Data Representation Technirques

In the Introduction, systematic trading was described as being an art, a
science, and a business. This book focuses primarily on the scientific and
business aspects. The scientific endeavor of systematic trading consists of
discovering persistent and predictable patterns in market activity and the
business aspect consists of efficiently exploiting them.

Any science starts with observational data—the raw materials of re-
search on which concepts and theories are consequently built. However, not
all data is relevant at all times, and more often than not, data overload can
stall scientific progress, as one cannot see the forest for the trees when for-
mulating useful concepts. Hence part of the art of the researcher comes in
the form of an intuitive filter that helps decide what data to focus on. This
chapter introduces the data filter techniques relevant to systematic trading
and forms the basis for data analysis in the book.

6.1 DATA RELEVANCE AND FILTERING
OF INFORMATION

The raw materials for systematic trading are (1) time series of transactions
(price and volume), (2) time series of orders (depth of book), and (3) time se-
ries of news (economic releases, idiosyncratic company news, world events).
Most of the models discussed in this book are based on the first two streams
of data, however the third one is also briefly discussed in this chapter.

The question of what data is relevant is ultimately a function of the
goal of the inquiry. In the world of systematic trading, this translates into
understanding the timescale, price scale, and type of pattern one is trying to
exploit. A data filter is usually formed of three components: (1) a sampling
technique, (2) a compression technique, and (3) a representation technique.

In this book, all the trading strategies are discussed and implemented
within the paradigm of distributed trading agents. In this paradigm, any



84 STRATEGY DESIGN AND TESTING

data consumed by the agent is represented by events that the agent observes
and reacts to. This paradigm is the closest model to the real world and has
the significant advantage that the concepts and code developed here apply
equally well to real-time trading and to simulation environments. A compre-
hensive event-driven simulation environment is presented later in Part One.

Events fall into two classes, the MARKETUPDATE representing all exter-
nal market data coming from exchanges and ECNs and the internal coMm
events that carry inter-agent communications.

This chapter focuses on the market update events and the construc-
tion of more elaborate events from the sampling and compression of ele-
mentary ones. These elementary transaction and orders events fall into two
categories:

1. A trade is performed and the price and volume information is commu-
nicated to the world.

2. The order book changes and the new state of the order book is commu-
nicated to the world.

Events are filtered by the trading agent via its observe method that not
only can choose what securities prices to observe but in what format. Hence
this method contains the sampling and compression techniques alluded
to above.

6.2 PRICE AND ORDER BOOK UPDATES

Although introduced in the beginning, it is worth revisiting the object-
oriented design of the main EVENT class.

Throughout Parts One to Three, it is assumed that the raw data that
comes from the ECN (via either the FIX protocol or a more efficient ECN-
specific protocol) is converted by a data adaptor to a class instance that is
broadcast to the trading agents.

The top-level EVENT class contains a timestamp and a value (that can
contain anything):

(defclass EVENT ()
((timestamp
tinitarg :timestamp
:accessor timestamp)
(value
:initarg :value
raccessor value)))



Data Representation Techniques 85

It is specialized for a market update event and contains an additional security
identifier field:

(defclass MARKETUPDATE (EVENT)
((security
:initarg :security
:accessor security)))

6.2.1 Elementary Price Events

The most elementary market update events that can be observed from an
ECN are single traded price updates and are represented by instances of the
class PRC, a child class of MARKETUPDATE:

(defclass PRC (MARKETUPDATE)
((lastprice
:accessor lastprice)
(lastvolume
raccessor lastvolume)))

(defmethod initialize-instance :after ((e PRQC))
(setf (lastprice e) (first (value e)))
(when (second (value e))
(setf (lastvolume e) (second (value e)))))

PRC’s value field is a list with two elements that are the traded price
and the volume traded at that price (if that information is available and
NIL otherwise). These events basically represent the entries of the quote
recap table, which is a feature available for all exchange-traded securi-
ties. The initialize-instance :after method populatesthe relevant
fields that can be accessed by the agent. Here the use of the initialize-
instance :after method may seem a bit superfluous but it is actually
quite handy when the raw data is passed to the LISP class as a simple array
from the ECN interface via a foreign-function implementation.

