
OnVerification of D-Detectability forDiscrete Event Systems★

Jiří Balun and Tomáš Masopust

Department of Computer Science, Faculty of Science, Palacky University in Olomouc, Czechia

Abstract

Detectability is a state-estimation property asking whether the current and subsequent states of a system can be determined based on
observations. To exactly determine the current and subsequent states may be, however, too strict in some applications. Therefore, Shu and
Lin relaxed detectability to D-detectability distinguishing only certain pairs of states rather than all states. Four variants of D-detectability
were defined: strong (periodic) D-detectability and weak (periodic) D-detectability. Deciding weak (periodic) D-detectability is PSpace-
complete, while deciding strong (periodic) detectability or strong D-detectability is polynomial, and we show that it is NL-complete. To the
best of our knowledge, it is an open problem whether there exists a polynomial-time algorithm deciding strong periodic D-detectability. We
show that deciding strong periodic D-detectability is a PSpace-complete problem, which means that there is no polynomial-time algorithm,
unless every problem solvable in polynomial space can be solved in polynomial time. We further show that there is no polynomial-time
algorithm even for systems with a single observable event, unless P = NP. Finally, we propose a class of systems for which the problem
is tractable.

Key words: Discrete event systems, finite automata, state estimation, detectability, verification, complexity

1 Introduction

Detectability of discrete event systems (DESs) modeled by
finite automata was introduced by Shu et al. (2007) as a
generalization of other notions studied in the literature, in-
cluding stability of Ozveren and Willsky (1990) and observ-
ability of Caines et al. (1988) or of Ramadge (1986). An
evidence that many practical problems can be formulated
as the detectability problem for DESs was provided by Shu
and Lin (2011). Furthermore, Lin (2011) showed that de-
tectability is closely related to other important properties,
such as observability, diagnosability, and opacity.

Detectability is a state-estimation property asking whether
the current and subsequent states of a DES can be determined
after a finite number of observations. Shu et al. (2007) de-
fined four variants of detectability: strong (periodic) detect-
ability and weak (periodic) detectability. In their work, they
first studied detectability for deterministic DESs, which they
define as DESs modeled by deterministic finite automata
with a set of initial states. The motivation for a set of initial
states rather than a single initial state results from the obser-
vation that it is often unknown which state the system is ini-

★ Part of this work was presented at the International Workshop
on Discrete-Event Systems WODES 2020 (Balun and Masopust,
2020). Corresponding author: T. Masopust.
Email addresses: jiri.balun01@upol.cz (Jiří Balun),
tomas.masopust@upol.cz (Tomáš Masopust).

tially in. They proposed an exponential algorithm for decid-
ing detectability of a deterministic DES based on the com-
putation of an observer. Shortly after, Shu and Lin (2011)
extended the problem to nondeterministic DESs (DESs mod-
eled by general nondeterministic finite automata) and de-
signed an algorithm deciding strong (periodic) detectability
of nondeterministic DESs in polynomial time. The problem
of deciding strong (periodic) detectability was later shown
to be NL-complete by Masopust (2018a), which means that
this problem is efficiently solvable on a parallel computer.

Recently, Zhang (2017) showed that deciding weak (peri-
odic) detectability is a PSpace-complete problem and that it
remains PSpace-hard even for deterministic DESs with all
events observable. Masopust (2018a) strengthened these re-
sults by proving the same complexity for structurally “sim-
plest” deadlock-free DESs that are modeled by deterministic
finite automata without non-trivial cycles.

Since the requirement to exactly determine the current and
subsequent states after a finite number of observations may
be too strict in some applications, Shu and Lin (2011) re-
laxed the notion of detectability to a so-calledD-detectability
property. The idea behind the relaxation is to distinguish
only certain pairs of states rather than all states of the system.
Four variants of D-detectability were defined: strong (peri-
odic) D-detectability and weak (periodic) D-detectability.

Preprint submitted to Automatica July 10, 2021

The notion of (D-)detectability has been extended in many
directions. To mention a few, Shu and Lin (2013) extended
strong (D-)detectability to delayed (D-)detectability, moti-
vated by discrete event systems with delays, and designed a
polynomial-time algorithm to check strong (D-)detectability
for delayed DESs. Zhang and Giua (2019) improved the al-
gorithm for checking strong delayed (D-)detectability, and
introduced other notions of detectability, see also Zhang
et al. (2020). Alves and Basilio (2019) studied (D-)detect-
ability for discrete event systems with multi-channel com-
munication networks. Yin and Lafortune (2017) examined
the verification of weak and strong detectability properties
for modular DESs, and showed that checking both is PSpace-
hard. The exact complexities of these two problems were
resolved by Masopust and Yin (2019); they are, respec-
tively, PSpace-complete and ExpSpace-complete. We refer
the reader to Hadjicostis (2020) for the latest development
of state-estimation properties.

Since detectability is a special case of D-detectability, the
problem of deciding D-detectability is at least as hard as
deciding detectability. An immediate consequence of this
observation, together with the observer-based algorithm of
Shu and Lin (2011), is that the complexity of deciding weak
(periodic) D-detectability is a PSpace-complete problem.

The case of strong D-detectability is similar to that of strong
detectability. For strong (periodic) detectability, Shu and Lin
(2011) designed a detector that can decide, in polynomial
time, whether a DES satisfies strong (periodic) detectability.
They further showed that their detector is also suitable for
deciding strong D-detectability. Consequently, the complex-
ity of verifying strong D-detectability is polynomial. We fur-
ther improve this result by showing that deciding whether a
DES satisfies strong D-detectability is NL-complete (Theo-
rem 1). Since NL is the class of problems that can be effi-
ciently parallelized, see Arora and Barak (2009) for details,
we obtain that the verification of strong D-detectability can
be efficiently verified on a parallel computer.

However, deciding strong periodic D-detectability is more
involved. Although the detector-based technique provides a
polynomial-time algorithm to decide strong periodic detect-
ability, Shu and Lin (2011) give an example that this al-
gorithm does not work for checking strong periodic D-de-
tectability. They leave the question of the existence of a
polynomial-time algorithm deciding strong periodic D-de-
tectability of a DES open. To the best of our knowledge, this
question has not yet been answered in the literature. We an-
swer this question by showing that there does not exist any
algorithm that would decide, in polynomial time, whether a
DES satisfies strong periodic D-detectability (Theorem 3),
unless P = PSpace. The question whether P = PSpace is
a longstanding open problem of computer science asking
whether every problem solvable in polynomial space can also
be solved in polynomial time. It is generally believed that it
is not the case. In particular, Theorem 3 shows that the strong
periodic D-detectability problem is PSpace-complete. For-
mulated differently, the result says that the technique based

on the computation of the observer is in principle optimal.
Notice that since NL is a strict subclass of PSpace, strong
periodic D-detectability is significantly more complex than
its non-periodic counterpart—strong D-detectability.

