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Abstract
An automaton is partially ordered if the only cycles in its transition diagram are self-loops. The expressivity of par-
tially ordered NFAs (poNFAs) can be characterized by the Straubing-Thérien hierarchy [18, 19]. The most studied
level of the hierarchy is level 1, known as piecewise testable languages. Piecewise testable languages are recognized
by confluent, partially ordered DFAs [16, 8]. Omitting confluence results in partially ordered DFAs (poDFAs) studied
by Brzozowski and Fich [3], who showed that poDFAs recognize R-trivial languages, a class of languages strictly
between levels 1 and 3

2 . Lifting the notion from DFAs to NFAs, Schwentick, Thérien and Vollmer [15] showed that
poNFAs recognize level 3

2 and are thus more powerful than poDFAs. Languages of level 3
2 are also known as Al-

phabetical Pattern Constraints [2], which are regular languages effectively closed under permutation rewriting. We
showed that the increase of expressivity of poNFAs compared to poDFAs is caused by self-loop transitions involved in
nondeterminism. Consequently, R-trivial languages are characterized by self-loop deterministic poNFAs (rpoNFAs).
Our study further reveals that complete, confluent and self-loop deterministic poNFAs (ptNFAs) characterize piecewise
testable languages; ptNFAs are thus a natural extension of confluent poDFAs to nondeterministic automata.

We studied the universality problem for these types of poNFAs. The problem asks whether a given automaton
accepts all words over its alphabet. The problem is PSpace-complete for NFAs [14].

Despite a rather low expressivity, the universality problem for poNFAs has the same worst-case complexity as for
general NFAs, even if restricted to binary alphabets. This is because poNFAs possess a powerful nondeterminism; self-
loops involved in nondeterminism admit an unbounded number of nondeterministic steps – the poNFA either stays in
the same state or moves to another one. Forbidding such self-loops results in self-loop deterministic poNFAs where the
number of nondeterministic steps is bounded by the number of states. This restriction affects the complexity – deciding
universality of self-loop deterministic poNFAs is coNP-complete if the alphabet is fixed. However, the complexity
remains PSpace-complete if the alphabet may grow polynomially, since the growth of the alphabet compensates for
the restriction on the number of nondeterministic steps. Surprisingly, the reduced complexity is also preserved by the
weaker complete, confluent and self-loop deterministic poNFAs.

Héam [5] characterized level 1
2 as languages recognized by saturated poNFAs (spoNFA), also called shuffle ideals

or upward closures. A poNFA is saturated if it has a self-loop under every letter in every state. Deciding universality
for spoNFAs is simple – find a state that is both initial and accepting. Therefore, complete, confluent and self-loop
deterministic poNFAs are the simplest and natural kind of NFAs recognizing a well-known class of languages for which
the universality problem is as difficult as for general NFAs. Our results are summarized in Table 1.

A consequence of our results is the worst-case complexity of inclusion and equivalence problems – the complexity
of universality is a lower bound. Deciding inclusion or equivalence of two languages given as (complete, confluent
and) self-loop deterministic poNFAs is thus PSpace-complete in general, coNP-complete if the alphabet is fixed, and
NL-complete if the alphabet is unary. Considering the inclusion L(A) ⊆ L(B) for automata over a fixed alphabet,
the problem is coNP-complete if B is a self-loop deterministic poNFA and A is of any other type. Our results further
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ST |Σ| = 1 |Σ| = k ≥ 2 Σ is growing
DFA L-comp. [7] NL-comp. [7] NL-comp. [7]

spoNFA 1
2 AC0 [9] AC0 [9] AC0 [9]

ptNFA 1 NL-comp. [9] coNP-comp. [12] PSpace-comp. [9]
rpoNFA NL-comp. [10] coNP-comp. [10] PSpace-comp. [10]
poNFA 3

2 NL-comp. [10] PSpace-comp. [10] PSpace-comp. [1]
NFA coNP-comp. [17] PSpace-comp. [1] PSpace-comp. [1]

Table 1: Complexity of deciding universality for poNFAs; ST stands for the corresponding level of the Straubing-Thé-
rien hierarchy; Σ denotes the input alphabet

show that the k-piecewise testability problem for complete, confluent and self-loop deterministic poNFAs is PSpace-
complete. This problem is of interest in XML databases and separability [4, 6, 11].
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