Figure 6.1 shows what a standard quote recap data time series looks like.

6.2.2 Order Book Data

The order book represents at a point in time the set of posted resting orders
for a particular security at an exchange. It is basically two ordered lists of
pairs: the bid side of the book is the collection of bid prices and respective
sizes of aggregate buy orders at those prices; the offer side of the book is



86 STRATEGY DESIGN AND TESTING

Time Size Price
12:32:59 2 143.62
12:32:55 15 143.62
12:32:54 4 143.62
12:32:51 249 143.56
12:32:41 1 143.62
12:32:21 10 143.63
12:32:13 3 143.63
12:32:04 3 143.63

FIGURE 6.1 Quote Recap Data Example

the collection of ask prices with the respective size of aggregate offers to sell
at those prices. The order book data was once the private information of
stock specialists, but with the advent of the electronic markets, it became
completely public and is displayed in real time on all trading applications
(such as Trading Technologies or J-Trader).

Figure 6.2 is an illustration of a change in order book from one instant
to another as well as the associated trade. Note that the trade size (in this
case a buy at the best ask price) does correspond to the change in the best ask

Event 1 Event 2 Event 3
Original book Trade: Lift 50 lots at Removed best offer
143.58 for 20 lots
143.62 120 143.62 120 143.62 120
143.61 89 143.61 89 143.61 89
143.6 388 143.6 388 143.6 388
143.59 430 143.59 430 143.59 430
143.58 76 143.58 26 143.58 6
143.57 489 143.57 489 143.57 489
143.56 236 143.56 236 143.56 236
143.55 184 143.55 184 143.55 184
143.54 303 143.54 303 143.54 303
143.53 95 143.53 95 143.53 95

FIGURE 6.2 Order Book Change Example



Data Representation Techniques 87

quantity. At the second instant the best ask quantity is reduced not because
of a trade but because someone pulled an existing sell order (potentially in
response to the trade that just happened). Here it is assumed that all the
events come in the correctly time-stamped order from the ECN, but it has
to be pointed out that in practice this is unfortunately not always the case,
because of technological failings and latency issues that may occur at the
exchange itself.

The state of the order book is represented by the BOOK class. The value
field is a list of two lists [, and I, that contain lists of bids and bid sizes and
asks and ask sizes. The BOOK class also has a specific method of initializa-
tion that sets up the best bids, offers, average bid, and offer prices and all
associated sizes:

(defclass BOOK (MARKETUPDATE)

((mid

taccessor mid)
(bidbest

taccessor bidbest)
(bidbestsize

taccessor bidbestsize)
(bidtotsize

taccessor bidtotsize)
(bidavgprc

:taccessor bidavgprc)
(askbest

taccessor askbest)
(askbestsize

:accessor askbestsize)
(asktotsize

taccessor asktotsize)
(askavgprc

:accessor askavgprc)))

(defmethod initialize-instance :after ((e BOOK) &key)
(let* ((v (value e))

(1b (first v))

(la (second v)))
(setf 1b (sort 1lb #’(lambda (x y) (> (first x) (first y)))))
(setf la (sort la #’(lambda (x y) (< (first x) (first y)))))
(setf (bidbest e) (first (first 1b)))
(setf (bidbestsize e) (second (first 1b)))
(setf (bidtotsize e) (sum-list (mapcar #’second

1b)))



88 STRATEGY DESIGN AND TESTING

(setf (bidavgprc e) (/ (sum-list (mapcar #’(lambda (x)
(* (first x) (second x)))

1b))
(bidtotsize e)))

(setf (askbest e) (first (first la)))

(setf (askbestsize e) (second (first la)))

(setf (asktotsize e) (sum-list (mapcar #’second
la)))

(setf (askavgprc e) (/ (sum-list (mapcar #’ (lambda (x)
(* (first x) (second x)))
la))

(bidtotsize e)))

(setf (mid e) (* 0.5 (+ (bidbest e)

(askbest e))))
(setf (value e) (list 1b la))))

The list of bid-side and ask-side quotes contained in the value field of the
class instance is processed automatically by the initialize-instance
:after method and populates all the relevant fields that can be used by the
agent’s preprocessor and control system.

