On Transformations among Opacity Notions*

Jifif Balun
Faculty of Science, Palacky University
Olomouc, Czechia
jiri.balun01@upol.cz

Abstract—Opacity is a property asking whether a system may
reveal its secret to a passive observer who knows the structure
of the system but has only limited observations of its behavior.
Several notions of opacity have been studied. Similarities among
the opacity notions have been investigated via transformations,
which have many potential applications. We investigate K-step
opacity (K-SQO), a notion that generalizes both current-state
opacity and infinite-step opacity, and asks whether the intruder
cannot decide, at any instant, whether or when the system was in
a secret state during the last K observable steps. We provide new
polynomial-time transformations among K-SO and other opacity
notions. OQur results lead, among others, to the general solution
of an open problem concerning the computational complexity of
the verification of K-SO.

Index Terms—Discrete-event systems, opacity, transformations

I. INTRODUCTION

Properties keeping some information secret include, among
others, anonymity [1], noninterference [2], secrecy [3], se-
curity [4], and opacity [5]. Opacity is an information-flow
property asking whether a system prevents an intruder from
revealing the secret. The intruder is a passive observer with the
knowledge of the structure of the system but with only limited
observation of its behavior. Intuitively, the intruder estimates
the behavior of the system, and the system is opaque if, for
every secret behavior, there is a non-secret behavior that looks
the same to the intruder. Secret is modeled as a set of secret
states or as a set of secret behaviors. The former leads to the
state-based opacity of Bryans et al. [6], [7], while the latter
leads to the language-based opacity of Badouel et al. [8] and
Dubreil et al. [9]. See Jacob et al. [10] for more details.

Several notions of opacity have been discussed, including
language-based opacity (LBO), initial-state opacity (ISO),
current-state opacity (CSO), K-step opacity (K-SO), and
infinite-step opacity (INSO). While initial-state opacity pre-
vents the intruder from revealing, at any instant, whether the
system started in a secret state, CSO prevents the intruder
only from revealing whether the current state of the system
is secret. The intruder may, however, realize in the future that
the system was in a secret state. For example, if the intruder
estimates that the system is in one of two possible states,
and the next step proceeds by an observable event enabled

Supported in part by the Ministry of Education, Youth and Sports under the
INTER-EXCELLENCE project LTAUSA 19098 and by the Palacky University
Olomouc under the grant IGA PrF 2022 018. T. Masopust is also with the
Institute of Mathematics of the Czech Academy of Sciences supported by the
Czech Science Foundation grant GC19-06175J and by RVO 67985840.

Tomas Masopust
Faculty of Science, Palacky University
Olomouc, Czechia
tomas.masopust@upol.cz

only in one of the states, the intruder reveals the state in
which the system was one step ago. This problem led to the
introduction of K-SO [11], [12], a notion requiring that the
intruder cannot ascertain the secret in the current state and K
subsequent observable steps.

An interesting question is how the opacity notions are
related to each other. The question has been investigated via
transformations among the notions [10], [13], [14], which are
of interest from both practical and theoretical perspectives.

To illustrate a few practically oriented applications, we start
with the results of deeper understanding of the notions, which
allowed us to design faster verification algorithms [14], dis-
cover that every system satisfying CSO can be transformed to
an equivalent system satisfying CSO with a single secret state,
or transform K-SO to K’-SO for any K and K’ (Section III).

Second, the transformations allow us to use the verifica-
tion algorithms for one notion to verify another notion. For
example, we can transform the problem to verify K-SO of a
given system to the problem to verify CSO of the transformed
system. This application is of interest, even though there are
direct and possibly faster algorithms verifying other opacity
notions than the methods based on the transformations, be-
cause it may be practically easier, cheaper, and more efficient
to develop, optimize, and maintain a verification tool for
one notion, say CSO, than for all the notions. Moreover,
the transformations from one notion to another are structural,
easily doable by polynomial-time algorithms, while the tools
implementing verification algorithms are quite involved, im-
plementing exponential-time algorithms that do not scale well,
depending therefore on the use of efficient and nontrivial data
structures for symbolic computations (such as OBDDs, etc.).