We further show that strong periodic D-detectability is more
complex than strong D-detectability even for systems having
only a single observable event. Namely, we show that strong
periodic D-detectability cannot be verified in polynomial
time even for DESs that have only a single observable event
(Theorem 4), unless P = NP. The problem whether P = NP
is another longstanding open problem of computer science.

Finally, we specify a class of DESs for which deciding strong
periodic D-detectability is in polynomial time. Namely, we
consider the class of systems modeled by NFAs where all
cycles are in the form of self-loops and where there is no
nondeterministic choice between a step changing the state
and a step not changing the state under the same observation.
These restrictions are purely structural, and the models are
called rpoDES, see Section 5 for details.

Our contributions, compared with known results, are sum-
marized in Tables 1 and 2.

2 Preliminaries and Definitions

For a set �, |�| denotes the cardinality of � and 2� its power
set. An alphabet Σ is a finite nonempty set of events. A string
over Σ is a sequence of events of Σ. Let Σ∗ denote the set
of all finite strings over Σ, and let Σl denote the set of all
infinite strings over Σ; the empty string is denoted by Y. For
a string D ∈ Σ∗, |D | denotes its length. As usual, the notation
Σ+ stands for Σ∗ without the empty string Y, that is, Σ∗ \ {Y}.

A nondeterministic finite automaton (NFA) over an alphabet
Σ is a structure A = (&,Σ, X, �, �), where & is a finite set
of states, � ⊆ & is a set of initial states, � ⊆ & is a set of
marked states, and X : & × Σ → 2& is a transition function
that can be extended to the domain 2& × Σ∗ by induction.
The language recognized by A is the set ! (A) = {F ∈ Σ∗ |
X(�, F) ∩� ≠ ∅}. Equivalently, the transition function X is a
relation X ⊆ & ×Σ×&, where, for instance, X(@, 0) = {B, C}
denotes the two transitions (@, 0, B) and (@, 0, C). The NFA
A is unary if its input alphabet Σ is a singleton.

The NFA A is deterministic (DFA) if it has a unique initial
state, i.e., |� | = 1, and no nondeterministic transitions, i.e.,
|X(@, 0) | ≤ 1 for every @ ∈ & and 0 ∈ Σ. The DFAA is total
if in every state, a transition under every event is defined,
i.e., |X(@, 0) | = 1 for every @ ∈ & and 0 ∈ Σ. For DFAs, we
identify singletons with their elements and simply write ?
instead of {?}. Specifically, we write X(@, 0) = ? instead of
X(@, 0) = {?}.

A discrete event system (DES) is an NFA �. Since the mark-
ing of states does not play a role when studying detectability,

2

DESs rpoDESs

detectability D-detectability detectability D-detectability

known known new known known new

strong NL-c [1] in P [2] NL-c (Thm 1) NL-c [1] in P [2] NL-c (Thm 1 & Cor 9)
weak PSpace-c [3] PSpace-c — PSpace-c [1] PSpace-c —
strong periodic NL-c [1] ? PSpace-c (Thm 3) NL-c [1] ? NL-c (Thm 8)
weak periodic PSpace-c [3] PSpace-c — PSpace-c [1] PSpace-c —

Table 1
Summary of known and new results for DESs and rpoDESs; ? means that the problem was open; results easily derivable from existing
results are also placed among known results; [1] = Masopust (2018a), [2] = Shu and Lin (2011), and [3] = Zhang (2017).

unary DESs unary rpoDESs

detectability D-detectability detectability D-detectability

strong NL-c [1] NL-c (Thm 1) NL-c (Cor 9) NL-c (Cor 9)
weak NL-c (Thm 6) NL-c (Thm 6) NL-c (Thm 6) NL-c (Thm 6)
strong periodic NL-c [1] NP-c (Thm 4) NL-c (Thm 8) NL-c (Thm 8)
weak periodic NL-c (Thm 6) NP-c (Thm 6) NL-c (Thm 6) NL-c (Thm 6)

Table 2
Summary of known and new results for DESs and rpoDESs with a single observable event; [1] stands for Masopust (2018a).

we neglect it and simply write� = (&,Σ, X, �) without spec-
ifying the set of marked states. In addition, the alphabet Σ
of a DES � = (&,Σ, X, �) is partitioned into the set Σ> of
observable events and the set ΣD> = Σ \Σ> of unobservable
events. If the DES has only a single observable event, we
call it a unary DES.

State-estimation properties are based on the observation of
events. The observation is described by projections. The pro-
jection % : Σ∗ → Σ∗> is a morphism defined by %(0) = Y for
0 ∈ Σ \ Σ>, and %(0) = 0 for 0 ∈ Σ>. The action of % on
a string F = 0102 · · · 0=, where 08 ∈ Σ for 1 ≤ 8 ≤ =, is to
erase all events from F that do not belong to Σ>; in particu-
lar, %(0102 · · · 0=) = %(01)%(02) · · · %(0=). The definition
can readily be extended to infinite strings and languages.

Shu and Lin (2011) make the following two reasonable as-
sumptions on the DES � = (&,Σ, X, �) under which they
define the notions of detectability:

(1) � is deadlock free – it means that for every state of
the system, at least one event can occur; formally, for
every @ ∈ &, there exists f ∈ Σ such that X(@, f) ≠ ∅.

(2) No loop in � consists solely of unobservable events –
it means that for every @ ∈ & and every F ∈ Σ+D>, we
have that @ ∉ X(@, F).

We point out that to verify whether a system satisfies these
two properties is easy.

The set of infinite sequences of events (or trajectories) gen-
erated by the DES � is denoted by !l (�). Given a set
& ′ ⊆ &, the set of all possible states reachable from & ′ after

observing a string C ∈ Σ∗> is denoted by

'(& ′, C) =
⋃

F ∈Σ∗ ,% (F)=C
X(& ′, F) .

ForF ∈ !l (�), we denote the set of prefixes ofF by %A (F).

2.1 A Brief Complexity Review

We now briefly review the basics of complexity theory
needed to understand the results. A decision problem is a
yes-no question. A decision problem is decidable if there
exists an algorithm that can solve the problem. Complexity
theory classifies decidable problems to classes according to
the time or space an algorithm needs to solve the problem.
The complexity classes we consider in this paper are NL, P,
NP, and PSpace. They denote the classes of problems that are
solvable by a nondeterministic logarithmic-space, determin-
istic polynomial-time, nondeterministic polynomial-time,
and deterministic polynomial-space algorithm, respectively.
The hierarchy of classes is NL ⊆ P ⊆ NP ⊆ PSpace. Which
of the inclusions are strict is a longstanding open problem
of computer science. The widely accepted conjecture is that
all inclusions are strict. However, so far only the inclusion
NL ⊆ PSpace is known to be strict. A decision problem is
NL-complete (resp. NP-complete, PSpace-complete) if it
belongs to NL (resp. NP, PSpace) and every problem from
NL (resp. NP, PSpace) can be reduced to it by a determin-
istic logarithmic-space (resp. polynomial-time) algorithm.