In practice, the ECN broadcasts the changes to the order book, not the
book itself (unless specifically requested by the application). The DELTA class
is designed to represent the change in the order book from one moment
to the next. Those details are covered in Part Four and here one assumes
that the trading system’s interface to the ECN automatically converts these
book updates into the instance of the BOOK class before broadcasting it to
the agents.

6.2.3 Tick Data: The Finest Grain

The elementary market update events embodied in the PRC and BOOK
events are colloquially called ticks. Tick data is the purest event data. The
systematic trading activities for which tick data is essential are automated
market-making and algorithmic trading. The strategies behind those ac-
tivities use both the trade updates and the full book information to detect
changes in supply and demand. Although a much more difficult task, one
can also attempt to uncover hidden competing algorithms (like iceberg
orders and others).

Collecting, processing, and storing tick data is a daunting task due to
the sheer volume of information. An important tool in that matter is to use
a networked cached memory that automatically saves chunks of data onto
hardware without creating latency bottlenecks due to database read-writes.



Data Representation Techniques 89

Co-locating of trading servers on an ECN for ultrafast market and data
access becomes essential for the efficient implementation of such activities
because latency creates an unwanted sampling limitation. Indeed if the mar-
ket access latency is L then the turnaround from receiving market data, pro-
cessing it, and sending an order is limited from below by 2L, and despite
receiving all the event data, one is still limited in one’s actions by latency-
induced time-sampling. One should also be careful about the ECNs and bro-
kers throttling data, where they do actually filter data at the outset and only
send it by packets in order to not overload the network.

These practical matters are discussed in detail in Part Four of the book.

6.3 SAMPLING: CLOCK TIME VS. EVENT TIME

The two most important sampling techniques for financial data are time
and event sampling. The difference between the commonly used clock time
and the timescale derived from the occurence of elementary market events
is explained here.

In time-interval sampling, one chooses a particular clock time interval
of length T and observes a price at the end of each consecutive interval. For
example, many traders build models using closing or last traded prices at
the end of each trading day and hence react only to daily changes in prices.
Longer-term models use last traded weekly or even monthly prices. Any in-
termediate data is simply omitted or ignored by those models. One can also
sample intraday using sampling every T minutes or seconds.

The markets go periodically through bursts and troughs of activity,
which are characterized by a varying volume of transactions in time. Time
sampling is appropriate for longer term strategies on timescales where such
varying activity is averaged out and is not deemed to influence decision mak-
ing. However, a more event-driven approach is warranted for shorter term
and intraday trading.

In event sampling, instead of sampling every T minutes, one samples ev-
ery N*” event. This means that the sampling naturally accelerates and decel-
erates in clock time in step with the market activity. This difference between
clock and event time is particularly relevant for short-term trading that needs
to react quickly to changing market conditions as it usually exploits patterns
stemming from such waves of activity.

The decision between clock and event sampling is the central decision
for the relevant filtering technique when designing a model. The subsequent
compression and representation techniques are then based on the same prin-
ciples. To illustrate the point, Figure 6.3 shows two price graphs of the same
intraday price action in clock and event time.



90 STRATEGY DESIGN AND TESTING

AUDCAD clock time
1.0425

1.042 F—

10415 T SN, %

= LM
1.041

1.0405 Ll

1.04

1.0395

1.039 T T T T T )
40910.085 40910.09 40910.095 40910.1  40910.105 40910.11  40910.115

AUDCAD event-time
1.0425
1.042 A A—
1.0415 Jyma e OMNTN N [~
1.041 \w\""\
1.0405 \\

1.04 \

1.0395 \’

1.039

0 50 100 150 200 250
FIGURE 6.3 Price Action in Clock vs. Event Time

In the trading agent paradigm introduced in this book, there is no differ-
ence of implementation between models using event or clock time because
clock-driven sampling is a subset of event-driven sampling. From a back-
testing or forward-testing perspective, the processing of a stream of time-
sampled or event-sampled prices is the same. The advantage of the design
presented in the book is that it applies equally well for simulation and real-
time trading environments.