Another interesting, practically motivated application of the
transformations is an automatic modification of a system to a
higher level of confidentiality. For example, imagine a system
that satisfies CSO. Since the applicability and usage of the
system develops, at some point, CSO may not be sufficient any
longer, and K-SO is required instead. It would be practically
very useful to have a tool transforming the system satisfying
CSO to an equivalent system satisfying K-SO. Unfortunately,
current transformations are not suitable for such an application,
and further research is needed. In fact, some of the current
transformations may, in a sense, be used with the help of other
mechanisms, such as supervisors or controllers protecting the
resulting system from reaching states out of the behavior of the
original system, or with the help of hand-made modifications

by the system designer. To make this approach fully automatic
is, however, a challenging open problem.

From the theoretical point of view, the main and most im-
portant application of the transformations is the classification
of problems wrt their complexity. The transformations serve
as a tool to transfer the complexity results among the notions.
For example, Corollary 3 states that deciding CSO for systems
with a single secret state is as hard as deciding CSO for general
systems. In other words, any attempt to improve the efficiency
of the verification algorithms by decreasing the number of
secret states in the considered systems will not be successful.

Another theoretic application of the transformations tells us
that the known fact that deciding CSO is PSPACE-complete
even for systems modeled by DFAs with only three events, one
of which is unobservable [15], transfers directly to the fact that
the problem of deciding K-SO, K € N, is PSPACE-complete
even for systems modeled by DFAs with a single secret state
and only three events, one of which is unobservable. Stated
differently, the efficiency of the algorithms cannot be improved
by considering only systems with a limited number of secret
states and/or with a limited number of observable events.

In particular, a direct application of polynomial-time trans-
formations provided in this paper is that the existing complex-
ity results for K-SO (and hence also INSO and CSO, cf. [14,
Table 1]) hold for systems that do not have neutral states (states
that are neither secret nor non-secret) and where the parameter
K is represented in binary. These results significantly improve
the known results [14], where the transformations heavily rely
on the existence of neutral states, although their existence is
not practically justified, and, mainly, the transformations there
are, in fact, exponential if the value of K is exponential.

It is worth noticing that the complexity analysis of Balun
and Masopust [14] states that the problem of verifying K-SO
is PSPACE-complete only if the parameter K is constant or its
value is very small, meaning that the value of K is at most
polynomial wrt the size of the input system. In detail, the
analysis does not consider the parameter K as part of the input
of the decision procedure, and the existing transformations are,
in fact, exponential wrt the length of the binary representation
of the parameter K. Namely, the complexity of verifying K-SO
is open if the input to the problem is not only the system, but
also the parameter K in a standard binary representation com-
monly used for the representations of numbers in computers.
The same actually applies to Saboori’s [16] proof showing that
verifying K-SO is NP-hard. Hence the complexity of deciding
whether, given a number K represented in binary and a system,
the system is K-SO is an open problem.

In this paper, we design new polynomial-time transforma-
tions of K-SO to CSO, and vice versa, which are polynomial
in both the size of the system and the length of the binary
encoding of the parameter K. We then use our transformations
to answer the previous open problem by showing that deciding
K-SO is PSPACE-complete even if K is considered to be a part
of the input represented in binary.

Another problem with the existing transformations between
K-SO and other notions of opacity is that they do not work if

neutral states are not admitted in the system. Neutral states
are states that are neither secret nor nonsecret. Our new
transformations fix this issue, and work independently on
whether neutral states are admitted or not.

All the missing details and proofs omitted for space reasons
can be found in preprint [17], on which this paper is based.

II. PRELIMINARIES

We assume that the reader is familiar with discrete-event
systems [18]. For a set S, |:S| denotes the cardinality of S and
25 its power set. An alphabet X is a finite nonempty set of
events. A string over X is a sequence of events; the empty
string is denoted by e. The set of all finite strings over X
is denoted by X'*. A language L over X' is a subset of J'*.
The set of prefixes of strings of L is the set L = {u | Jv €
X*, uwv € L}. For u € X*, |u] is the length of w.

A nondeterministic finite automaton (NFA) over an alphabet
Y is a structure G = (Q, X, 9, I, F'), where @ is a finite set of
states, I C () is a set of initial states, F' C @ is a set of marked
states, and §: @ x X — 29 is a transition function that can be
extended to 29 x X* by induction. The set L,, (G,) = {w €
X* | 6(I,w) N F # (0} is the language marked by G, and
L(G,I) ={w e X* | 6(I,w) # 0} is the language generated
by G. For S C X*, we write 0(Q,S) = Uses0(Q, s). The
NFA G is deterministic (DFA) if |I| = 1 and |6(q, a)| < 1 for
every ¢ € @ and a € .

