisp Object System it is a
simple matter thanks to multiple class inheritance:

(defclass FSMAGENT (FSM AGENT)
((states
:accessor states
:initform NIL)))

The class FSMAGENT inherits all the slot definitions from AGENT and FSM
and additionally will contain the history of its states that is updated for each
event processed. Here the class FSM is defined to mirror the definition of the
FSM given at the beginning of the chapter:

(defclass FSM ()
((currentstate
:accessor currentstate
:initarg :currentstate
:initform NIL)
(transitions
taccessor transitions
:initarg :transitions
:initform NIL)))

64 STRATEGY DESIGN AND TESTING

One notices that only the currentstate and transitions are relevant.
The finite set of N possible states is implicit in the complete list of N N
transitions so it is redundant. The disciplined designs of the FSMs presented
in this book ensure this completeness, hence the redundancy of the list of
states. Each transition is represented as an instance of the TRANSITION
class:

(defclass TRANSITION ()
((initialstate
raccessor initialstate
:initarg :initialstate)
(finalstate
:accessor finalstate
:initarg :finalstate)
(sensor
:accessor sensor
:initarg :sensor
:initform #’ (lambda (x) x))
(predicate
:accessor predicate
:initarg :predicate
:initform #’ (lambda (x) NIL))
(actuator
:raccessor actuator
:initarg :actuator
:initform #’ (lambda (x) NIL))
(effected
taccessor effected
:initform NIL)))

Before going into details as to how the FSM is initialized and maintained for
a particular strategy class it is important to understand at the high level how
the FSM is operated. First of all, the consumption of an event by a transition
object is defined by the following perform method:

(defmethod perform ((tr TRANSITION) (e EVENT))
(setf (effected tr) (funcall (predicate tr)
(funcall (sensor tr)
e))))

This method first calls the transition’s sensor function on the event
(e.g., the price method discussed above). The output is passed to the

Implementation of Strategies as Distributed Agents 65

transition’s predicate that either returns T or NIL. NIL is equivalent to False
in LISP whereas True can be represented by T or any non-NIL expression.
This Boolean value is stored in the transition’s ef fected field.

The consumption of an event by the whole FSM is performed by the
operatefsm method:

(defmethod operatefsm ((fsm FSM) (e EVENT))
(let* ((applicable-transitions
(remove-if-not #’(lambda (x) (equal (initialstate x)
(currentstate fsm)))
(transitions fsm)))
(effected-transition
(car (remove-if-not #’ (lambda (x) (perform x e))
applicable-transitions))))
(funcall (actuator effected-transition)
(funcall (sensor effected-transition)
e))
(setf (currentstate fsm) (finalstate effected-transition))
(format T "Transition § -> S7%"
(initialstate effected-transition)
(finalstate effected-transition))))

This method works exactly as explained when the FSM concept was
introduced initially. The applicable-transitions variable is initial-
ized to the subset of potential transitions out of the FSM’s current state. The
perform method is applied to all these potential transitions and returns
True or False. The transition for which it is True is stored in the effected-
transition variable. The effected-transition is then made to per-
form some action (e.g., change of the agent’s position) and for this task
the transition’s actuator function is called on the transition’s sensor out-
put. Finally the state of the FSM is changed to the final state of the effected
transition.

To close the loop, here is finally the main method for the update
generic function for the FSMAGENT case:

(defmethod update ((a FSMAGENT) (e MARKETUPDATE))

(setfsm a)

(format T "Set FSM completed for ~S™%" (name a))

(operatefsm a e)

(format T "Operate FSM completed for “S™%" (name a))

(push (currentstate a) (states a))

(format T ":MAIN completed for “S and new state ~S added "%"
(name a) (currentstate a)))

66 STRATEGY DESIGN AND TESTING

This method overrides the manual main update method discussed for
the hypothetical human agent. Remember that this main method is called
after the :before method that contains all the preprocessing, and before
the :after method that contains all the postprocesing. It initially resets the
agent’s FSM with the setfsm method that will be discussed below. This
implicitly changes the FSM’s parameters (indicators) given the observation
of the event. It then runs the FSM decision matrix that implicity updates the
agent’s positions list. It appends the new state of the agent to the states
list. Then it finally passes control to the :after method.

4.6 IMPLEMENTING A STRATEGY

The code discussed above implements the universal top-level process for con-
sumption of events by FSM-endowed agents. To operate it concretely one
needs to specialize the FSMAGENT class and the set £sm method to a partic-
ular trading strategy.

Here the simplistic trend-following strategy is explained in details. The
next chapter discusses a series of real-world examples that are more compli-
cated but the essentials of the code are the same as for the simple example
here.

The strategy’s class is defined as a subclass of FSMAGENT:

(defclass SIMPLEMODEL (FSMAGENT)
((L
taccessor L
:initarg :L)
(COUNTER
raccessor COUNTER
:initform 0)
(MA
taccessor MA
:initform 0)))

It contains the slot for the initially settable parameter L that is the length
of the lookback period for the moving average calculation. The other slots
are for the counter and moving average indicators that are computed by the
process. To initialize a concrete class instance that has lookback value of 10
one would evaluate the following expression:

(defparameter *modl* (make-instance
’SIMPLEMODEL
:L 10))

Implementation of Strategies as Distributed Agents 67

The instance of our class will be stored in the *mod1* global variable.

Before the agent is able to consume any events it needs some basic initial-
ization. The initialize method sets the FSM’s original state to : INIT. It
also reflects the value of L in the internal name of the class, which is handy
when one runs several instances at the same time and wants to output results
in a practical format.