6.4 COMPRESSION

6.4.1 Slicing Time into Bars and Candles

Some models use intermediate information between time or event sampled
data. The most common compression technique is called a bar and carries



Data Representation Techniques 91

information on the beginning (opening), the high, the low, and the last (clos-
ing) price in each time interval. The following figure shows the 10-minute
time-bars and the 1,000-event tick-bars and highlights the difference be-
tween the sampling techniques. The range of the bar is the distance between
the high and the low price.

Bursts of volatility in the market are usually synonymous and concurrent
with bursts in event activity, namely trading and order book changes. These
events seem to accelerate in clock time. Symmetrically, when the markets are
in transitions between time zones or during holidays, the event frequency
comes down and so does volatility. Sampling with constant clock time slices
through such periods of higher or lower activity yields respectively higher or
lower ranges.

A candle is a bar of which the “body,” that is, the range between the
opening and closing price, is either filled, when the closing price is be-
low the opening, or empty, if the closing price is above the opening. This
gives a tool for the trader to represent graphically serial correlation of
moves (short term trends). Figures 6.4 and 6.5 show representative bar and
candle charts.

10200

10100 r

10000

9900

9800

9700 r }

9600

9500

[—
T

94oo||'-' ;

9300

9200 T T T T T T T T

T L R e 4

& S S S S S F
DO IS R S

N N N NN N

FIGURE 6.4 Bar Chart Example



92

STRATEGY DESIGN AND TESTING

10200
10100

10000

9900

9800

9700

9600

9500

9400 -
9300

9200 I I I I I I I I I I

Q4 Q4 U U Q4 Q

N M I I NS

é} U ng éb éb <§b
N

N
B » §
R\ N N RO

XV
e
ng

&
0’\
G
&

AN N

FIGURE 6.5 Candle Chart Example

The bars and candles are represented as instances of the class BAR:

(defclass BAR (MARKETUPDATE)

((pivot
:accessor pivot)

(o
raccessor
(H
taccessor
(L
raccessor
(c
:accessor
(body£fill
taccessor bodyfill)))

0)

H)

L)

C)

(defmethod initialize-instance
(let ((v (value e)))

(setf (pivot e) (avg-list v))
(setf (0 e) (first v))
(setf (H e) (second v))
(setf (L (third v))
(setf (C e) (fourth v))

(setf (bodyfill e) (if (>=

NIL

T))))

:after ((e BAR) &key)

e)

(C e) (0 e))



Data Representation Techniques 93

The value field of the class is just the list of the opening, high, low, and
closing prices. The initialize-instance :after method populates
the readable fields and also determines the candle’s body fill field. Hence this
class contains the candle information as well if needed.

The class is further specialized into event-driven and time-driven
sampling:

(defclass TICKBAR (BAR)
((numticks
:raccessor numticks
:initarg :numticks)))

(defclass TIMEBAR (BAR)
((numtimeunits
:raccessor numtimeunits
:initarg :numtimeunits)
(timeunit
:raccessor timeunit
:initarg :timeunit
:initform :MINUTE)))

Bars and candles can be easily generated on the fly given a stream of real-time
or database-read PRC events. The illustration of it is given here for TICK-
BARs and the methodology uses the very same concepts that underpin the
agent-based paradigm introduced in the earlier chapters. Namely the TICK-
BARGENERATOR will be an agent that consumes PRC events and broadcasts
TICKBARS to the top of the *events-queue* stack. The class is defined by:

(defclass TICKBARGENERATOR (FSMAGENT)

