image/svg+xml
NFA
DFA
NFA
Straubing-Thérien
hierarchy
Complexity
rporr
rpoNFA = self-loop deterministic poNFA
a
a
ptNFA = confluent rpoNFA
Confluent DFA
a
b
w
w
w
over {a,b}*
Saturated poNFA
Σ*
Σ*
L(0) = {∅, Σ
*
}
L(n+1/2) = finite union of languages L
0
a
1
L
1
...a
n
L
n
where a
i
in Σ, L
i
in L(n)
L(n+1) = finite Bool combinations of languages of L(n+1/2)
Schwentick, Thérien, Vollmer 2001
Brzozowski and Fich 1980
Krötzsch, Masopust, Thomazo 2016
Masopust and Thomazo 2015
Héam 2002
Simon 1972; KlÃma and Polák 2013
rpoNFA = self-loop deterministic poNFA
a
a
ptNFA = confluent rpoNFA
a
b
w
w
w
over {a,b}*
Saturated poNFA
Σ*
Σ*
Schwentick, Thérien, Vollmer 2001
Krötzsch, Masopust, Thomazo 2016
Masopust and Thomazo 2015
Héam 2002
Straubing-Thérien hierarchy
L(0) = {∅, Σ*}
L(1/2) = {Σ
*
a
1
Σ
*
a
2
Σ
*
...a
n
Σ
*
| ai in Σ}
Alternation Hierarchy: Σ
1
shuffle ideals or upward closed languages
L(1) = Bool(Σ
*
a
1
Σ
*
a
2
Σ
*
...a
n
Σ
*
)
Alternation Hierarchy: BΣ
1
J-trivial or piecewise testable languages
L(3/2)
Alternation Hierarchy: Σ
2
Alphabetic Pattern Constraints (Bouajjani et al.)
R-trivial languages
Complexity of universality: Let A be an NFA over Σ.
Is L(A) = Σ*?
Why universality?
- lower bound for inclusion and equivalence
- lower bound for k-piecewise testability
Complexity
PSPACE-complete
even if Σ = {0,1}
PSPACE-complete
coNP-complete if |Σ| constant
PSPACE-complete
coNP-complete if |Σ| constant
NL-complete if |Σ|=1
NL-complete if |Σ|=1
- Inclusion/Equivalence is PSPACE-complete for ptNFAs
- k-piecewise testability is PSPACE-complete for ptNFAs
- ptNFA = simplest NFAs with PSPACE-complete universality
- rpoNFA languages are DRE-definable
- R-trivial languages: poDFA and rpoNFA
- J-trivial languages: confDFA and ptNFA
Consequences
DFA
NFA
Complexity
Confluent DFA
a
b
w
w
w
over {a,b}*
Brzozowski and Fich 1980
Simon 1972; KlÃma and Polák 2013
rpoNFA = self-loop deterministic poNFA
a
a
ptNFA = confluent rpoNFA
a
b
w
w
w
over {a,b}*
Saturated poNFA
Σ*
Σ*
Schwentick, Thérien, Vollmer 2001
Krötzsch, Masopust, Thomazo 2016
Masopust and Thomazo 2015
Héam 2002
PSPACE-complete
even if Σ = {0,1}
PSPACE-complete
coNP-complete if |Σ| constant
PSPACE-complete
coNP-complete if |Σ| constant
NL-complete if |Σ|=1
NL-complete if |Σ|=1
Straubing-Thérien
hierarchy
L(0) = {∅, Σ*}
L(1/2) = {Σ
*
a
1
Σ
*
a
2
Σ
*
...a
n
Σ
*
| ai in Σ}
Alternation Hierarchy: Σ
1
shuffle ideals or upward closed languages
L(1) = Bool(Σ
*
a
1
Σ
*
a
2
Σ
*
...a
n
Σ
*
)
Alternation Hierarchy: BΣ
1
J-trivial or piecewise testable languages
L(3/2)
Alternation Hierarchy: Σ
2
Alphabetic Pattern Constraints (Bouajjani et al.)
R-trivial languages
Thank You
1
title
poNFAs
poDFAs
rpoNFAs
confluentDFA
confluentNFA
whole picture 1
st
Level 0-1
heam
level 1
level 1.5
whole 2
whole 2
complexity
complexity ponfa
complexity rponfa
complexity ptnfa
complexity sponfa
complexity overview
consequences
done