3

3 Definitions of the D-Detectability Problems

Shu and Lin (2011) defined D-detectability as a generaliza-
tion of detectability by explicitly identifying the states that
need to be distinguished.

Let � = (&,Σ, X, �) be a DES, and let)B?42 ⊆ & × & be a
relation on the set of states of �. The relation)B?42 specifies
pairs of states that must be distinguished, and is therefore
called a specification. The idea behind the definition of D-de-
tectability is to ensure that the pairs of states from)B?42 are
distinguished after a finite number of observations. We now
recall the definitions of the four variants of D-detectability.

For a DES � = (&,Σ, X, �), projection % : Σ∗ → Σ∗>, and a
specification)B?42 , we say that � is

• strongly D-detectable if, for all trajectories of the system,
the pairs of states of)B?42 can be distinguished in every
step of the system after a finite number of observations;
formally:

(∃= ∈ N) (∀B ∈ !l (�)) (∀C ∈ %A (B)) |%(C) | > =
⇒ ('(�, %(C)) × '(�, %(C))) ∩)B?42 = ∅ .

• weakly D-detectable if, for some trajectories of the system,
the pairs of states of)B?42 can be distinguished in every
step of the system after a finite number of observations;
formally:

(∃= ∈ N) (∃B ∈ !l (�)) (∀C ∈ %A (B)) |%(C) | > =
⇒ ('(�, %(C)) × '(�, %(C))) ∩)B?42 = ∅ .

• strongly periodically D-detectable if the pairs of states of
)B?42 can be periodically distinguished for all trajectories
of the system; formally:

(∃= ∈ N) (∀B ∈ !l (�)) (∀C ∈ %A (B)) (∃C ′ ∈ Σ∗)
CC ′ ∈ %A (B) ∧ |%(C ′) | < =

∧ ('(�, %(CC ′)) × '(�, %(CC ′))) ∩)B?42 = ∅ .

• weakly periodically D-detectable if the pairs of states of
)B?42 can be periodically distinguished for some trajecto-
ries of the system; formally:

(∃= ∈ N) (∃B ∈ !l (�)) (∀C ∈ %A (B)) (∃C ′ ∈ Σ∗)
CC ′ ∈ %A (B) ∧ |%(C ′) | < =

∧ ('(�, %(CC ′)) × '(�, %(CC ′))) ∩)B?42 = ∅ .

4 Main Results

We now discuss the complexity of checking whether a DES
is D-detectable. As already pointed out in the introduction,
the complexity of deciding weak (periodic) D-detectability
follows from the complexity of checking weak (periodic)

detectability. Indeed, a polynomial space is sufficient for
an algorithm based on the inspection of states in the ob-
server and works for all the D-detectability variants. Decid-
ing weak (periodic) D-detectability is therefore in PSpace.
On the other hand, detectability is a special case of D-de-
tectability for)B?42 = & × & \ {(@, @) | @ ∈ &}. Therefore,
deciding weak (periodic) D-detectability is at least as hard
as deciding weak (periodic) detectability. Since the latter is
PSpace-hard, so is the former.

4.1 Verification of Strong D-Detectability

Shu and Lin (2011) designed an algorithm that verifies strong
(periodic) detectability in polynomial time. Their algorithm
is based on the construction of a finite automaton called a
detector. Intuitively, given a DES �, the detector �34C is
constructed from � so that (i) the set of initial states of �34C
is the set of all states of � reachable from the initial states of
� under strings consisting only of unobservable events, (ii)
all the other states of �34C are one- or two-element subsets
of the set of states of �, and (iii) the transition relation of
�34C is constructed in the similar way as that of the observer,
but if the reached state - in the observer consists of more
than two states, then the detector�34C has several transitions
each leading to a two-element subset of - , see Shu and Lin
(2011) for details. Since the states of the detector are one-
or two-element subsets, their number is polynomial.

Shu and Lin (2011) showed that � is strongly (periodically)
detectable if and only if any state reachable from any loop in
�34C consists solely (periodically) of distinguishable states.
They further proved that their algorithm, respectively the
detector, works for checking strong D-detectability, which
in particular implies that the complexity of verifying strong
D-detectability is polynomial.

We now show that deciding strong D-detectability is an NL-
complete problem. Consequently, since NL is the class of
problems that can be efficiently parallelized, see Arora and
Barak (2009) for details, our result shows that strong D-de-
tectability can be efficiently verified on a parallel computer.

Theorem 1. Deciding whether a DES is strongly D-detect-
able is an NL-complete problem.

Proof. We prove membership of the problem in NL by giv-
ing a nondeterministic logarithmic-space algorithm checking
whether strong D-detectability does not hold. Since NL is
closed under complement (Immerman, 1988; Szelepcsényi,
1988), it shows that there is a nondeterministic logarithmic-
space algorithm checking whether the property is satisfied.

To check that strong D-detectability is not satisfied, our NL
algorithm guesses two states of �34C , say G and H, where
H contains indistinguishable states, and verifies that (i) H is
reachable from G, (ii) G is reachable from the initial state of
�34C , and (iii) G is in a cycle, i.e., G is reachable from G by a

4

B

? A

C

G

�0

0

0
0

00

?

Figure 1. The DES A constructed from � in the NL-hardness
proof of Theorem 1.

1 2 3

0

1
0

0

Figure 2. The DES � from Example 2.

path having at least one transition. Notice that our algorithm
does not construct the detector�34C . It only stores a constant
number of states of �34C and computes the required states
of �34C on demand. Therefore, our algorithm does not need
more than a logarithmic space. For more details how to check
reachability in NL, we refer the reader to Masopust (2018b).

To show NL-hardness, we reduce the DAG non-reachability
problem (Cho and Huynh, 1991) that asks, given a directed
acyclic graph � = (+, �) and two nodes B, C ∈ + , whether
C is not reachable from B. From �, we construct a DES
A = (+ ∪ {G}, {0}, X, B), where G ∉ + is a new state and 0
is an observable event. For every edge (?, A) ∈ � , we add
the transition (?, 0, A) to X, and for every ? ∈ + \ {C}, we
add the transition (?, 0, G) to X. Moreover, we add the self-
loop transitions (G, 0, G) and (C, 0, C) to X. The construction
is depicted in Figure 1. Notice that A is deadlock-free and
has no unobservable events. Let the specification)B?42 be
defined as)B?42 = {(C, G)}. We now show that C is not
reachable from B in the graph � if and only if the DES A
is strongly D-detectable. If C is not reachable from B in �,
then, for every : ≥ |+ |, X(B, 0:) = {G}. Therefore, A is
strongly D-detectable. If C is reachable from B in �, then,
for every : ≥ |+ |, X(B, 0:) = {C, G}. Therefore, A is not
strongly D-detectable, because (C, G) ∈)B?42 . �

4.2 Verification of Strong Periodic D-Detectability

Although the detector-based technique leads to a polynomi-
al-time algorithm deciding strong periodic detectability, Shu
and Lin (2011) showed that this algorithm does not work for
checking strong periodic D-detectability. To give the reader
an idea of the detector-based polynomial-time algorithm and
why it does not work for strong periodic D-detectability, we
slightly elaborate the example of Shu and Lin (2011).