((MKT
taccessor MKT
:initarg :MKT)
(N
taccessor N
:initarg :N)
(COUNTER
taccessor COUNTER
cinitform 0)
(BUFFER
taccessor BUFFER
cinitform NIL)
(op
taccessor OP
:initform NIL)



94 STRATEGY DESIGN AND TESTING

(HI

taccessor HI
:initform NIL)
(LO

taccessor LO
:initform NIL)
(CL

taccessor CL
:initform NIL)))

The original inputs are the security identifier MKT and the number of events
N to build the bar from. For example one can define two bar generators for
two different securities and event numbers:

(defparameter *bl* (make-instance
’TICKBARGENERATOR
:MKT "AAPL"
:N 5))

(defparameter *b2* (make-instance
’TICKBARGENERATOR
:MKT "MSFT"
:N 7))

(push *b2* *agents¥*)
(push *bl* *agents*)
(setf (recipientslist *al*) *agents¥)
(setf (recipientslist *a2*) *agents¥)

As with any other FSM agent, one needs to define the filter, initialization,
and preprocessor methods:

(defmethod observe ((a TICKBARGENERATOR) (e MARKETUPDATE))
(and
(equal (MKT a) (security e))
(not (equal (type-of e) ’BAR))))

(defmethod initialize ((a TICKBARGENERATOR))
(with-slots (MKT N states name) a
(when (null states)
(push :EMIT states)
(setf name (concatenate ’string
"TICKBARGENERATOR "
(format NIL "~A "A" MKT N))))))



Data Representation Techniques 95

(defmethod preprocess ((a TICKBARGENERATOR) (e MARKETUPDATE) )
(with-slots (COUNTER BUFFER positions) a
(push 0 positions)
(setf COUNTER (length BUFFER))))

In this case the agent is not a trading agent and hence the positions
list only contains zeros. Also as the agent emits the bars to the *events-
queue* it should not observe any bars by definition.

The FSM representation is very simple and contains only 2 states, : CALC
that creates the bar from the stream and :EMIT when it emits it to the
queue:

(defmethod setfsm ((a TICKBARGENERATOR))
(with-slots (MKT N COUNTER BUFFER OP HI LO CL states currentstate
revalprices transitions positions name) a
(setf currentstate (first states))
(setf transitions (list
(make-instance
>TRANSITION
:initialstate :CALC
:finalstate :CALC
:sensor #’price
:predicate #’(lambda (p)
(< COUNTER N))
tactuator #’(lambda (p)
(setf CL p)
(setf HI (max HI p))
(setf LO (min LO p))
(push p BUFFER)
(format T
"“S CALC->CALC ~%"
name) ) )
(make-instance
’TRANSITION
:initialstate :CALC
:finalstate :EMIT
:sensor #’price
:predicate #’(lambda (p)
(equal COUNTER N))
tactuator #’(lambda (p)
(emit a (make-instance
’TICKBAR
:timestamp (first
(timestamps a))
:security MKT



96 STRATEGY DESIGN AND TESTING

:value (list OP HI LO
CL)
:numticks N))
(setf BUFFER NIL)
(format T
"~“S CALC->EMIT ~%"
name) ))
(make-instance
’TRANSITION
:initialstate :EMIT
:finalstate :CALC
:sensor #’price
:predicate #’(lambda (p)
T)
:ractuator #’ (lambda (p)
(push p BUFFER)
(setf OP p)
(setf HI p)
(setf LO p)
(setf CL p)
(format T
"~“S EMIT->CALC ~%"
name) ) )
(make-instance
>TRANSITION
:initialstate :EMIT
:finalstate :EMIT
:sensor #’price
:predicate #’(lambda (p)
NIL)
ractuator #’(lambda (p)
NIL))))))

Finally, there is no need for a postprocessor. The other agents in the
*agents* list would be able to observe the emitted bar as soon as the last
relevant PRC event is processed by the bar generator and emitted on the
events queue.