(defmethod initialize ((a SIMPLEMODEL))
(with-slots (L states name) a
(when (null states)
(push :INIT states)
(setf name (concatenate ’string
"SIMPLE MODEL "
(format NIL "A" L))))))

Assume for simplicity that the SIMPLEMODEL agent consumes all mar-
ket update events that are passed to it. Thus no specific method on the ob-
serve generic function needs to be defined and hence it will always return
True and will immediately pass control to the update method.

The preprocessor method, however, needs to be defined for the SIM-
PLEMODEL class:

(defmethod preprocess ((a SIMPLEMODEL) (e MARKETUPDATE))
(with-slots (L COUNTER MA revalprices) a
(setf COUNTER (length revalprices))
(setf MA (avg-list (sub-list revalprices 0 (- L 1))))))

It sets the counter to the length of the list of revalprices (which is
the same as the length of the timestamps list). These lists are non-NIL
because the preprocessor operates after the first event’s price and timestamp
had been added to them. The preprocessor computes the MA by invoking the
sub-1list function that returns the subset of the first L elements (or less if
not available) of the revalprices list.

The setfsm method is the core of the strategy’s decision making:

(defmethod setfsm ((a SIMPLEMODEL))
(with-slots (L COUNTER MA states currentstate
revalprices transitions positions name) a

(setf currentstate (first states))

(setf transitions (list
(make-instance
’TRANSITION
tinitialstate :INIT

68 STRATEGY DESIGN AND TESTING

:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)
(<= COUNTER L))
ractuator #’(lambda (p)
(push 0 positions)
(format T
"8 INIT->INIT ~%"
name)))
(make-instance
’TRANSITION
:initialstate :INIT
:finalstate :LONG
:sensor #’price
:predicate #’7S(lambda (p)
(and (> COUNTER L)
(> p MA)))
ractuator #’(lambda (p)
(push 1 positions)
(format T
"“g INIT->LONG ~%"
name)))
(make-instance
’TRANSITION
:initialstate :INIT
:finalstate :SHORT
:sensor #’price
:predicate #’(lambda (p)
(and (> COUNTER L)
(<= p MA)))
tactuator #’ (lambda (p)
(push -1 positions)
(format T
"~“g INIT->SHORT
name)))

%n

(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)

NIL)

Implementation of Strategies as Distributed Agents

ractuator #’(lambda (p)
NIL))
(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :LONG
:sensor #’price
:predicate #’ (lambda (p)
(> p MA))
ractuator #’(lambda (p)
(push 1 positions)
(format T

"“S LONG->LONG ~%"

name)))
(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :SHORT
:sensor #’price
:predicate #’ (lambda (p)

(<= p MA))

tactuator #’(lambda (p)

(push -1 positions)

(format T
"S LONG->SHORT ~
name)))
(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)
NIL)
ractuator #’(lambda (p)
NIL))
(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :LONG
:sensor #’price
:predicate #’ (lambda (p)
(> p MA))

70 STRATEGY DESIGN AND TESTING

ractuator #’(lambda (p)
(push 1 positions)
(format T
"~“S SHORT->LONG ~%"
name)))
(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :SHORT
:sensor #’price
:predicate #’(lambda (p)
(<= p MA))
ractuator #’(lambda (p)
(push -1 positions)
(format T
"3 SHORT->SHORT ~%"
name)))))))

The setfsm method updates the FSM’s state with the latest state of the
agent (remember that the states list is in reverse chronological order like
all the others). It then updates the transitions list with the parameters
COUNTER and MA that have been computed and stored into the SIMPLE -
MODEL class by the preprocess method above.

There are three states and nine possible transitions. However the
LONG — INIT and SHORT — INIT transitions are not allowed and
their predicate functions always return NIL (False). Hence, despite the fact
that those transitions are declared for the sake of completeness, they will
never happen in the course of the computation.

The sensor function for each transition is the price method on a MAR -
KETUPDATE event. Each predicate would take that price as input if it is ever
passed to it.

The actuator of a transition updates the positions list when that tran-
sition occurs, as per the updatefsm method explained above. So one and
only one position update occurs when a market update event is processed.
The actuator also prints which actual transition has occured.

Finally a postprocessor is not really needed here but one could just use
it for outputting the agent’s data at each event consumption:

(defmethod postprocess ((a SIMPLEMODEL) (e MARKETUPDATE))
(with-slots (name COUNTER MA states positions pls) a
(format T "Event S S Consumed for Agent ~S :7%"
(timestamp e) (price e) name)

Implementation of Strategies as Distributed Agents n

(format T "Output: COUNTER= ~S MA= ~S State= "S
Position= "S PL= 7“S"%" COUNTER MA (first states)
(first positions) (first pls))))

This finishes the explanation of the structure of the basic code that im-
plements the event consumption cycle of an FSM-driven agent.

To run the code and do a simulation of the simple model, suppose a list
of market update events is created and called *events*. That list contains
the consecutive individual event classes in chronological order.

Then to run the *mod1* strategy on that list, one would simply invoke

(dolist (e *events*)
(consume *modl* e))

and watch the outputs from the existing format calls on the console.
Also, assume we define a list of 100 simple strategies of the kind by
varying the L, storing the result into the *agents* list:

(defparameter *agents* NIL)

(for (i 10 110)
(push (make-instance
’SIMPLEMODEL
:L i)
agents))

Then running all the agents at once on the events list is easy:

(dolist (e *events*)
(dolist (a *agents*)
(consume (a e))))

Here we assume that for each e, the agents consume that event in a single
thread (consecutively). However, it is easy to make each agent run the update
process in a different concurrent thread and synchronize the results before
the next event is consumed. This topic will be covered in Part Four.