A discrete-event system (DES) G over X is an NFA over X
together with the partition of X' into X, and X', of observable
and unobservable events, respectively. If the marked states are
irrelevant, we omit them and simply write G = (Q, X, 0, I).

A projection P: X* — X* is a morphism with P(a) = ¢
if a € X5, and P(a) = a if a € X,. The action of P on a
string ay -+ - an, P(ay---ay,) = P(a1)--- P(a,), is to erase
unobservable events. It can be readily extended to languages.

An observer of G with respect to projection P is a reachable
part of a DFA constructed, by the standard subset construction,
from the (extended) NFA obtained from G by replacing every
transition label a by P(a). For more details, see [18] or [19].

Let N be the set of non-negative integers, and let No, =
N U {oo}. Given a DES G = (Q, X,4,]) and K € N, G
is K-step opaque with respect to secret states ()g, non-secret
states (s, and projection P: X* — X% if for every string
st € L(G) with |P(t)| < K and §(6(I,s) N Qsg,t) # 0, there
is s't" € L(G) such that P(s) = P(s"), P(t) = P(t'), and
5(6(1,8')NQns,t") # 0. Two special cases of K-step opacity
include O-step opacity aka current-state opacity, and oo-step
opacity aka infinite-step opacity [12], which, for a DES with
n states, coincides with (2™ — 2)-step opacity [20].

III. TRANSFORMATIONS

We construct new transformations of K-SO to CSO, and
vice versa. Compared with the existing transformations, which
are exponential wrt the standard binary representation of the
parameter K, the new transformations are polynomial wrt the
binary representation of K. For the transformations of CSO to
other opacity notions, we refer to [13], [14].

Figure 1. Transforming CSO to K-SO for any K € N.

Construction 1. Let G = (Q, X, 4,1) be a DES with secret
states ()s, non-secret states (Qns, and P: X* — X% We
construct a DES G' = (Q U {qs, qns }, X U {@}, 8", I) where
@ is a new observable event and qs and q,s are new states.
The transition function &' is initialized as 5 of G and further
extended as follows, see Figure 1 for an illustration: (i) for
every q € Qg, we add (q,Q,qs) to §'; (ii) for every q €
Qns, we add (q,Q, q,5) to §'. We define P': (X U{Q})* —
(X U{@})*, secret states Q's = {qs}, and non-secret states

Q,NS = QS U QNS U {qns}
We can now state the following.

Theorem 2. A DES G is CSO wrt Qs, Qns, and P iff G’
created by Construction 1 is K-SO wrt Q's, Q'yg, and P'. [

The transformation is doable in polynomial time, does not
depend on K, and does not use neutral states. However, it
introduces a new observable event. In fact, the number of
observable events in G’ can be reduced in polynomial time to
two [17]. Since, in addition, the transformation reduces CSO
to K-SO with a single secret state, we have that the problem
is difficult even if the number of secret states and observable
events is very small. Consequently, we can now answer the
open problem concerning the complexity of deciding K-SO if
K is given as part of the input represented in binary.

Corollary 3. Given a parameter K € N, represented in
binary, and a system G. Deciding whether G satisfies K-SO
is PSPACE-complete. The problem remains PSPACE-complete
even if G is very restricted, namely, if it has a single secret
state and only two observable events. O

The lower-bound complexity, i.e., PSPACE-hardness, fol-
lows from the polynomial-time reduction from CSO to K-SO
described by Construction 1. The fact that K-SO can be
verified in polynomial space with respect to both the size of
the system and the length of the binary encoding of K can be
proved either directly, or it follows from the polynomial-time
reduction of K-SO to CSO described by Construction 9.

We further mention, referring to [17], that a direct trans-
formation preserving a single observable event that does not
admit neutral states may be designed. This transformation is
of particular interest in, e.g., the Brandin-Wonham timed DES
framework, where the single observable event represents the
tick of a global clock, while all the other events are local.

Figure 2. Automaton G’ of the first step transforming K-SO to CSO.

Theorem 4. A DES G with a single observable event is CSO
wrt Qs, Qns, and P iff G' constructed in [17] having a single
observable event is K-SO wrt Q's, Q'yg, and P'. O

We now proceed to the transformation of INSO to CSO.

