
CHAPTER 5
Inter-Agent Communications

T he framework of handling market update events extends naturally to a
more general class of communication events. Endowing trading agents

with the ability to communicate with each other opens a whole new avenue
in the design of trading strategies.

The subclass of communication events contains the reference to the orig-
inating entity (an agent) and the list of recipients for which that communi-
cation is addressed to:

(defclass COMM (EVENT)
((originator

:accessor originator
:initarg :originator)

(recipients
:accessor recipients
:initarg :recipients)))

The message of the communication event would be contained in the subclass
value field and it would also be timestamped like any other event.

5.1 HANDLING COMMUNICATION EVENTS

The agent should take into consideration all the communication events di-
rected at it and ignore all the rest. If it is not one of the intended recipients,
the event is not handled by the agent. Also, the agent does not talk to itself
and, just in case, filters out all messages that it emits. Hence the observe
method that implements that primary sensor is

(defmethod observe ((a AGENT) (e COMM))
(and (member a (recipients e))

(not (equal a (originator e)))))

73



74 STRATEGY DESIGN AND TESTING

In the most general case, the handling of the communication event by the
update method goes by exactly the same design pattern as explained above
for handling market events. No new top-level logic needs to be written but
the preprocess and postprocess methods need to be implemented for
a particular agent subclass. The FSM transitions need to handle communica-
tion events independently of market update events while maintaining logical
completeness. Such a complete version is discussed in the context of handling
some inter-market execution algorithms in Part Three.

Here a simpler example is given where one assumes that the handling
of communication events only affects the parameters of the FSM but not
the state of the agent. This reduced version already allows for testing an
interesting range of strategies.

The events that are relevant to the agent are passed initially to the
update preprocessing stage, that is, its :before method:

(defmethod update :before ((a AGENT) (e COMM))
(push e (incomingmessages a))
(preprocess a e)
(format T ":BEFORE completed for agent ˜A and COMM event

˜A˜%" a e))

The preprocessor interprets the meaning of the message that needs to be im-
plemented for any particular agent subclass as is shown in the example later.

In this simplified implementation, the interpretation of the information
contained in the message yields a change of internal parameters of the
trading agent, but not an immediate change of its state. The state can only
change when the next market update is consumed by the agent. Hence the
:main update method for handling a communication event by an FSM
agent is simply

(defmethod update ((a FSMAGENT) (e COMM))
(setfsm a)
(format T "Set FSM completed for ˜S˜%" a)
(format T "MAIN method completed for ˜S and COMM event

˜S ˜%" a e))

So the only thing that happens here is that the FSM of the agent is reset with
the new parameters that the preprocessor has computed from the interpre-
tation of the message. Finally some postprocessing may be done (e.g., saving
the new agent’s internal parameters in some external database for recovery
from fault purposes):



Inter-Agent Communications 75

(defmethod update :after ((a AGENT) (e COMM))
(postprocess a e)
(format T ":AFTER completed for agent ˜A and COMM event

˜A˜%" a e))

In this simplified design pattern the operatefsm method is not called after
the FSM had been reset to the new parameters. Hence the agent does not
change its state when such a communication is handled. Quite a few situa-
tions can be dealt with in this way, in particular in the context of designing
and simulating price-taking strategies (rather than strategies that use limit
orders, like market-making). To perform a trade, the agent needs to wait for
the next price or order book update and would act as soon as that informa-
tion is received.

5.2 EMITTING MESSAGES
AND RUNNING SIMULATIONS

The method that an agent uses to emit a message to its recipients is

(defmethod emit ((a AGENT) msg)
(push (make-instance ’COMM

:originator a
:recipients (recipientslist a)
:timestamp (first (timestamps a))
:value msg)

*events-queue*)
(push (list (first (timestamps a)) msg)

(outgoingmessages a)))

For simplicity, it uses the last timestamp available to the agent (timestamp
of the last market update received) but this can obviously change to the
system clock time in a real-time implementation. The emit method can
be called from any point in the update chain (preprocessor, transitions,
postprocessor).