6.4.2 Slicing Price into Boxes

A useful and complementary compression technique focuses solely on the
price dimension. One starts with a price or return scale B and the current
price P(0). The intuitive idea is as follows: Whenever the market is in an
uptrend and does not reverse by more than B from its local high, a series



Data Representation Techniques a7

of ascending boxes of height B are drawn on top of each other. When the
market finally reverses by more than B from its top, a new set of descending
boxes is drawn one notch to the right. Figure 6.6 gives the FSM representa-
tion for the box chart agent and Figure 6.7 the resulting chart example:

Box charts remove the time dimension (be it clock or event time) because
each box represents a state of the market where no opposite move occurs
relative to the previous trend state (as measured by the box size, i.e., price
scale B). The market can stay a long time or a little time in that state. The
box charts are useful compression techniques to automate the recognition
of chart patterns as we will see in a subsequent chapter.

The size B of the box dictates the price scale of the patterns that appear
from such a compression and also, indirectly, their time scale. The relation-
ship between the price and time scales is a function of volatility that varies
in time. To produce more consistent price-time scale relationships one can
adapt the box size to volatility V. A linear scaling B; = aV;_; is the sim-
plest example where the next box size is chosen as a function of the average
volatility that occured while the market was in the previous box, series of
boxes, or a fixed time period.

6.4.3 Market Distributions

Another interesting compression technique is the price distribution over a
time period. Namely, one divides the price scale into intervals of length B
and fills a horizontal bar between each division as a function of the frequency
of occurence of the price in that interval during the time period. Usually the
time over which a distribution is accumulated is a trading day.

Figure 6.8 presents the time series of daily price distributions and shows
the occurence of unimodal and bimodal daily price distributions. Bimodal
distributions occur when news moves the market from one level to another
around which the price then oscillates. Using the distributions can be useful
for certain intraday mean-reversion models and for some algorithmic exe-
cution applications.

6.5 REPRESENTATION

Once data has been sliced and diced by appropriate sampling and compres-
sion, different representation techniques can be applied. Representation can
be seen as a coding technique and is different for data fed to humans or to
machines.



2pod0pnasq 1eyD) xog  §'9 JNDI4

N N 1N 1N N 1>d N LHOIY-31DHID-MIN
1N TN 1>d 1N N N N YIMOT-31D8ID-M3IN
i L H=>d=>1 TN TN N N I1DYN-INVYS
N N H<d 1N N TN TN LHOIY-SSOYD-M3IN
JIN JIN TN N JIN H<d JIN [43IHOIH-SSOYI-MIN
N N 1N Al n H=>d=>1 1 SSOYI-INVS
N TN 1N 1N N TN TN 14V1S
LHOIY-I1DHID-M3N [¥IMOT-31HID-MIN| IJ1DYID-3NVS [LHOIY-SSOUI-M3IN [ HIHOIH-SSOUI-MIN | SSOYI-INVS 19vV1S
SSOYD Wuaind ay} jo Emt w03110g 8y} 01 4O 3UO JUBLINI JO WON0Q 3Y] 03 UMBIP SI 3TDHID Mau Y
372412 3Ud.41n3 3Y3 40 3y314 do} Y} 03 JO SUO JUSLINI JO dOY BY} O} UMBIP SI SSOYD MBU Y
X0g JU3.14nD 34} JO [3A37 Y3IH Y3} pue [3A37] MO Y3 3Je H pue ]
(puaszumop [800]) 310410 40 (pua.3dn [BI0]) SSOYD B J2YHS SI XOg S=1H
X0g 3y} 40 32IS 3Y1SI S H>1

a8y veyd xog



Data Representation Techniques 99

1760
1740
1720
1700
1680
1660
1640
1620
1600
1580
1560
1540
1520
1500
1480
1460
1440
1420
1400
1380
1360
1340
1320
1300
1280
1260
1240
1220
1200
1180
1160
1140
1120
1100
1080
1060
1040
1020