Construction 5. Let G = (Q, X, 9,1) be a DES with secret
states (g, non-secret states QQns, and P: X* — X* We
construct a DES G" = (QuU QT U Q~, XY u{Q@},d,1) by
creating two disjoint copies of G, denoted by G+ and G~, with
state sets QT ={qt | e Q} and Q~ ={q” | q € Q}, and
with an additional observable event @ that connects G to G*
and G~ by the transitions (q,Q, q"), for every q € Qg, and
(q,Q,q7), for every q € Qns. Secret states are Q% = QT
and non-secret states are Q¢ = QU Q~, see Figure 2.

The idea of the construction is that if G is K-SO, and hence
CSO, then the state estimate of G contains a non-secret state
whenever it contains a secret state. Hence, being in a secret
(and hence also non-secret) state, the new Q-transitions move
the computation to both copies G and G™~. In these copies,
we verify that if G can make k steps from the secret state (in
G), it can also make k steps from the corresponding non-
secret state (in G7). This is verified using CSO by considering
the states of G secret and of G~ non-secret, which requires
that every move in G+ be accompanied by a move in G~.

Notice that G” can be constructed in polynomial-time using
no neutral states. The construction of G” is already suitable
to verify INSO of G by checking CSO of G”.

Theorem 6 (Transforming INSO to CSO). A DES G is INSO
wrt Qs, Qns, and P iff G created by Construction 5 is CSO
wrt Q% Qg and P": (X U{Q})* — (X, U {@})*. O

Although G” resulting from Construction 5 can verify INSO
of G by checking CSO of G”, it is not suitable to verify K-SO;
indeed, G”' verifies any number of steps from the visited secret
state rather than at most K steps. To overcome this issue, we
extend Construction 5 by adding a counter that allows us to
count up to K observable events from a visited secret state.

Construction 7. For the counter, we use the automaton Ag
constructed in Appendix A, which is of size polynomial in the
logarithm of K, its unique initial state is denoted by qo, and

(o)

4 (D)—(s
a,ay a,ay aal nal a,ay N a,ay)
a, a2§ Ea azg (a, az E EG az gu az)
.a(.a(.ua.(uu.a(.ac.

Figure 3. The DES G’ of the transformation of 6-SO to CSO with neutral
states; secret states are squared and non-secret states are marked.

its observer has a unique path of length K consisting solely
of non-marked states, while all the other states are marked.
However, the automata G, G, G~ of Construction 5 are
over the alphabet X, while Ag is over I', which is disjoint
from X. Hence, we change the alphabets of the automata to

S =XU(E,xT).

Namely, in G and G, we replace every observable transition
(p,0,q) by |I'| transitions (p, (c,7),q), for every v € I', and
denote the results by Gt and G~. Similarly, in Ak, we replace
every transition (p,~,q) by |X,| transitions (p, (0,7),q), for
every observable o € X,, and denote the result by Ax.

We admit, for a moment, neutral states and construct the
NFA G as a disjoint union of G, G, G~, and Ak, together
with transitions (q, @, ¢%), (¢, Q, qo),for every q € g, where
qo is the initial state of Ak, and (q,Q,q ™), forevery q € Qns.
Secret states are Q'Y = Q and non-secret states are Q\lg =
Q™ U {marked states of Ax}. The other states are neutral.

The construction transforms the K-SO problem of G to the
CSO problem of G'.

Theorem 8 (K-SO to CSO with neutral states). A DES G
is K-SO wrt Qs, Qns, and P iff the DES G created by
Construction 7 from the DES G is CSO wrt Q4, Q%s, and
P (Xu{a}) - (X, Uu{QtuXx, x I* O

To illustrate Construction 7, we transform the 6-SO problem
of G = ({1,...,8},{a},0,{1,2}) with 6(¢,a) = {i + 1},
i=1,...,7, Qs = {1}, and Qns = {2}. Notice that G is
6-SO, since we can make six steps from both states 1 and 2.
To encode K = 6, the transformation uses Ag = Az o (see
Appendix A), and results in G’ of Figure 3, where all non-
secret states are marked. The minimized observer of G is
shown in Figure 4. Since every state of the observer reachable
by a string containing @ is marked, it has to contain a non-
secret state of G, that is, G" is CSO.