The *eventsqueue* is a global list, seen by all the agents, that buffers
all the events being broadcast. In a simulation environment it is initially
populated by the history of market update events. When an agent emits a
message, that message is placed at the top of the queue by the push function,
so this will be the first message to go out unless other agents place their



76 STRATEGY DESIGN AND TESTING

messages on top of this. Once all the agents are done placing their messages
on the queue, the events are broadcast one by one.

Here it is important to note that the handling of a communication event
by an agent precludes the possibility of the agent emitting another communi-
cation event. An agent can only emit a communication event when handling
a market update event. This is done to avoid spamming the broadcast with
inter-agent communication at the expense of handling market price events.
With this in mind, a convergent simulation process is given by the following
function:

(defun run-simulation (events)
(dolist (a *agents*)

(initialize a))
(setf *events-queue* events)
(while *events-queue*

(let ((e (pop *events-queue*)))
(dolist (a *agents*)

(consume a e)))))

After all the agents have been initialized, the *events-queue* is set to the
list of (initially market update) events to handle. The first element is popped
from the queue and distributed for the consumption of all the agents. (pop
lst) is a destructive operation that returns the car of the lst and resets
lst to (cdr lst).

During the consumption process loop on the *agents* list, any agent
can emit one or more messages that are consecutively pushed onto the queue.
These messages are handled one by one by all the agents in the next step, but
as written above, no more communication events can be emitted at this stage.
When all these communication events are processed, the next event will be
a market update event and the whole process restarts until the *events-
queue* gets depleted to the empty list NIL.

5.3 IMPLEMENTATION EXAMPLE

In this section, a concrete example of communicating agents built on the
simplified design pattern is presented. Each agent trades one particular secu-
rity and communicates to the other its state. The agents take each other’s
state into account so as to always be in a situation of opposite trading
positions—either (Long,Short), (Short,Long), or (Flat,Flat). This simulates
a trend-following pairs-trading model where only high conviction trades are
allowed (with one security trading up while the other is trending down).



Inter-Agent Communications 77

The strategy class can be defined as a subclass of SIMPLEMODEL:

(defclass SIMPLEMODELCOMM (SIMPLEMODEL)
((MKT

:accessor MKT
:initarg :MKT)

(UNBLOCKSHORT
:accessor UNBLOCKSHORT
:initform -1)

(UNBLOCKLONG
:accessor UNBLOCKLONG
:initform 1)))

The MKT field is the identifier of the security that a particular instance of
the class is operating on. It is used to filter the market update events via the
implementation of the observe method:

(defmethod observe ((a SIMPLEMODELCOMM) (e MARKETUPDATE))
(equal (MKT a) (security e)))

Before the agent starts processing any events, it needs to be initialized. The
initialize method emits a message communicating the agent’s :INIT
state. This “I’m alive” message will be automatically picked up by the other
agent and vice versa.

(defmethod initialize ((a SIMPLEMODELCOMM))
(with-slots (MKT L states name) a
(when (null states)
(push :INIT states)
(setf name (concatenate ’string

"SIMPLE MODEL "
(format NIL "˜A ˜A" MKT L)))

(emit a :INIT))))

The preprocess generic function now has two distinct methods to han-
dle the different event types. The market updates are handled by the same
method as the superclass, but for clarity it is as follows:

(defmethod preprocess ((a SIMPLEMODELCOMM) (e MARKETUPDATE))
(with-slots (L COUNTER MA revalprices) a

(setf COUNTER (length revalprices))
(setf MA (avg-list (sub-list revalprices 0 L)))))



78 STRATEGY DESIGN AND TESTING

The communication events from the other agent are handled by:

(defmethod preprocess ((a SIMPLEMODELCOMM) (e COMM))
(with-slots (UNBLOCKSHORT UNBLOCKLONG) a

(case (value e)
(:INIT (setf UNBLOCKSHORT 0)

(setf UNBLOCKLONG 0))
(:LONG (setf UNBLOCKSHORT -1)

(setf UNBLOCKLONG 0))
(:SHORT (setf UNBLOCKSHORT 0)

(setf UNBLOCKLONG 1)))))

This function performs the interpretation of the message received from
the other agent. If the other agent is in the :INIT state, it blocks its own
long and short positions. If the other agent is in the :LONG state, it blocks
its own long positions. If the other agent is in the :SHORT state, it blocks
its own short positions. This ensures that the agents are either both flat or
have opposite sign positions at all times.