FIGURE 6.7 Box Chart Example

x| X| X[ X<

O|0|0|0|0|0|0

O|0|0|0o

x| XX
O|0|0
X|X|X| X | XX

XXX X[ X X| X

O|0|0|0|0
O|O|0O|0|0|0|O|0|0O|0|0|0|0|0|0|0|0|0

XXX XXX | X | X | X | X

O|0|0|0

x| x| X

O|0|0|0|0|0|0|0

O|0|0|0|0|0

X| X[ XX | X | X | X | X| X| X

x| XX
O|0|O
X|X|X| X

XX XX XX XXX | X XX XX X XX X XX

x| X| x| X

O|O|O|0|0O|0|0|0
O|0|0|0|0|0|0|0
[e][e)[e][e]

X| X[ XXX X| x| x| X

6.5.1 Charts and Technical Analysis

Most commonly, representation is of graphical nature and is designed to help
the human trader recognize patterns visually. All the charts shown above are
compressed sampled data represented in a particular way as a time series.
The most important feature of a graphically represented time series is
the memory that is embedded in it. The human eye is very well trained to



100 STRATEGY DESIGN AND TESTING

740
735
730
725
720
715
710
705
700
695
690

O|m O

O0mmw > > >

FIGURE 6.8 Market Distribution Chart Example

recognize patterns in pictures. Time series are particular pictures that repre-
sent an unfolding history. Part of the game is, given such a history sample, to
predict the next set of events. This is the central focus of technical analysis.

There is a whole plethora of market patterns that have varying predic-
tive power as to the future evolution of the price action (see Bulkowski, The
Encyclopedia of Chart Patterns, 2005). The patterns that have proven to
have superior predictive power and are amenable to coding efficiently are
(1) linear trend channels, (2) breakout from volatility compression (triangles
and pennants), (3) breakout or deceleration around support and resistance

60

0‘6 Q‘bg‘b INd QQ’ oq 0‘3 Q‘?’ Q% Q°~’ \Q \0 NAIhY *9 \" KRR R X ’(7/ \'l' \'7/\'7/ NG \‘7/
o Y 0 & Y ¢ 8 Y o o Vo o Vo

FIGURE 6.9 Examples of Volatility Compression Patterns



Data Representation Techniques 101

50

: 1 “

s ) Iul HI” l'“| "

30 [
!

25 — T T T T = T T - T —
XN XX ™R R RN RN N
¢ SRS A R R O R O A A A
ARG R SRR O S S S NG
FIGURE 6.10 Examples of Linear Patterns

(including double tops and bottoms, head and shoulders), and (4) trend
change via breaking linear trend channels.

The examples given in Figure 6.9 and in Figure 6.10 show several bar
and candle charts in time and event sampling that exhibit some common
behavioral set up patterns and subsequent market activity. Note that when
looking at longer-term charts with large price moves it is more convenient to
use a logarithmic scale, as shown in Figure 6.11. The markets tend to move
in return space rather than price space at those larger scales and trends that
appear nonlinear (exponentially accelerating) on a linear scale become linear
on a logarithmic scale.

6.5.2 Translating Patterns into Symhols

Some chart patterns can be recognized algorithmically (examples of code
are provided in the next chapter). This opens the door to study whether
the occurence of patterns is not random but presents certain statistical
rules. One can almost hear the phrase used by some experienced traders:
“Hear the market speak.” To test such serial correlation one can encode
each recognized pattern into a symbol (a letter for example) and study the



102 STRATEGY DESIGN AND TESTING

100000
~+ 10000
1000
— 100
10
ORN - TONOOTONOOTR - IDON—I)DMN =100 N
CRITLTLTNNRRRIIOYWHOROOONNPHRODIPRPO T
E-Qggéﬁc-c’iC%EEQCOB‘GQU’EC%EE%C°<>_-,
sPS82082°3s<=L882082°3=<=2L£388=2
FIGURE 6.11 Example of Trend Channel in Log Scale

statistics of words that are thus generated by the time series of patterns.
One can also test for robustness of such analysis by running the test on
different markets at different time and event scales.

