
A Note on the Generative Power of Some Simple
Variants of Context-Free Grammars Regulated by

Context Conditions

Tomáš Masopust

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, Brno 61266, Czech Republic

masopust@fit.vutbr.cz

Abstract. This paper answers three open questions concerning the generative
power of some simple variants of context-free grammars regulated by context
conditions. Specifically, it discusses the generative power of so-called context-
free semi-conditional grammars (which are random context grammars where per-
mitting and forbidding sets are replaced with permitting and forbidding strings)
where permitting and forbidding strings of each production are of length no more
than one, and of simple semi-conditional grammars where, in addition, no pro-
duction has attached both a permitting and a forbidding string. Finally, this paper
also presents some normal form results, an overview of known results, and un-
solved problems.

Key words: Formal languages; context condition; context-free grammar; random con-
text grammar; semi-conditional grammar; simple semi-conditional grammar; erasing
production; generative power.

1 Introduction

It is well-known that context-free languages play an important role in the theory and
practice of formal languages in computer science. However, there is a lot of interesting
and simple languages that are not context-free. According to the Chomsky hierarchy,
such languages are treated as being context-sensitive. On the other hand, in the theory of
regulated rewriting, many of these languages can be generated by regulated grammars
using the benefits of applying only context-free productions.

The present paper discusses two simple variants of context-free grammars regulated
by context conditions; both variants are special cases of so called context-free random
context grammars (defined and studied by van der Walt in [1]), which are context-free
grammars where two sets of symbols (conditions) are attached to each production—a
permitting and a forbidding set. In addition, the grammars studied in this paper require
that both the permitting and the forbidding sets contain no more than one symbol. A
production of such a grammar is applicable to a sentential form provided that the sym-
bol from the attached permitting set (the permitting condition) occurs in the sentential
form while, simultaneously, the symbol from the attached forbidding set (the forbid-
ding condition) does not. These grammars were defined by Păun [2] in 1985 and called

2

semi-conditional grammars of degree (1,1). In general, semi-conditional grammars are
defined to be of any degree (i, j), for i, j ≥ 0, where the degree (i, j) means that all
permitting and forbidding conditions (that are strings, in general, not only symbols) are
of length no more than i and j, respectively. In addition, semi-conditional grammars
where each production has no more than one condition in the union of its permitting
and forbidding sets are referred to as simple semi-conditional grammars (see [3]).

Since their introduction, it has been an open problem whether every semi-condi-
tional grammar can be converted to an equivalent simple semi-conditional grammar (of
the same degree); cf. [4, page 90]. This paper answers this question so that it demon-
strates how to convert any semi-conditional grammar to an equivalent simple semi-
conditional grammar of the same degree. In fact, this demonstration is given for both
semi-conditional grammars with and without erasing productions. In addition, this pa-
per also shows that semi-conditional grammars of degree (1,1) characterize the family
of recursively enumerable languages, which is a question left unsolved in [2] and still
formulated as open in [4]. As an immediate consequence of these two results, it fol-
lows that simple semi-conditional grammars of degree (1,1) characterize the family of
recursively enumerable languages, too.

Furthermore, this paper presents three normal form results. Specifically, it proves
that (i) for any (simple) semi-conditional grammar, there is an equivalent simple semi-
conditional grammar of the same degree with the property that its (core context-free)
productions can be decomposed into two disjoint sets in such a way that in one set,
all productions have attached only permitting conditions, while in the other set, all
productions have attached only forbidding conditions; it means that if u1,u2, . . . ,uk are
all conditions attached to a production A→ α , then all of them are either permitting or
forbidding; (ii) for any context-sensitive language, there is a simple semi-conditional
grammar of degree (i, j), i, j ∈ {1,2}, i 6= j, without erasing productions and without
conditions containing terminal symbols that satisfies the property from (i); and (iii) for
any recursively enumerable language, there is a simple semi-conditional grammar of
degree (1,1) without conditions containing terminal symbols that satisfies the property
from (i).

In its conclusion, this paper gives an overview of known results concerning the gen-
erative power of discussed grammars, including the results concerning the descriptional
complexity, presents a simple semi-conditional grammar of degree (1,1) without eras-
ing productions that generates a nontrivial context-sensitive language, and discusses
open problems.