The setup of the FSM explicitly takes these UNBLOCKLONG and UN-
BLOCKSHORT values to alter the market exposure of the agent:

(defmethod setfsm ((a SIMPLEMODELCOMM))
(with-slots (L COUNTER MA UNBLOCKLONG UNBLOCKSHORT states

currentstate revalprices transitions positions name) a
(setf currentstate (first states))
(setf transitions (list

(make-instance
’TRANSITION
:initialstate :INIT
:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)

(<= COUNTER L))
:actuator #’(lambda (p)

(push 0 positions)
(format T

"˜S INIT->INIT ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :INIT
:finalstate :LONG
:sensor #’price
:predicate #’(lambda (p)

(and (> COUNTER L)
(> p MA)))



Inter-Agent Communications 79

:actuator #’(lambda (p)
(push UNBLOCKLONG positions)
(emit a :LONG)
(format T

"˜S INIT->LONG ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :INIT
:finalstate :SHORT
:sensor #’price
:predicate #’(lambda (p)

(and (> COUNTER L)
(<= p MA)))

:actuator #’(lambda (p)
(push UNBLOCKSHORT positions)
(emit a :SHORT)
(format T

"˜S INIT->SHORT ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)

NIL)
:actuator #’(lambda (p)

NIL))
(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :LONG
:sensor #’price
:predicate #’(lambda (p)

(> p MA))
:actuator #’(lambda (p)

(push UNBLOCKLONG positions)
(format T

"˜S LONG->LONG ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :LONG
:finalstate :SHORT
:sensor #’price
:predicate #’(lambda (p)

(<= p MA))



80 STRATEGY DESIGN AND TESTING

:actuator #’(lambda (p)
(push UNBLOCKSHORT positions)
(emit a :SHORT)
(format T

"˜S LONG->SHORT ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :INIT
:sensor #’price
:predicate #’(lambda (p)

NIL)
:actuator #’(lambda (p)

NIL))
(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :LONG
:sensor #’price
:predicate #’(lambda (p)

(> p MA))
:actuator #’(lambda (p)

(push UNBLOCKLONG positions)
(emit a :LONG)
(format T

"˜S SHORT->LONG ˜%"
name)))

(make-instance
’TRANSITION
:initialstate :SHORT
:finalstate :SHORT
:sensor #’price
:predicate #’(lambda (p)

(<= p MA))
:actuator #’(lambda (p)

(push UNBLOCKSHORT positions)
(format T

"˜S SHORT->SHORT ˜%"
name)))))))

The agents emit their state only when their state changes. This is handled in
the particular transition actuator functions. This communication is par-
simonious (necessary and sufficient).

Finally, there is no need for a postprocess method on a communi-
cation event as the acknowledgment that the event has been processed is



Inter-Agent Communications 81

handled by the update’s :after method. The postprocess on a mar-
ket update can be used (automatically) from the SIMPLEMODEL superclass.

The agents can be instantiated and their recipients lists set by evaluating
the following set of expressions:

(defparameter *a1* (make-instance
’SIMPLEMODELCOMM
:MKT "AAPL"
:L 10))

(defparameter *a2* (make-instance
’SIMPLEMODELCOMM
:MKT "DELL"
:L 10))

(push *a2* (recipientslist *a1*))
(push *a1* (recipientslist *a2*))

(push *a2* *agents*)
(push *a1* *agents*)

Finally a simple simulation can be performed using the run-simulation
function. For this one needs to create a data set with market update events

80
Feb-11 Jun-11

Short DELL Long AAPL Long DELL Short AAPL

Sep-11 Dec-11 Apr-12 Jul-12 Oct-12 Jan-13 May-13

90

100

110

120

130

140

150

F IGURE 5.1 Communicating Agents Example



82 STRATEGY DESIGN AND TESTING

for the two securities. Figure 5.1 is an example of an output that shows the
polar opposite market positions of the two agents.

In this simple example, each agent preserves its state independently of
the other. The state is solely defined by the position of the price P relative
to the MA and is independent of the agent’s position in the market. This
means that each agent is always in sync with its market but varies its position
taking into account both agents’ states.