Example 2. Let � = ({1, 2, 3}, {0, 1}, X, {1, 2, 3}) be the
DES depicted in Figure 2, where both events are observable,
and define)B?42 = {(1, 3)}. The detector �34C is depicted
in Figure 3. In �34C , we can see that � is not strongly D-de-
tectable, because there is an infinite path alternating between

{1, 2, 3}

{1, 3}{1, 2} {2, 3}

{2} {3}

0 0 0
0

0

0

1
1 1

0

0

Figure 3. Detector �34C constructed from the DES � of Exam-
ple 2.

{1, 2, 3} {2} {3}

0

1
0

0

Figure 4. The observer of the DES � from Example 2.

the states {1, 2} and {1, 3} going periodically through state
{1, 3}, violating thus strong D-detectability. From this path,
we could get an impression that � is strongly periodically
D-detectable. However, this is not the case as can be seen
from the observer depicted in Figure 4, where the trajectory
0l generated by the self-loop in state {1, 2, 3} violates strong
periodic D-detectability. �

Shu and Lin (2011) left the question whether there exists a
polynomial-time algorithm deciding strong periodic D-de-
tectability of a DES open. To the best of our knowledge,
this question has not yet been resolved in the literature. We
answer it in the sequel. In addition, we distinguish two cases
based on the number of observable events in the system:

(i) The general case where the system has two or more ob-
servable events;

(ii) A special case where the system has only a single ob-
servable event.

The case of two or more observable events

As pointed out above, the problem whether a DES is strongly
or weakly (periodically) D-detectable is in PSpace. In this
section, we show that deciding strong periodic D-detect-
ability is PSpace-hard, and hence PSpace-complete. Our re-
sult says that there is no algorithm solving this problem in
polynomial time, unless P = PSpace.

Theorem 3. Deciding whether a DES is strongly periodi-
cally D-detectable is a PSpace-complete problem. The prob-
lem is PSpace-hard even if the DES has only two observable
and no unobservable events.

Proof. Membership in PSpace follows from the inspection
of states of the observer that are built on demand (Shu and
Lin, 2011; Zhang, 2017; Masopust, 2018b).

5

To show PSpace-hardness, we reduce the intersection empti-
ness problem. The problem is PSpace-complete (Garey and
Johnson, 1990) and asks, given a sequence A1, . . . ,A= of
total DFAs over a common alphabet Σ with |Σ| ≥ 2, whether
the language ∩=

8=1! (A8) is empty. Without loss of general-
ity, we may assume that Σ = {0, 1}. From the total DFAs
A1, . . . ,A=, we construct a DES � that is strongly peri-
odically D-detectable if and only if the intersection of the
languages of A1, . . . ,A= is empty.

The main idea of our proof is to construct � as a nonde-
terministic union of the automataA1, . . . ,A= together with
= + 1 new states, such that all and only these new states are
reachable at the same time if and only if the intersection is
nonempty (cf. Figure 5). This in particular means that if the
intersection is empty, only a strict subset of the new states
can be reached at the same time. After reaching the new
states, the computation remains in the new states. The new
states (except for one state, @−) form a cycle, and therefore,
during any further computation, the current states are pe-
riodically rotated. This allows us to make one of the new
states, say @+1 , periodically indistinguishable from the state
@−, and the other periodically distinguishable.

Formally, let A1, . . . ,A= be total DFAs over a common
alphabet Σ, and let A8 = (&8 ,Σ, X8 , @0,8 , �8). Without loss
of generality, we may assume that the states of the DFAs
are pairwise disjoint. Let 0 and 1 be new events, and let
5 : Σ∗ → {0, 1}∗ be a morphism defined by 5 (0) = 10 and
5 (1) = 11. We modify every A8 by encoding the events
of Σ as follows. We replace each transition C = (?, 0, @) by
two transitions (?, 1, ?C) and (?C , 0, @), where ?C is a new
state, and each transition A = (?, 1, @) by two transitions
(?, 1, ?A) and (?A , 1, @), where ?A is a new state; see Fig-
ure 7 for an illustration how to replace the transitions of the
DFAs of Figure 6. This replacement requires to add a new
state for each transition of the DFAs, which can be done in
polynomial time. The modified A8 is denoted by A ′8 .

We now construct a DES � as a nondeterministic union of
all the automataA ′8 , i.e., � contains all states and transitions
of every A ′8 , and we add =+1 new states @−, @+1 , . . . , @

+
= and

several new transitions under event 0 as depicted in Figure 5.
Namely, for 8 = 1, . . . , =, we add the transition (@, 0, @−)
for every non-marked state @ ∈ &8 \ �8 , and the transition
(@, 0, @+

8
) for every marked state @ ∈ �8 . We further add

the self-loop (@−, f, @−) for every f ∈ {0, 1}. Finally, for
every f ∈ {0, 1}, we create a cycle on the states &+ =
{@+1 , . . . , @

+
=} by adding the transitions (@+

8
, f, @+

8+1), for 1 ≤
8 < =, and the transition (@+=, f, @+1). The set of initial states
of � is the set � = {@−, @0,1, . . . , @0,=} of initial states of the
automata A8 plus the newly added state @−. The alphabet of
� is Σ′ = {0, 1}, all events of which are observable.

We define the specification)B?42 = {(@−, @+1)}, and show
that � is strongly periodically D-detectable if and only if
the intersection ∩=

8=1! (A8) is empty.

@+1

@+2

@+=

A1

A2

A=

...
...

@−

0

0

0

Σ′

Σ′

Σ′

0

0

0

Σ′

Σ′

Figure 5. Construction of the DES � from the PSpace-hardness
part of the proof of Theorem 3.