If we remove state 8 from G together with the corresponding
transitions, then G is not 6-SO, since we can make six steps
from secret state 1, but only five steps from the corresponding
non-secret state 2. The transformation results in G'” that

() —(7)

r) al) r) r)l u ay
) a as

‘3 o .ﬁ.ﬁ

Figure 4. The minimized observer of G’ of Figure 3.

()

i

G —(5

a, (11 %u (11

2
m)
@

a,ay
a, ao

a,c)

aC a,c)

(a,a1), (a,a2), (a,c)

a ay a, (L1 (u al a, al a, (L1
Q a a2 a, a a2 u ug a, az
. a, (. a, (. a, l . a, (. a, (.
Figure 5. The minimized observer of G’" of Figure 3 disregarding states 8,
8+, 8, and corresponding transitions.

coincides with the automaton of Figure 3 disregarding states
8, 8%, 87, and corresponding transitions. The minimized
observer is shown in Figure 5, where state 4, corresponding to
state {77,(2;1),(2;2)}, is secret and reachable by the string
Q@(a,c)(a,a1)(a,a1)(a,az)(a,ar)(a,as),ie., G" is not CSO.

Finally, we describe the transformation of K-SO to CSO
without using neutral states.

Construction 9. We consider Construction 7, make all states
of G* both initial and marked, and synchronize the compu-
tations of G and Ak by their synchronous product G || Ag.
Now, we construct a DES G’ as a disjoint union of G, é‘, and
Gt || Ak, connected together by transitions (¢, Q, (q*, qo)), for
every q € Qg, and (q,Q,q™), for every q € Qng. The secret
states of G' are the non-marked states of G*||Ax. All the
other states are non-secret.

The transformation can be done in polynomial time in the
system size and the binary encoding of K. How to reduce the
number of observable events can be found in [17]. We can
thus state the following result.

Theorem 10 (K-SO to CSO without neutral states). A DES
G is K-SO wrt Qgs, Qns, and P iff the DES G’ created by
Construction 9 from the DES G is CSO wrt Q's, Q'xg, and
P (Xu{a}h)* - (X,u{Qlux, x IN* O

To illustrate Construction 9, we again transform the 6-SO
problem G = ({1,...,8},{a},d,{1,2}) with state 1 secret
and the other states non-secret, and §(i,a) {i + 1},
t = 1,...,7. The transformation results in G’ depicted in
Figure 6, using again the NFA Ag. The minimized observer
of G’ is depicted in Figure 7. Since every state of the observer
reachable by a string containing @ is marked, it has to contain
a non-secret state of G, that is, G’ is CSO.

If we remove state 8 from G together with the corresponding
transitions, the transformation results in the DES G’ that
coincides with the NFA of Figure 6 without states containing

(a.ar)

< NS
(@.az)

Figure 6. DES G’ with a relevant part of @+||.;\6; non-secret states are
marked, other states are secret.

=\ ¢

@ a m a 3
(O U

(ll) a, a1
. :lzl. ;rl . a(). a(. ar . a()m

Figure 7. The minimized observer of G'.

8, 8%, 87, and the corresponding transitions. The minimized
observer is shown in Figure 8, where state 4, abbreviating
the state {(77,(2;1)), (7, (2;2))} consisting of secret states
of G| Ak, is reachable by the string @(a, ¢)(a,a1)(a,a;)
(a,a2)(a,a1)(a,az), that is, G’ is not CSO.

Again, we can provide a direct transformation for systems
with one observable event, which is of interest in, e.g., the
Brandin-Wonham timed DES framework.

Theorem 11 (K-SO to CSO with a single observable event).
A DES G = (Q,X,0,I) with X, = {a}, secret states Qg,
non-secret states Qns = Q — Qgs, and P: X* — {a}* is
K-SO wrt Qs, Qns, and P iff G is CSO wrt Q's, Q'yg, and
P, where Qs and Q'y g are constructed as follows.

Let n be the number of states of G. We determine (in linear
time) if P(L(Q)) is finite. If so, we verify K-SO of G in linear
time by checking the subsets of states 5(1, P~'(a*)), for k <

n— 1 If G is K-SO, and hence CSO, set Q' = Qg and
'Ns = Qns. If G is not K-SO, set Q'yg =0 and Q'y = Q.