Figure 6.12 is an example that illustrates the repeated occurence of the
following most common pattern:

(Volatility Contraction) — (Trend) — (Volatility Expansion) — - - -

-+« — (Range) — (Volatility Contraction) — - --

6.5.3 Translating News into Numbers

The modern world is awash with news that hits us from all sides: TV, fi-
nancial news services such as Bloomberg and Reuters, the Internet, and so
on. It is impossible to absorb all this data without some filtering. With the



Data Representation Techniques 103

60

50 E
40 T
T
E C T T
30 .A\’ 1
T/)"R R R C

20 T

T

R g R R
10 R
R

D PP PRI D90V V0 VO VO RXNAXNRAXRAX”RXNRAXDAYD A OO
S P PO OSSN N NN NN NN NN NN AAY NN AN
& S PRI S NP Y AN AU AN NS Y Ny

FIGURE 6.12 Contraction-Trend-Expansion-Range Pattern

advent of the streaming news services it has become possible to automati-
cally process that data using language recognition techniques. News pieces
are events of a very different nature from prices—they are semantic in na-
ture and communicated to the world in a symbolic language rather than in
numeric format.

Language recognition is an active area of research in artificial intelli-
gence. It is a difficult problem because syntax does not imply semantics and
phrases usually cannot be taken out of context. The field touches on the
most subtle areas of framing and building context (i.e., basic understanding)
through learning. Most of computing is performed on numeric problems,
and symbolic and semantic problems have always been harder to solve on
the prevailing computing architecture. Nontheless languages like LISP (used
here) and Prolog have been specifically developed to deal with symbolic
problems and the most powerful pattern-matchers and context generators
are written in them.

For trading, the most useful understanding of a piece of news is whether
the information embedded in it is going to have a positive or negative im-
pact on the price of a security. Some news affects particular securities (like
corporate announcements for a stock) and some news affects the market as
a whole (like unexpected monetary policy changes). Hence one needs to be
able to correlate a semantic datum with a numeric one.

Some reasonably simple techniques have been developed that compute
a numerical sentiment index for a given stock. Those techniques process in
real time all the news pertaining to that stock and some general news that
may affect the whole market. The output of the process for each piece of



104 STRATEGY DESIGN AND TESTING

news is a number that measures the positiveness of the news for that stock.
The sentiment index is then computed by adding (integrating) these numbers
over time or over a rolling time window.

It is not clear yet how effective such techniques are in systematic trad-
ing and research is in progress in this field. There is a prevailing feeling that
prices tend to move faster and anticipate news generally. When totally unex-
pected events occur (shocks to sentiment about a particular stock or to the
market as a whole), liquidity dries up very quickly and the reaction to prices
can be so violent that one has the impression that the price moves ahead of
the news.

6.5.4 Psychology of Data and Alerts

The representation of data has two goals—informative and psychological—
and so far I have discussed the informative aspect. The psychological goal
is to help traders anticipate better and react to market moves faster. As was
pointed out in the Introduction, trading cannot be seen outside of a risk
management context. Any representation of data that sharpens the mind
with regard to risk management is therefore useful for human traders.

In an open outcry context, the traders could sense the danger and oppor-
tunity by the noise level of the pit and the facial expressions of their fellows.
In an electronic context that information is not available, but there are ways
to substitute it, at least partially.

For example, the increase in market volume and velocity of transactions
can be represented graphically. Also, the transactions can be sent to the loud-
speaker by a voice synthetizer that can simulate nervousness via the speed of
arrival of trades combined with the increase in volume of orders on the book.

Of course, such gadgets may be detrimental to the trader who, instead of
keeping a clear head, could be drawn into the market hysteria and overreact.
Nevertheless, they can present an advantage by helping a human trader to
not be continuously glued to the screen.

One major feature of systematic trading is to remove the psychological
element from the trading decision. This does not mean that the psychology
of the market should not be an input into the decision making—in fact, it is
exactly what makes the various tradable patterns reoccur. Hence measuring
such psychological changes is useful.