Assume that the intersection is empty. A trajectory that never
reaches the states of&+ cannot violate strong periodic D-de-
tectability, because it cannot enter state @+1 from the speci-
fication. Therefore, assume that � eventually enters a state
of &+. When � enters a state of &+, it leaves all states out
of &+ ∪ {@−}. Thus, let B ∈ !l (�) be an arbitrary trajec-
tory that enters &+. Then, B = B1B2 where � generates B1 in
states outside &+, and B2 is the part after � first enters &+.
In this case, B1 = 5 (F) ∈ {0, 1}∗, for some F ∈ {0, 1}∗, and
B2 ∈ 0{0, 1}l . Then, after generating the first event of B2,
the observer of � is in a set of states consisting of @− and a
strict subset of &+; indeed, � cannot transit to all states of
&+ at the same time, because the assumption that the inter-
section is empty implies that, for every F ∈ Σ∗, there exists
8 ∈ {1, . . . , =} such that F ∉ ! (A8).

Let ?8 ∈ &+ = {@+1 , . . . , @
+
=} denote the state of &+ with the

minimal index, in which � cannot be when the 8th event of
B2 is generated. By construction, the cycle on&+ ensures that
?8 periodically alternates among @+1 and some other states of
&+ when generating B2. Therefore, in the infinite sequence
?1, ?2, . . ., there are infinitely many 9 such that ? 9 = @+1 ,
and hence @− and @+1 are periodically distinguished, which
shows that � is strongly periodically D-detectable.

On the other hand, assume that the intersection is nonempty,
and let F ∈ ∩=

8=1! (A8). Then, after generating the string
5 (F)0, the observer of � reaches the state {@−} ∪&+. Now,
every transition keeps� in all states of {@−}∪&+, and hence
it results in a self-loop in the observer of �. However, this
self-loop violates strong periodic D-detectability, because it
contains both state @− and state @+1 . Therefore, any trajectory
B ∈ !l (�) with 5 (F)0 as a prefix leads to a set of states
where the states of)B?42 can never be distinguished, and
hence � is not strongly periodically D-detectable. �

To illustrate the construction, we provide two examples. Let
A1 and A2 be the total DFAs over {0, 1} depicted in Fig-
ure 6, where ! (A1) consists of strings of odd length, and
! (A2) of strings of even length. Our construction results in

6

0 1 2 3

A1 A20, 1

0, 1

0, 1

0, 1

Figure 6. The DFAs A1 and A2 over Σ = {0, 1}.

a DES � depicted in Figure 7. Since ! (A1) ∩ ! (A2) = ∅,
the construction gives that � is strongly periodically D-de-
tectable; indeed, it is evident from the observer of � de-
picted in Figure 8 where, on every trajectory, states @− and
@+1 can be periodically distinguished.

For our second example, let A1 be as above, and let A2
be the total minimal DFA such that ! (A2) consists of all
strings starting with event 0. Our construction results in a
DES � depicted in Figure 9. Here, ! (A1)∩! (A2) ≠ ∅, and
hence � is not strongly periodically D-detectable; indeed,
Figure 10 shows a fragment of the observer of � that con-
tains a trajectory through the self-loop in state {@−, @+1 , @

+
2},

where the states @− and @+1 cannot be periodically distin-
guished.

0

4

5

ℎ

6
1 @+1

2

8

9

ℓ

:
3 @+2

A1

A2

@−

0

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

0, 10, 1

0

0

0, 1

Figure 7. The DES � with Σ′ = {0, 1} constructed from the DFAs
of Figure 6, where 0 is encoded as 10 and 1 as 11.

{0, 3, @−} - . {1, 2, @−}

{@−, @+1}{@−, @+2}

0 0
0, 1

0, 1

1

0, 1

1

0, 1

Figure 8. The observer of �; states marked by double circles
contain indistinguishable states of �; here - = {4, 5 , :, ℓ, @−} and
. = {6, ℎ, 8, 9 , @−}.

0

2

3

4

5
1 @+1

6

ℎ 8

9

: ℓ

<

=

@+2

>

A1

A2

@−

0

0

1

1

1

0

1

1

1

0

0, 10, 1

0

0

0

0, 1

1

1

1

0

1

1

10

1 1

10

Figure 9. The DES � with Σ′ = {0, 1}.

{0, 6, @−}

{2, 3, :, >, @−}

{1, ℓ, @−} {1, ℎ, @−}

{@−, @+1 , @
+
2}

1 0

1

1

0

0

100, 1

Figure 10. A fragment of the observer of � showing the trajectory
that cannot periodically distinguish states @− and @+1 .

The case of a single observable event

In the previous subsection, we have shown that deciding
strong periodic D-detectability is PSpace-complete for DESs
with at least two observable events. We now show that the
problem is still more difficult than its non-periodic counter-
part even for DESs having only a single observable event.

Theorem 4. Deciding strong periodic D-detectability for
DESs with a single observable event is NP-complete.

Proof. Consider a DES with a single observable event {0}.
If the DES has unobservable events, we can eliminate them
as follows. First, we replace each unobservable transition,
i.e., a transition of the form (?, D, @) with D being an unob-
servable event, by an Y-transition (?, Y, @). Then, we use the
standard technique to eliminate Y-transitions (Hopcroft et al.,

7

2007). This elimination results in a DES and can be done in
polynomial time. Therefore, without loss of generality, we
may assume that the DES is of the form � = (&, {0}, X, �).

A proof that we can decide strong periodic D-detectability
of � in nondeterministic polynomial time uses a so-called
fast matrix multiplication technique. The basic idea of this
technique is to represent the transition function X of � as a
binary matrix " , where " [8, 9] = 1 if and only if there is
a transition from state 8 to state 9 in �. Then, for A ≥ 1, "A

represents the reachability in � under the string 0A . Further-
more, using the fact that "2 = " × " , "4 = "2 × "2,
etc., we can compute "A by$ (log A) matrix multiplications,
each multiplication in polynomial time. For more details and
examples on this technique, we refer to Masopust (2018b).

Assume that � has = states. Then the observer of � consists
of a sequence of : states followed by a cycle consisting of ℓ
states, that is, the language of� is 0: (0ℓ)∗. Since the number
of states of the observer of � is at most 2=, : + ℓ ≤ 2=.

Now, � is strongly periodically D-detectable if and only if
there is a state - ⊆ & in the cycle of the observer of �
(we assume that the observer is constructed by the standard
subset construction (Hopcroft et al., 2007)) that is disjoint
from the specification, that is, - ∩)B?42 = ∅. Indeed, to
check whether - ∩)B?42 = ∅ can be done in polynomial
time. It remains to show how to find - in polynomial time.
This means to find < ≤ 2= such that X(�, 02=+<)∩)B?42 = ∅.
However, an NP algorithm can guess < in binary and verify
the guess in polynomial time by computing X(�, 02=+<) using
the fast matrix multiplication, cf. Masopust (2018b) for more
details and an example.

To prove NP-hardness, we adapt the construction of Stock-
meyer and Meyer (1973) encoding a boolean formula in
3CNF in the form of a unary NFA.1 For an illustration, the
reader may follow Example 5 in parallel with the proof.