2 Preliminaries and Definitions

In this paper, we assume that the reader is familiar with formal language theory and
with the theory of regulated rewriting (see [5, 6]). For an alphabet (finite nonempty set)
V , V ∗ represents the free monoid generated by V . The unit of V ∗ is denoted by ε . Set
V + = V ∗ −{ε}. For w ∈ V ∗, |w| denotes the length of w, and sub(w) = {u : u is a
substring of w}.

Let RE, REC, CS, CF denote the families of recursively enumerable, recursive,
context-sensitive, and context-free languages, respectively. In addition, let RCac, RC,

3

and fRC denote the families of languages generated by random context grammars with
appearance checking, random context grammars where each forbidding set is empty
(permitting grammars), and random context grammars where each permitting set is
empty (forbidding grammars), respectively. Moreover, superscript ε is added if erasing
productions are allowed.

A semi-conditional grammar (see [2]) is a quadruple G = (N,T,P,S), where N and
T are the alphabets of nonterminals and terminals, respectively, such that N ∩T = /0,
V = N ∪T , S ∈ N is the start symbol, and P is a finite set of productions of the form
(X → α,u,v) such that X → α is a context-free production and u,v ∈V +∪{0}, where
0 6∈V is a special symbol. If for each production (X → α,u,v) ∈ P, u 6= 0 implies that
|u| ≤ i and v 6= 0 implies that |v| ≤ j, then G is said to be of degree (i, j). G is said to be
simple if for each production (X → α,u,v) ∈ P we have 0 ∈ {u,v}.

For x1,x2 ∈V ∗, x1Xx2 ⇒ x1αx2 provided that

1. (X → α,u,v) ∈ P,
2. u 6= 0 implies that u ∈ sub(x1Xx2), and
3. v 6= 0 implies that v 6∈ sub(x1Xx2).

As usual, ⇒ is extended to ⇒i, for i ≥ 0, ⇒+, and ⇒∗. The language of G is de-
fined as L(G) = {w ∈ T ∗ : S ⇒∗ w}. The family of languages generated by semi-
conditional grammars of degree (i, j) is denoted by SCε(i, j), or SC(i, j) if erasing
productions are not allowed. Analogously, the family of languages generated by sim-
ple semi-conditional grammars of degree (i, j) is denoted by SSCε(i, j), or SSC(i, j) if
erasing productions are not allowed.

3 Main Results

As stated above, this paper concentrates its attention on language families SSCε(1,1)
and SSC(1,1). First, it answers three questions formulated as open in [4] (see also [2])
concerning the relations among the families SSCε(1,1), SCε(1,1), and RE (Theorems
3 and 2 and Corollary 1), and between the families SSC(1,1) and SC(1,1) (Theorem
1). Then, it gives an overview of known results, demonstrates the generative power of
non-erasing simple semi-conditional grammars, and discusses open problems.

Theorem 1. For any i, j ≥ 1, SSC(i, j) = SC(i, j).

Proof. Let L ∈ SC(i, j), for some i, j ≥ 1. Then, there is a semi-conditional grammar
G = (N,T,P,S) of degree (i, j) without erasing productions such that L(G) = L. Con-
struct a simple semi-conditional grammar G′ = (N′,T,P′,S1), where S1 is a new start
symbol, N′ = N ∪{S1}∪ {[A] : A ∈ V}∪ {A′,A′′ : A ∈ N}∪ {[pA], [p0A], [p1A], [p2A],
[p3A], [p′A], [p′′A] : p = (A → α,u,v) ∈ P}, P′ = {(S1 → [S],0,0)}∪{([a]→ a,0,0) :
a ∈ T}, and for each p = (A→ α,u,v) ∈ P, the following productions are added to P′:

Case 1: For B ∈V
1. ([B]→ [pB],u,0),
2. ([B]→ [pB], [B]u′,0), for u = Bu′,
3. ([pB]→ [p0B],0,v),

4

4. ([p0B]→ [p1B],0,γ), where γ =
{

[p0B]v′ if v = Bv′

0 otherwise
5. (A→ A′, [p1B],0),
6. (A′→ A′′,0,A′′),
7. ([p1B]→ [p2B],A′′,0),
8. ([p2B]→ [p3B],0,A′),
9. (A′′→ α, [p3B],0),

10. ([p3B]→ [B],0,A′′).