If P(L(G)) is infinite, define Q'yvg = {q € Qns | v(q) =
K}, where p: Q — {0,...,

K} assigns to q the maximal

Figure 8. The minimized observer of G’ of Figure 6 disregarding states
containing 8, 8, 8, and corresponding transitions.

k €{0,..., K} of observable steps possible from q. Formally,
o(q) = max{k € {0,...,K} | 6(g, P~1(a*)) # 0}. The
secret states are Qg = Q — Q'yq- O

IV. CONCLUSIONS

We designed new transformations of K-SO to CSO, and vice
versa, which are polynomial in both the size of the system and
the length of the binary encoding of the parameter K, and, in
addition, are universal, meaning that they work independently
on whether neutral states are allowed in the system or not.
We also discussed several challenging applications of the
transformations and answered one open problem.

APPENDIX A
LOGARITHMIC ENCODING OF A K-STEP COUNTER

We construct an NFA Ag of size polynomial in the loga-
rithm of K such that the observer of A has a unique path of
length K consisting solely of non-marked states, while all the
other states are marked.

Lemma 12. For all integers k,n > 1, there is an NFA Ay, ,
with n events and n(k + 2) states, such that Ay, ., accepts all
strings except for all prefixes of a unique string Wy, ,, which
is a string of length (k:”) -1

Proof. For k,n > 1, we define the string W}, ,, over X, =
{ai,....a,} by Wy 1 = af, Wi, = a1az -+ - a,, and Wy, ,, =
Win—10,Wi—1n-10y - anWi n_1a,. The length of Wy, ,,
is (k;g") —1, and a,, appears exactly k times in W} ,, [21]. We
further set Wy, ,, = € whenever kn = 0. We construct the NFA
Ay, n, over X, marking X — {W;c n}. For k>0, A1 is the
DFA marking {a; }* — {a } consisting of k + 2 states of the
form (i;1), see Figure 9, together with the given transitions.
State (k + 1;1) is marked, state (0;1) is initial.

We construct Ay, from Ay ,_; by adding k + 2 states
(0;m), (1;n),...,(k + 1;n), where (0;n) is added to initial,
and (k+1;n) to final states, see Figure 10 for n = 2; Ay, ,, has
n(k + 2) states. We call state (k + 1,n) maximal. Additional
transitions of Ay ,, consist of: Self-loops (i;n) 3y (iyn) for
i € {0,....,k + 1} and a; € {ai,...,an—_1}; transitions
(i;n) 2 (+ 1;n) for i € {0,...,k}, and the self-loop
(k+1;n) 2% (k + 1;n); transitions (z,n) 2y (i + 1;m)
for i € {0,...,k} and m € {1,. — 1}; and transitions
(i;m) 2 (k + 1;n) for every (4 m) of Akn—1 with ¢ # k.
For details, see [17]. O]

Figure 9. The NFA Ay | with k + 2 states.

-
N

Figure 10. The NFA Ay, o with 2(k + 2) states.

ar.as

Figure 12. Example for K = 12, which gives a2 = 2, the automaton A12
consisting of two copies of Az 2.

For an illustration, let k = n = 2. Then, W3 5 = a%a2a1a2,
NFA A has 8 states, and the observer of A; 5 in Figure 11
contains a unique path of length (3) — 1 =5 consisting solely
of non-marked states while all the other states are marked.

Since (27?:12) = 471"—;*12(27?) and (2:) < 4™, every natural K
can be expressed as K = by, (2") +b,—1 (7 7) 4+ +b1(3) +bo

for some n < [log,(K+1)] and b; € {0,1,2,3},i=0,...,n.

For every b;, i = n,...,0, we create b; copies of A, ;
over X; = {ay...,a;}, resulting in a sequence of automata
Bi,...,Bs. We take an event ¢ ¢ X, and connect By, ..., B,

to a single automaton A by c-transitions as follows. For j =
1,...,£ — 1, we add a c-transition from every non-marked
state of B; to every initial state of B;;; from all the other
states, the c-transition goes to the maximal state of B,. Finally,
we add a new state, qg, which is the only initial state of Ag,
c-transitions from ¢q to all initial states of 1, and transitions
under all the other events to the maximal state of ,; see
Figure 12 for an illustrative example.

The observer of Ak has a unique path consisting of non-
marked states along the string (cW,,)% (cWy,—1 5—1)%1 -
(cWo)% of length K = b,, (2:) + b1 (2,,7:12) + -4 b (8),
and the other states are marked. Since every B; is of size
polynomial in n, Ak is of size polynomial in the logarithm of
K and its observer has a unique path of length K consisting
solely of non-marked states, with all the other states marked.