Let i be a formula in 3CNF with = variables and < clauses,
and let �: be the set of literals in the :th clause, : =

1, . . . , <. The assignment to the variables is represented by a
binary vector of length =. Let ?1, . . . , ?= be the first = prime
numbers. For a natural number I congruent with 0 or 1 mod-
ulo ?8 , for every 8 = 1, . . . , =, we say that I satisfies i if the
assignment (I mod ?1, I mod ?2, . . . , I mod ?=) ∈ {0, 1}=
satisfies i. Let A0 be an NFA recognizing the language of

1 A boolean formula is built from propositional variables, oper-
ators conjunction, disjunction, and negation, and parentheses. A
formula is satisfiable if there is an assignment of 1 (true) and 0
(false) to its variables making it true. A literal is a variable or
its negation. A clause is a disjunction of literals. A formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses;
e.g., i = (G ∨ H ∨ I) ∧ (¬G ∨ H ∨ I) is a formula in CNF with two
clauses G ∨ H ∨ I and ¬G ∨ H ∨ I. If every clause has at most three
literals, the formula is in 3CNF. Given a formula in 3CNF, 3CNF
satisfiability asks whether the formula is satisfiable; e.g., i is satis-
fiable for (G, H, I) = (0, 1, 0). 3CNF satisfiability is NP-complete.

the expression
⋃=
8=1

⋃?8−1
9=2 0 9 · (0?8)∗, that is, ! (A0) = {0I |

∃: ≤ =, I . 0 mod ?: and I . 1 mod ?: } is the set of all
natural numbers that do not encode an assignment to the
variables.

For each �: , we construct an NFA A: such that if 0I ∈
! (A:) and I is an assignment, then I does not assign 1
(true) to any literal in �: ; e.g., if �: = {GA ,¬GB , GC }, 1 ≤
A, B, C ≤ = and A, B, C are distinct, let I: be the unique integer
such that 0 ≤ I: < ?A ?B?C , I: ≡ 0 mod ?A , I: ≡ 1 mod ?B ,
and I: ≡ 0 mod ?C . Then ! (A:) = 0I: · (0?A ?B ?C)∗.

Now, i is satisfiable if and only if there exists I such that
I encodes an assignment to i and 0I ∉ ! (A:) for all 1 ≤
: ≤ <, which is if and only if ! (A0) ∪

⋃<
:=1 ! (A:) ≠ 0∗.

The construction of all the automata A0,A1, . . . ,A: can
be done in polynomial time (Stockmeyer and Meyer, 1973).

Let A denote the NFA obtained by taking all the automata
A0, A1, . . . ,A: as a single NFA, and let ? = Π=

8=1?8 . If
I encodes an assignment to i, then so does I + 2? for any
natural 2: indeed, if I ≡ G8 mod ?8 , then I+2? ≡ G8 mod ?8 ,
for every 1 ≤ 8 ≤ =, as well. Thus, if 0I ∉ ! (A:) for all : ,
then 0I (0?)∗∩ ! (A) = ∅. Since both languages are infinite,
the minimal DFA recognizing ! (A) must have a nontrivial
cycle alternating between marked and non-marked states,
and hence the same holds for the observer of A.

We now show that i is satisfiable if and only ifA is strongly
periodically D-detectable with respect to the specification
)B?42 consisting of all pairs of states, where the states come
from two different automata A8 and A 9 , 8 ≠ 9 , and at least
one state is marked in its automaton.

Assume that i is satisfiable. As shown above, this is if and
only if ! (A) ≠ 0∗. We have further shown that ! (A) is infi-
nite and that the observer ofA consists of a single trajectory
with a non-marked state, - , in its cycle part, i.e., - contains
only non-marked states of the automata A0, . . . ,A: . Since
)B?42 consists of pairs of states of two different automata
A8 and A 9 , 0 ≤ 8 ≠ 9 ≤ : , with at least one state marked in
its automaton, we have that (- × -) ∩)B?42 = ∅. Therefore,
A is strongly periodically D-detectable with respect to the
specification)B?42 .

On the other hand, assume that i is not satisfiable. As shown
above, this is if and only if ! (A) = 0∗. But then every state
of the observer of A must be marked, i.e., every state, - , of
the observer contains a marked state of someA8 , 0 ≤ 8 ≤ : ,
and hence (- ×-) ∩)B?42 ≠ ∅. Therefore,A is not strongly
periodically D-detectable with respect to)B?42 . �

The following example illustrates the construction.

Example 5. Let i1 = (G ∨ H) ∧ (¬G ∨ H) and i2 = G ∧ ¬G.
Obviously, i1 is satisfiable and i2 is not. For both formulae,

8

0 1 2

3

4
0 0

0 0
0

Figure 11. Automaton A1,0.

5

6 ℎ 8 9

:

0
0 0 0

0

0

Figure 12. Automaton A1,1.

; < = >

?@AB

C
0 0 0

0
000

0

0

Figure 13. Automaton A1,2.

{0, 5 , ;} {1, 6, <} {2, ℎ, =} {3, 8, >}

{4, 9 , ?}{2, :, @}{3, 5 , A}{4, 6, B}

{2, ℎ, C}
0 0 0

0
000

0

0

Figure 14. The observer of the NFAA1; states marked by a double
circle contain indistinguishable states of A1.

we can construct the unary automata A1 and A2, respec-
tively, and show that A1 is strongly periodically D-detect-
able while A2 is not.

The formula i1 = (G ∨ H) ∧ (¬G ∨ H) has two variables, and
therefore we set ?1 = 2 and ?2 = 3, the first two prime num-
bers. The automatonA1,0, depicted in Figure 11, recognizes
the language 02 (03)∗ of all strings that do not encode the
assignment to i1. Since i1 consists of two clauses, we fur-
ther construct two automata: A1,1 recognizing the language
(06)∗, andA1,2 recognizing the language 03 (06)∗; the reader
can verify that if 0I ∈ ! (A1,1) and I is an assignment, then
I assigns true neither to G nor to H, and if 0I ∈ ! (A1,2) and
I is an assignment, then I assigns true to G (that is, it as-
signs false to the literal ¬G) and false to H. The automata
are depicted in Figures 12 and 13, respectively. The specifi-
cation)B?42 is then the symmetric closure of the relation

) = {2} × { 5 , 6, ℎ, 8, 9 , :, ;, <, =, >, ?, @, A, B, C}
∪ {0, 1, 2, 3, 4, ;, <, =, >, ?, @, A, B, C} × { 5 }
∪ {0, 1, 2, 3, 4, 5 , 6, ℎ, 8, 9 , :} × {>} .