Case 2: The first nonterminal of a sentential form is replaced.
11. ([A]→ [p′A],u,0),
12. ([A]→ [p′A], [A]u′,0), for u = Au′,
13. ([p′A]→ [p′′A],0,v)

14. ([p′′A]→ [B]β ,0,γ), where α = Bβ , B ∈V , γ =
{

[p′′A]v′ if v = Av′

0 otherwise.

To prove that L(G)⊆ L(G′), consider a derivation of G. Such a derivation is of the
form S⇒∗ Bw1Aw2 ⇒ Bw1αw2, where the last derivation step is made by a production
p = (A → α,u,v) ∈ P, and B ∈ V . Then, G′ derives as follows (numbers in square
brackets denote (classes of) productions applied in given derivation steps):

S1 ⇒ [S]
⇒∗ [B]w1Aw2

⇒ [pB]w1Aw2 [1 or 2]
⇒ [p0B]w1Aw2 [3]
⇒ [p1B]w1Aw2 [4]
⇒ [p1B]w1A′w2 [5]
⇒ [p1B]w1A′′w2 [6]
⇒ [p2B]w1A′′w2 [7]
⇒ [p3B]w1A′′w2 [8]
⇒ [p3B]w1αw2 [9]
⇒ [B]w1αw2 [10].

If the derivation is of the form S ⇒∗ Aw ⇒ αw = Bβw in G, B ∈ V , i.e., the first non-
terminal of the sentential form is replaced, then G′ derives

S1 ⇒ [S]
⇒∗ [A]w
⇒ [p′A]w [11 or 12]
⇒ [p′′A]w [13]
⇒ [B]βw [14].

The proof now proceeds by induction.

5

On the other hand, to prove that L(G′)⊆ L(G), consider a sentential form [A]w and
assume that a production constructed in 11 or 12 is applied. Then, the only derivation is

[A]w ⇒ [p′A]w [11 or 12]
⇒ [p′′A]w [13]
⇒ [B]βw [14],

where p = (A→Bβ ,u,v)∈P, B∈V . From this, by a production constructed in 11 or 12,
it follows that u (different from 0) is a substring of Aw, and, by productions constructed
in 13 and 14, v is not a substring of Aw. Thus, Aw⇒ Bβw by (A→ Bβ ,u,v) ∈ P in G.

Now, assume that a production constructed in 1 or 2 is applied to a sentential form
[B]w1Aw2. Then, the only derivation is of the form

[B]w1Aw2 ⇒ [pB]w1Aw2 [1 or 2]
⇒ [p0B]w1Aw2 [3]
⇒ [p1B]w1Aw2 [4]
⇒ [p1B]w1A′w2 [5]
⇒ [p1B]w1A′′w2 [6]
⇒ [p2B]w1A′′w2 [7]
⇒ [p3B]w1A′′w2 [8]
⇒ [p3B]w1αw2 [9]
⇒ [B]w1αw2 [10],

where p = (A → α,u,v) ∈ P. Surely, by a production constructed in 1 or 2, it follows
that u (different from 0) is a substring of Bw1Aw2, and, by productions constructed
in 3 and 4, it follows that v is not a substring of Bw1Aw2. Moreover, by a production
constructed in 6, only one A′ can be replaced with A′′, and a production constructed
in 8 can be applied only if there is no A′. Therefore, only one A is replaced with A′

by a production constructed in 5 (the one later replaced with A′′). Thus, only one A is
replaced with α , i.e., Bw1Aw2 ⇒ Bw1αw2 by (A→ α,u,v) ∈ P in G.

We have proved that SC(i, j)⊆ SSC(i, j). The other inclusion follows immediately
from the definition. Hence, the theorem holds. ut

Considering Case 2 of the previous construction, it is not hard to see that this con-
struction is not valid for grammars with erasing productions; by an erasing production,
the special first nonterminal of the form [A] would be eliminated and the derivation
would be blocked. However, a simple modification of the previous construction proves
the following theorem.

Theorem 2. For any i, j ≥ 1, SSCε(i, j) = SCε(i, j).