Lemma 13. For every natural number K, there is an automa-
ton Ak of size polynomial in O(log K) such that the observer
of Ak has a unique path of length K consisting solely of non-
marked states, and with all the other states marked. O

For an illustration, consider K = 12 = 2(;) + 0@) +0. We
create two copies of A3 9 and connect them by c-transitions
as shown in Figure 12. The observer with the unique path of
non-marked states of length K = 12 is shown in Figure 13.

Figure 13. The min. DFA of the observer with the unique path of length 12.

REFERENCES

[1] S. Schneider and A. Sidiropoulos, “CSP and anonymity,” in Computer
Security (ESORICS). Springer Berlin Heidelberg, 1996, pp. 198-218.

[2] N. BenHadj-Alouane, S. Lafrance, F. Lin, J. Mullins, and M. Yeddes,
“On the verification of intransitive noninterference in mulitlevel secu-
rity,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 35, pp. 948-958, 2005.

[3] R. Alur, P. Cern}’/, and S. Zdancewic, “Preserving secrecy under refine-
ment,” in JCALP. Springer Berlin Heidelberg, 2006, pp. 107-118.

[4] R. Focardi and R. Gorrieri, “A taxonomy of trace-based security prop-
erties for CCS,” in CSFW VII, 1994, pp. 126-136.

[5] L. Mazaré, “Decidability of opacity with non-atomic keys,” in Formal
Aspects in Security and Trust. Springer-Verlag, 2004, pp. 71-84.

[6] J. W. Bryans, M. Koutny, and P. Y. Ryan, “Modelling opacity using Petri
nets,” El. Notes Theor. Comput. Sci., vol. 121, pp. 101-115, 2005.

[7]1 J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity
generalised to transition systems,” Int. J. Inf. Secur., vol. 7, no. 6, pp.
421-435, 2008.

[8] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, “Concurrent secrets,” Discrete Event Dyn. Syst., vol. 17,
no. 4, pp. 425-446, 2007.

[9] J. Dubreil, P. Darondeau, and H. Marchand, “Opacity enforcing control
synthesis,” in WODES, 2008, pp. 28-35.

[10] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annu. Rev.
Control, vol. 41, pp. 135-146, 2016.

[11] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in I[EEE CDC, 2007, pp. 5056-5061.

[12] ——, “Verification of infinite-step opacity and complexity considera-
tions,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1265-1269, 2012.

[13] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions
of opacity in centralized and coordinated architectures,” Discrete Event
Dyn. Syst., vol. 23, no. 3, pp. 307-339, 2013.

[14] J. Balun and T. Masopust, “Comparing the notions of opacity for
discrete-event systems,” Discrete Event Dyn. Syst., vol. 31, pp. 553—
582, 2021.

, “On opacity verification for discrete-event systems,” IFAC-
PapersOnlLine, vol. 53, no. 2, pp. 2075-2080, 2020.

[16] A. Saboori, “Verification and enforcement of state-based notions of
opacity in discrete event systems,” Ph.D. dissertation, Uni. Illinois at
Urbana-Champaign, 2011.

[17] J. Balun and T. Masopust, “K-step opacity in discrete event systems:
Verification, complexity, and relations,” CoRR, vol. abs/2109.02158,
2021. [Online]. Available: https://arxiv.org/abs/2109.02158

[18] C. G. Cassandras and S. Lafortune, Eds., Introduction to Discrete Event
Systems, 3rd ed. Springer, Cham, 2021.

[19] G. Jirdskovd and T. Masopust, “On a structural property in the state
complexity of projected regular languages,” Theoret. Comput. Sci., vol.
449, pp. 93-105, 2012.

[20] X. Yin and S. Lafortune, “A new approach for the verification of infinite-
step and K-step opacity using two-way observers,” Automatica, vol. 80,
pp. 162-171, 2017.

[21] T. Masopust and M. Thomazo, “On boolean combinations forming
piecewise testable languages,” Theoret. Comput. Sci., vol. 682, pp. 165—
179, 2017.

[15]

https://arxiv.org/abs/2109.02158

	Introduction
	Preliminaries
	Transformations
	Conclusions
	Appendix A: Logarithmic Encoding of a K-Step Counter
	References