Let A1 be the NFA consisting of the automata A1,0, A1,1,
and A1,2. The observer of A1 is depicted in Figure 14. The
reader can see that the observer contains a cycle where the
state {4, 9 , ?} appears periodically. Since this state does not
contain any pair from the specification)B?42 , the NFA A1
is strongly periodically D-detectable.

0 1
0

0

Figure 15. Automaton A2,1.

2 3 4
0 0

0

Figure 16. Automaton A2,2.

{0, 2} {1, 3} {0, 4}0 0

0

Figure 17. The observer of the DESA2; states marked by a double
circle contain indistinguishable states of A2.

Similarly, we construct the automata for the formula i2 =
G ∧ ¬G. The formula has only one variable, and therefore
we set ?1 = 2. Then the language ! (A2,0) = ∅, since any
natural number modulo 2 is either 0 or 1. Therefore, the
automaton A2,0 consists of a single non-marked state, and
hence we can ignore it in the following construction. Since
i2 consists of two clauses, we construct two automata A2,1
recognizing the language (02)∗, and A2,2 recognizing the
language 0(02)∗; the reader can verify that if 0I ∈ ! (A2,1)
and I is an assignment, then I does not assign true to G, and
that if 0I ∈ ! (A2,2) and I is an assignment, then I assigns
true to G. The automata are depicted in Figures 15 and 16,
respectively. The specification)B?42 is then the symmetric
closure of the relation {(0, 2), (0, 3), (0, 4), (1, 3)}. Let A2
be the NFA consisting of both automataA2,1 andA2,2. The
observer of A2 is depicted in Figure 17. The reader can see
that the state set of the observer consists of states that are
indistinguishable by the specification)B?42 , and hence A2
is not strongly periodically D-detectable. �

As already pointed out above, the observer of a unary DES,
that is, of a DES with a single observable event, consists of a
single trajectory ending with a cycle. We now formulate the
consequences of this observation showing the relationship
between weak and strong detectabilities.

Theorem 6. For a DES with a single observable event, de-
ciding weak detectability coincides with deciding strong de-
tectability, and deciding weak periodic detectability coin-
cides with deciding strong periodic detectability. The same
holds true for D-detectability.

Proof. Let � be a DES with = states and a single observable
event Σ> = {0}. Then the observer of � consists of a se-
quence of : states followed by a cycle consisting of ℓ states,
that is, the language of � is 0: (0ℓ)∗ with : + ℓ ≤ 2=. The
existence of the cycle follows from the two assumptions on
Page 3. Since the observer of � consists of a single infinite
trajectory, deciding strong (periodic) detectability coincides

9

with deciding weak (periodic) detectability. The same result
holds when we replace detectability with D-detectability. �

5 A Tractable Case

In the previous sections, we have shown that deciding strong
periodic D-detectability is a difficult problem for DES mod-
eled by NFAs. Therefore, we now discuss a special case of
systems for which the verification of strong periodic D-de-
tectability is polynomial.

Looking for DESs for which the problem is tractable, we
first inspect the proof of Theorem 3. This proof is based on
the intersection emptiness problem for DFAs that was shown
to be PSpace-complete by Kozen (1977). His proof relies
on DFAs with cycles. Allowing only self-loops instead of
cycles in the DFAs makes the problem easier (Masopust and
Krötzsch, 2019). Therefore, we consider DESs modeled by
NFAs where all cycles in the transition graph are self-loops.
Such NFAs recognize a strict subclass of regular languages
that are strictly included in star-free languages (Brzozowski
and Fich, 1980; Krötzsch et al., 2017). Star-free languages
are languages definable by linear temporal logic, which is a
logic widely used as a specification language in automated
verification. Notice that a suitable self-loop may be added
to any state, if needed, and hence the system may fulfill the
deadlock-free requirement.

A practical motivation for such systems comes from the fol-
lowing observation. Every infinite trajectory in a system de-
scribes a task that is possibly repeated ad infinitum. Every
task of such a trajectory is a finite sequence of events. For
example, imagine the situation where a user accesses an arti-
cle on Wikipedia. Displaying the article, Wikipedia imports
some parts from its knowledge graph called Wikidata. Thus,
every time a user accesses a Wikipedia article, the server
connects to Wikidata, sends a query to Wikidata, obtains
a response, and terminates the connection. The response is
then used to build the page to be displayed.

Such a system is a parallel composition of many terminat-
ing processes, where each process executes the following se-
quence of steps: it opens the connection to the database, then
it sends the query to the database, it receives the response,
and finally it terminates the connection to the database. On
the side of the database, such a communication may be mod-
eled as a single state that idles in that state or connects the
user to the database, and hence we may model it as a single
state with several self-loops; indeed, we abstract here from
the details of opening and closing the connection, but it is
not important for our modeling.

Notice that the users come continuously, and hence the sys-
tem is infinite in general. However, if we are interested in
the properties of such a system in a finite period of time,
then the system, considered as the parallel composition of
all the processes that were active during that period of time,

0

0

Figure 18. The forbidden pattern of rpoNFAs.

is a huge automaton where every loop is in the form of a
self-loop, and hence in the form we discuss in this section.

LetA = (&,Σ, X, �, �) be an NFA. The reachability relation
≤ on the state set & is defined by ? ≤ @ if there is F ∈ Σ∗
such that @ ∈ X(?, F). The NFA A is restricted partially
ordered (rpoNFA) if the reachability relation ≤ is a partial
order and A is self-loop deterministic in the sense that the
pattern of Figure 18 does not appear. Formally, for every
state @ and every event 0, if @ ∈ X(@, 0) then X(@, 0) = {@}.
We now formally define so-called rpoDES. The name comes
from restricted partially ordered DES.

Definition 7. Let � = (&,Σ, X, �) be a DES with Σ> being
the set of observable events. Let % : Σ∗ → Σ∗> be the corre-
sponding projection. We say that � is an rpoDES if the NFA
%(�) = (&,Σ>, X′, �) obtained from � by replacing every
transition (?, 0, @) by (?, %(0), @), and by eliminating the
Y-transitions (Hopcroft et al., 2007) is an rpoNFA.

Notice that %(�) is an NFA that can be constructed from
� in polynomial time (Hopcroft et al., 2007). Therefore,
the question whether a DES is an rpoDES is decidable in
polynomial time.

What do we know about rpoDES? Deciding weak (periodic)
detectability for rpoDESs is PSpace-complete (Masopust,
2018a), and hence so is deciding weak (periodic) D-detect-
ability.

We now show that the complexity of deciding strong periodic
D-detectability for rpoDESs coincides with the complexity
of deciding strong D-detectability.

Theorem 8. Deciding strong periodic D-detectability for
rpoDESs is NL-complete.

Proof. To prove the theorem, we show that the observer of
an rpoDES is a partially ordered DFA. Then, since there are
no nontrivial cycles in the observer, strong periodic D-de-
tectability coincides with strong D-detectability. Theorem 1
then finishes the proof.