Proof. Let L ∈ SCε(i, j), for some i, j ≥ 1. Then, there is a semi-conditional gram-
mar G = (N,T,P,S) of degree (i, j) such that L(G) = L. Construct a simple semi-
conditional grammar G′ = (N′,T,P′,S1), where N′ = N ∪{S1,X}∪{A′,A′′ : A ∈ N}∪
{[p], [p0], [p1], [p2] : p = (A → α,u,v) ∈ P}, S1 and X are new symbols not in N,
P′ = {(S1 → XS,0,0),(X → ε,0,0)}, and for each p = (A→ α,u,v)∈ P, the following
productions are added to P′:

6

1. (X → [p],u,0),
2. ([p]→ [p0],0,v),
3. (A→ A′, [p0],0),
4. (A′→ A′′,0,A′′),
5. ([p0]→ [p1],A′′,0),
6. ([p1]→ [p2],0,A′),
7. (A′′→ α, [p2],0),
8. ([p2]→ X ,0,A′′).

The rest of the proof is analogous to the proof of Theorem 1 and is left to the reader. ut

The following theorem answers the question left unsolved in [2] of what is the
relation between the families SCε(1,1) and RE?

Theorem 3. SCε(1,1) = RE.

Proof. The proof is a straightforward consequence of the proof given in [7, Section 3.2],
where for each recursively enumerable language L, a random context grammar G is
given such that L(G) = L and each of permitting and forbidding sets contains no more
than one symbol. The main idea of the proof is based on the fact that any recursively
enumerable language can be generated by an unordered scattered context grammar.
Then, such an unordered scattered context grammar in a special normal form generating
L is consider and transformed into a random context grammar. For more details, the
reader is referred to Lemma 6 in [7].

Thus, we obtain the required semi-conditional grammar by replacing one-element
sets with their elements and empty sets with 0. ut

As an immediate consequence, we have the following result.

Corollary 1. SSCε(1,1) = RE.

As no context-free production in the constructions of Theorems 1 and 2 has at-
tached both a permitting and a forbidding condition, the following corollary holds. It
says that the core context-free productions can be decomposed into two disjoint sets of
productions—the productions with only permitting conditions (permitting productions)
and the productions with only forbidding conditions (forbidding productions). Note that
in case of erasing productions, such systems have been studied (using a different tech-
nique) in [8] (cf. Corollary 4). Thus, the following consequences of the previous results
of this paper complement [8] in case of non-erasing productions, and, in addition, use
much simpler proofs than used in [8].

Corollary 2. For any semi-conditional grammar G′ of degree (i, j) without erasing
productions, i, j ≥ 1, there is an equivalent simple semi-conditional grammar G =
(N,T,P,S) of the same degree without erasing productions such that (A→ α,u,0) ∈ P
and (A→ α,0,v) ∈ P imply that 0 ∈ {u,v}.

In addition, by a standard technique, it can be proved that conditions u and v contain
only nonterminals, i.e., u,v∈N+∪{0}, so that each production (A→α,u,v) is replaced
with (A → h(α),h(u),h(v)), where h is a homomorphism defined as h(A) = A, for

7

A∈N∪{0}, and h(a) = a′, for a∈ T , where a′ is a new nonterminal, and ([a]→ a,0,0)
is replaced with ([a] → ta,0,0) and (ta → a,0,0), where ta is a new nonterminal for
all a ∈ T . Finally, (a′→ a, tb,0), for b ∈ T , are added for all a ∈ T . In case of erasing
productions, Theorem 2, (X → ε,0,0) is replaced with (X → Y,0,0) and (Y → ε,0,0),
where Y is a new nonterminal, and (a′→ a,Y,0) are added for all a ∈ T .

By 4 of Theorem 5, we have the following normal form theorem.

Corollary 3. For any context-sensitive language L, there is a simple semi-conditional
grammar G = (N,T,P,S) of degree (i, j), for i, j ∈ {1,2}, i 6= j, without erasing pro-
ductions such that L(G) = L and

1. (A→ α,u,v) ∈ P implies that u,v ∈ N+∪{0}, and
2. (A→ α,u,0) ∈ P and (A→ α,0,v) ∈ P imply that 0 ∈ {u,v}.

In addition, by Theorem 3, Corollary 3 can be modified to obtain the following
normal form theorem.

Corollary 4. For any recursively enumerable language L, there is a simple semi-condi-
tional grammar G = (N,T,P,S) such that L(G) = L and

1. (A→ α,u,v) ∈ P implies that u,v ∈ N∪{0} (i.e., G is of degree (1,1)), and
2. (A→ α,u,0) ∈ P and (A→ α,0,v) ∈ P imply that 0 ∈ {u,v}.

4 Overview of Results and Open Problems

This section presents an overview of results concerning simple semi-conditional gram-
mars known so far. In addition, it also presents an overview of open problems.

Theorem 4. The following holds for grammars with erasing productions.

1. SSCε(0,0) = CF.
2. CF⊂ SSCε(0,1)⊆ fRCε ⊂ REC.
3. CF⊂ SSCε(1,0)⊆ RCε ⊂ REC.
4. SSCε(1,1) = SCε(1,1) = RE.

Proof. The inclusions in 2 and 3 are straightforward; the proofs of the proper inclusions
can be found, e.g., in [4] and [9], respectively. ut

Theorem 5. The following holds for grammars without erasing productions.

1. SSC(0,0) = CF.
2. CF⊂ SSC(0,1)⊆ fRC⊂ CS.
3. CF⊂ SSC(1,0)⊆ RC⊂ CS.
4. SSC(2,1) = SSC(1,2) = CS.
5. SSC(1,1) = SC(1,1)⊆ RCac ⊂ CS.

Proof. The inclusions in 2 and 3 are straightforward; the proofs of the proper inclusions
can be found, e.g., in [10] and [11], respectively. Results of 4 are proved in [4]. ut

8

Note that the generative power of simple semi-conditional grammars of degree (0, i)
and (i,0) (with or without erasing productions), for i ≥ 2, are not known. However, if
more than one forbidding string is allowed to be attached to a production (i.e., there
are sets of forbidding conditions instead of only one condition), it is known that such
grammars (referred to as generalized forbidding grammars) are computationally com-
plete. In addition, it is sufficient to have no more than four forbidding conditions each
of which is of length no more than two to characterize the family of recursively enu-
merable languages (see [12, Corollary 6]). On the other hand, however, the question of
what is the generative power of generalized permitting grammars (defined in the same
manner) is an open problem.

Note also that the precise relation between SSC(1,1) and RCac is not known. How-
ever, the following theorem illustrates the generative power of simple semi-conditional
grammars so that it shows that they are powerful enough to generate nontrivial lan-
guages, such as prime numbers, i.e., the language P = {ap : p is a prime number}.

Theorem 6. P ∈ SSC(1,1).

Proof. Let G = (N,{a},P,S′) be a simple semi-conditional grammars, where N follows
from P that is constructed as follows:

1. (S′→ a2,0,0)
2. (S′→ S,0,0)
3. (S→ SCC,0,0)
4. (S→ AAX ,0,0)

5. (A→ Ā,X ,0)
6. (C → C̄,X ,0)

7. (Ā→ A′,0,A′)
8. (C̄ →C′,0,C′)

9. (X → Z1,A′,0)
10. (X → Y1,0,A)
11. (X → Q1,0,C)
12. (X → F,0,C)

13. (Z1 → Z2,C′,0)

14. (Z2 → Z3,0, Ā)
15. (Z3 → Z,0,C̄)
16. (A′→ B,Z,0)
17. (C′→ D,Z,0)
18. (Z → Z4,0,A′)
19. (Z4 → X ,0,C′)

20. (Y1 → Y2,0, Ā)
21. (Y2 → Y,0,A′)
22. (B→ A,Y,0)
23. (Y → X ,0,B)

24. (Q1 → Q2,0,C̄)
25. (Q2 → Q3,0,C′)
26. (Q3 → Q4,0, Ā)
27. (Q4 → Q5,A′,0)
28. (Q5 → Q,A,0)

29. (D→ D̄,Q,0)
30. (D→C,Q,0)
31. (B→ A,Q,0)
32. (A′→ A,Q,0)
33. (D̄→ D1,0,D1)
34. (Q→ Q6,0,D)
35. (Q6 → Q7,0, D̄)
36. (Q7 → Q8,D1,0)
37. (D1 → A,Q8,0)
38. (Q8 → Q9,0,D1)
39. (Q9 → Q10,0,B)
40. (Q10 → X ,0,A′)

41. (A→ a,F,0)
42. (F → a,0,A)

We prove that L(G) = P. Clearly, a2 is in P. Thus, consider a terminal derivation
beginning by an application of production 2. Then, only productions 3 and 4 are appli-
cable, generating the sentential form AAX(CC)n, for some n≥ 0, i.e., from now on, any
sentential form is of length 2k +1, for some k ≥ 1.