Let A = (&,Σ>, X, �, �) be an rpoNFA. We show that the
DFA D computed from A by the standard subset con-
struction (the observer) is partially ordered. To this end, let
- = {?1, . . . , ?=} with ?8 < ? 9 for 8 < 9 be a state ofD, and
let F ∈ Σ∗ be a nonempty string such that XD (-, F) = - .
First, we show that X(?8 , F) = {?8} for all 8. For the sake
of contradiction, let 1 ≤ : ≤ = be the minimal integer such
that X(?: , F) ≠ {?: }. Since - = X(-, F) = ∪=

8=1X(?8 , F),
X(?8 , F) = {?8} for all 8 < : , and ?: < ?8 ≤ @ for every @ ∈

10

X(?8 , F), for all 8 > : , we have that ?: ∉ ∪=8=1X(?8 , F) = - ,
which is a contradiction. Therefore, ?: ∈ X(?: , F), and the
definition of rpoNFAs implies that every event of F is in a
self-loop in state ?: . Because rpoNFAs have no choice be-
tween staying in the state and leaving it under the same event,
X(?: , F) = {?: }. Thus, for 8 = 1, . . . , =, X(?8 , 0) = {?8} for
every event 0 occurring in F. Consequently, for any state
. of D and any strings F1 and F2, if X(-, F1) = . and
X(., F2) = - , the previous argument gives that - = . , and
hence D is partially ordered. �

Finally, we have the following corollary of Theorem 1.

Corollary 9. Deciding whether an rpoDES with a single
observable event is strongly (D-)detectable is NL-complete.

Proof. This result is an immediate consequence of the proof
of Theorem 1, since in the hardness part we actually con-
struct a unary rpoNFA, cf. Figure 1. �

6 Conclusions

In this paper, we answered the open question concerning the
complexity of deciding whether a DES is strongly periodi-
cally D-detectable. We further provided the full complexity
picture of the problem of deciding D-detectability. Since our
results for general DESs are mainly negative, we also dis-
cussed a class of DESs, so-called rpoDESs, for which the
complexity of deciding strong (periodic) D-detectability is
tractable.

Acknowledgements

This research was supported by the Ministry of Education,
Youth and Sports under the INTER-EXCELLENCE project
LTAUSA19098 and by the University projects IGA PrF 2020
019 and IGA PrF 2021 022.

The authors acknowledge valuable comments and sugges-
tions of the anonymous referees.

References

Alves, M.V.S., Basilio, J.C., 2019. State estimation and de-
tectability of networked discrete event systems with multi-
channel communication networks, in: American Control
Conference, IEEE. pp. 5602–5607.

Arora, S., Barak, B., 2009. Computational Complexity – A
Modern Approach. Cambridge University Press.

Balun, J., Masopust, T., 2020. On verification of strong pe-
riodic d-detectability for discrete event systems, in: Work-
shop on Discrete Event Systems, IFAC. pp. 263–268.

Brzozowski, J.A., Fich, F.E., 1980. Languages of '-trivial
monoids. Journal of Computer and Systems Sciences 20,
32–49.

Caines, P.E., Greiner, R., Wang, S., 1988. Dynamical logic
observers for finite automata, in: Conference on Decision
and Control, pp. 226–233.

Cho, S., Huynh, D.T., 1991. Finite-automaton aperiodicity
is PSPACE-complete. Theoretical Computer Science 88,
99–116.

Garey, M.R., Johnson, D.S., 1990. Computers and In-
tractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA.

Hadjicostis, C.N., 2020. Estimation and Inference in Dis-
crete Event Systems. Springer.

Hopcroft, J.E., Motwani, R., Ullman, J.D., 2007. Introduc-
tion to automata theory, languages, and computation. 3rd
ed., Addison-Wesley.

Immerman, N., 1988. Nondeterministic space is closed un-
der complementation. SIAM Journal on Computing 17,
935–938.

Kozen, D., 1977. Lower bounds for natural proof systems,
in: Symposium on Foundations of Computer Science, pp.
254–266.

Krötzsch, M., Masopust, T., Thomazo, M., 2017. Complex-
ity of universality and related problems for partially or-
dered NFAs. Information and Computation 255, 177–192.

Lin, F., 2011. Opacity of discrete event systems and its
applications. Automatica 47, 496–503.

Masopust, T., 2018a. Complexity of deciding detectability
in discrete event systems. Automatica 93, 257–261.

Masopust, T., 2018b. Complexity of verifying nonblocking-
ness in modular supervisory control. IEEE Transactions
on Automatic Control 63, 602–607.

Masopust, T., Krötzsch, M., 2019. Partially ordered au-
tomata and piecewise testability. ArXiv:1907.13115.

Masopust, T., Yin, X., 2019. Complexity of detectability,
opacity and A-diagnosability for modular discrete event
systems. Automatica 101, 290–295.

Ozveren, C.M., Willsky, A.S., 1990. Observability of dis-
crete event dynamic systems. IEEE Transactions on Au-
tomatic Control 35, 797–806.

Ramadge, P.J., 1986. Observability of discrete event sys-
tems, in: Conference on Decision and Control, pp. 1108–
1112.

Shu, S., Lin, F., 2011. Generalized detectability for discrete
event systems. Systems & Control Letters 60, 310–317.

Shu, S., Lin, F., 2013. Delayed detectability of discrete event
systems. IEEE Transactions on Automatic Control 58,
862–875.

Shu, S., Lin, F., Ying, H., 2007. Detectability of discrete
event systems. IEEE Transactions on Automatic Control
52, 2356–2359.

Stockmeyer, L.J., Meyer, A.R., 1973. Word problems requir-
ing exponential time: Preliminary report, in: ACM Sym-
posium on the Theory of Computing, ACM. pp. 1–9.

Szelepcsényi, R., 1988. The method of forced enumeration
for nondeterministic automata. Acta Informatica 26, 279–
284.

Yin, X., Lafortune, S., 2017. Verification complexity of
a class of observational properties for modular discrete
events systems. Automatica 83, 199–205.

11

Zhang, K., 2017. The problem of determining the weak (pe-
riodic) detectability of discrete event systems is PSPACE-
complete. Automatica 81, 217–220.

Zhang, K., Giua, A., 2019. Revisiting delayed strong detect-
ability of discrete-event systems. ArXiv:1910.13768.

Zhang, K., Zhang, L., Xie, L., 2020. Discrete-Time and
Discrete-Space Dynamical Systems. Springer.

12

	Introduction
	Preliminaries and Definitions
	A Brief Complexity Review

	Definitions of the D-Detectability Problems
	Main Results
	Verification of Strong D-Detectability
	Verification of Strong Periodic D-Detectability

	A Tractable Case
	Conclusions
	Acknowledgements