Now, only productions 5, 6, 9, 10, 11, and 12 are applicable; of course, if produc-
tions 5 and 6 are applicable, then they are applied before any of productions 9, 10, 11,
or 12.

A. Let production 9 be applied. Then, clearly, productions 7 and 8 had to be applied
before productions 13 and 9, respectively. Then, by productions 13 to 19, the derivation

9

continues according to these productions as follows:

AqBmCrDmX ⇒∗ Aq−1Bm+1Cr−1Dm+1X .

(Note that symbols of sentential forms are written in the alphabetic order, rather than in
the actual possible order, because the order is not important.) Informally, this phase of
the derivation replaces one A with B and one C with D, respectively.

B. Let production 10 be applied. Then, by productions 20 to 23, the derivation re-
places each B with A, i.e.,

BnCrDtnX ⇒∗ AnCrDtnX .

Together with the previous phase, these two phases try to divide 2k + 1 by n, where
n≥ 2.

C. Let production 11 be applied. Then, by productions 24 to 40, the derivation
continues so that it verifies that there is no C (including C′ and C̄) and Ā and that there
is A′ and A in the current sentential form. Then, precisely one D1 is generated from D,
and each other D is replaced with C. Finally, it verifies that all symbols B and A′ are
replaced with A. Thus, we have

An−mBmDtn+mX ⇒∗ An+1Ctn+m−1X .

This phase verifies that n does not divide 2k + 1 so that it requires the reminder to be
at least one (symbols A and A′ are required to be in the sentential form; one of them is
compared against the symbol X , the other is the nonzero remainder). More precisely, if
there were m≥ 2 such that 2k +1 = mn, then

AnCn−1D(m−2)nX ⇒∗ A′Bn−1Dn−1D(m−2)nQ5

and the derivation would be blocked (see production 28).
D. Let production 12 be applied. Then, by productions 41 and 42, the derivation

continues according to these productions as follows:

A2kX ⇒ A2kF ⇒∗ a2k+1 ,

where 2k + 1 is a prime number because the derivation has verified that there is no
n ∈ {2,3, . . . ,2k−1} such that n divides 2k +1.

Thus, the whole derivation is of the form

A2C2(k−1)X ⇒∗ B2C2(k−2)D2X

⇒∗ B2D2(k−1)X

⇒∗ A2D2(k−1)X

⇒∗ A3C2(k−1)−1X

⇒∗ A4C2(k−2)X

⇒∗ A2kX

⇒∗ a2k+1 ,

where 2k +1 is a prime number, i.e., L(G) = {ap : p is a prime number}= P. ut

10

5 Conclusion

From both theoretical and practical points of view, it is of a great interest to know the
amount of resources needed to characterize any recursively enumerable language by
(simple) semi-conditional grammars. This section summarizes results concerning the
descriptional complexity of (simple) semi-conditional grammars known so far.

Let (A→ α,u,v) be a production of a semi-conditional grammar. If u = v = 0, then
the production is said to be context-free; otherwise, it is said to be conditional.

Theorem 7 ([13]). Every recursively enumerable language is generated by a simple
semi-conditional grammar of degree (3,1) with no more than eight conditional produc-
tions and eleven nonterminals.

Theorem 8 ([14]). Every recursively enumerable language is generated by a simple
semi-conditional grammar of degree (2,1) with no more than nine conditional produc-
tions and ten nonterminals.

In case of semi-conditional grammars that are not simple, the previous result can be
improved as follows.

Theorem 9 ([15]). Every recursively enumerable language is generated by a semi-
conditional grammar of degree (2,1) with no more than seven conditional productions
and eight nonterminals.

Finally, note that Example 4.1.1 in [5] shows that there is no bound for the num-
ber of nonterminals for (simple) semi-conditional grammars of degree (1,1) if terminal
symbols are not allowed to appear in the conditions. More specifically, the example
shows that any (simple) semi-conditional grammar of degree (1,1) generating the lan-
guage Tn =

⋃n
i=1{a j

i : j ≥ 1}, where conditions are nonterminal symbols, requires, in
the nonerasing case, exactly n + 1 nonterminal symbols, and, in the erasing case, at
least f (n) nonterminal symbols, for some unbounded mapping f : IN → IN. In gen-
eral, however, as terminal symbols are allowed to appear in the conditions, and G =
({S,A},{a1,a2, . . . ,an},{(S→ aiA,0,0),(S→ ai,0,0),(A→ aiA,ai,0),(A→ ai,ai,0) :
1 ≤ i ≤ n},S) is a simple semi-conditional grammar of degree (1,1) that generates
Tn, the question of whether analogous descriptional complexity results can be achieved
for general (simple) semi-conditional grammars of degree (1,1) is open. Furthermore,
other cases not presented above are open, too.

To summarize the main results, this paper has answered three questions formulated
as open in [4, page 90] (see also [2], where semi-conditional grammars were introduced
and studied). Specifically, it has proved that

1. every semi-conditional grammar (with or without erasing productions) can be con-
verted to an equivalent simple semi-conditional grammar (with or without erasing
productions, respectively) of the same degree,

2. semi-conditional grammars of degree (1,1) characterize the family of recursively
enumerable languages,

3. and, as a consequence, simple semi-conditional grammars of degree (1,1) charac-
terize the family of recursively enumerable languages.

11

In addition, it has also presented some normal form results and an overview of known
results, demonstrated the generative power of simple semi-conditional grammars of
degree (1,1) without erasing productions, and discussed open problems.

Acknowledgments

The author thanks the anonymous referees for their helpful suggestions.
This work was supported by the Czech Ministry of Education under the Research

Plan No. MSM 0021630528 and, partially, by the Czech Grant Agency project No.
201/07/0005.

References

1. van der Walt, A.P.J.: Random context grammars. In: Proceedings of the Symposium on
Formal Languages. (1970)

2. Păun, G.: A variant of random context grammars: Semi-conditional grammars. Theoretical
Computer Science 41 (1985) 1–17

3. Gopalaratnam, A., Meduna, A.: On semi-conditional grammars with productions having
either forbidding or permitting conditions. Acta Cybernetica 11(4) (1994) 307–324

4. Meduna, A., Švec, M.: Grammars with Context Conditions and Their Applications. John
Wiley & Sons, New York (2005)

5. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer-Verlag,
Berlin (1989)

6. Salomaa, A.: Formal languages. Academic Press, New York (1973)
7. Mayer, O.: Some restrictive devices for context-free grammars. Information and Control 20

(1972) 69–92
8. Masoput, T., Meduna, A.: On context-free rewriting with a simple restriction and its compu-

tational completeness. To appear in RAIRO-ITA
9. Bordihn, H., Fernau, H.: Accepting grammars and systems. Technical Report 9/94 (1994)

10. van der Walt, A.P.J., Ewert, S.: A shrinking lemma for random forbidding context languages.
Theoretical Computer Science 237(1-2) (2000) 149–158

11. Ewert, S., van der Walt, A.P.J.: A pumping lemma for random permitting context languages.
Theoretical Computer Science 270(1–2) (2002) 959–967

12. Masopust, T., Meduna, A.: Descriptional complexity of generalized forbidding grammars.
In: Proceedings of 9th International Workshop on Descriptional Complexity of Formal Sys-
tems, High Tatras, Slovakia (2007) 170–177

13. Vaszil, G.: On the descriptional complexity of some rewriting mechanisms regulated by
context conditions. Theoretical Computer Science 330 (2005) 361–373

14. Masopust, T., Meduna, A.: Descriptional complexity of grammars regulated by context con-
ditions. In: Pre-proceedings of 1st International Conference on Language and Automata
Theory and Application (LATA 2007), Tarragona, Spain (2007) 403–411

15. Masopust, T., Meduna, A.: Descriptional complexity of semi-conditional grammars. Infor-
mation Processing Letters 104(1) (2007) 29–31

