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Abstract. We continue the investigation of union-free regular languages
that are described by regular expressions without the union operation.
We also define deterministic union-free languages as languages recognized
by one-cycle-free-path deterministic finite automata, and show that they
are properly included in the class of union-free languages. We prove that
(deterministic) union-freeness of languages does not accelerate regular
operations, except for the reversal in the nondeterministic case.

1 Introduction

Regular languages are the simplest languages in the Chomsky hierarchy. They
have been intensively investigated due to their practical applications in various
areas of computer science, and for their importance in the theory as well.

In recent years, several special subclasses have been deeply examined: fi-
nite languages that can be described by expressions without the star operation
[6, 7, 32], suffix- and prefix-free languages that are used in codes [12], star-free
and locally testable languages, ideal, closed, and convex languages, etc.

Here we continue this research and study union-free regular languages that
can be represented by regular expressions without the union operation. Nagy
in [26] described one-cycle-free-path nondeterministic finite automata, in which
from each state, there is exactly one cycle-free path to the final state. He showed
that such automata accept exactly the class of union-free languages. We first
complement his results with some closure properties. Then, in Section 3, we
investigate the nondeterministic state complexity of operations in the class of
union-free languages. Quite surprisingly, we show that all known upper bounds
can be reached by union-free languages, except for the reversal, where the tight
bound is n instead of n + 1. In Section 4, we define deterministic union-free
languages as languages accepted by deterministic one-cycle-free-path automata,
and show that they are properly included in the class of union-free languages. We
study the state complexity of quite a number of regular operations, and prove
that deterministic union-freeness of languages does not accelerate any of them.
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To conclude this section, we mention three more related works. Crvenković,
Dolinka, and Ésik [9] investigated algebraic properties of union-free languages.
Nagy [25] and Afonin and Golomazov [2] studied union-free decompositions of
regular languages.

2 Preliminaries

We assume familiarity with basic concepts of finite automata and regular lan-
guages. For all unexplained notions, we refer the reader to [29, 31, 32].

If Σ is a finite alphabet, then Σ∗ denotes the set of all strings over the
alphabet Σ including the empty string ε. A language over an alphabet Σ is any
subset of Σ∗. We denote the size of a finite set A by |A| and its power-set by 2A.

A nondeterministic finite automaton (nfa) is a quintuple M = (Q,Σ, δ, S, F ),
where Q is a finite non-empty set of states, Σ is an input alphabet, S is the set
of initial states, F is the set of accepting states, and δ is the transition function
that maps Q × (Σ ∪ {ε}) into 2Q. The transition function is extended to the
domain 2Q × Σ∗ in a natural way. The language accepted by the nfa M is the
set of all strings accepted by M . The automaton M is deterministic (dfa) if it
has a single initial state, no ε-transitions, and |δ(q, a)| = 1 for all states q in Q
and symbols a in Σ. In this case, we usually write δ : Q×Σ → Q.

A language is regular if there exists an nfa (or a dfa) accepting the language.
The state complexity of a regular language L, denoted by sc(L), is the smallest
number of states in any dfa accepting the language L. The nondeterministic state
complexity of a regular language L, nsc(L), is defined as the smallest number of
states in any ε-free nfa that accepts L and has a single initial state.

A path from state p to state q in an nfa/dfaM is a sequence p0a1p1a2 · · · anpn,
where p0 = p, pn = q, and pi ∈ δ(pi−1, ai) for i = 1, 2, . . . , n. The path is called
accepting cycle-free if pn is an accepting state, and pi 6= pj whenever i 6= j.
An nfa/dfa is a one-cycle-free-path (1cfp) nfa/dfa if there is a unique accepting
cycle-free path from each of its states.

A regular expression over an alphabet Σ is defined inductively as follows: ∅,
ε, and a, for a in Σ, are regular expressions. If r and t are regular expressions,
then also (s∪ t), (s · t), and (s)∗ are regular expressions. A regular expression is
union-free if no symbol ∪ occurs in it. A regular language is union-free if there
exists a union-free regular expression describing the language.

LetK and L be languages overΣ. We denote byK∩L,K∪L,K−L,K⊕L the
intersection, union, difference, and symmetric difference of K and L, respectively.
To denote complement, Kleene star, and reversal of L, we use Lc, L∗, and LR.
The left and right quotient of a language L with respect to a string w is the set
w\L = {x | wx ∈ L} and L/w = {x | xw ∈ L}, respectively. The cyclic shift of a
language L is defined as Lshift = {uv | vu ∈ L}. The shuffle of two languages is
K L = {u1v1u2v2 · · ·umvm | m > 1, ui, vi ∈ Σ∗, u1 · · ·um ∈ K, v1 · · · vm ∈ L}.
For the definition of positional addition, K + L, we refer to [18]: informally,
strings are considered as numbers encoded in a |Σ|-adic system, and automata
read their inputs from the least significant digit.
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3 Union-Free Regular Languages

A regular language is union-free if it can be described by a union-free regular
expression. Nagy in [26] proved that the class of union-free regular languages
coincides with the class of languages recognized by one-cycle-free-path nfa’s. He
also showed that union-free languages are closed under concatenation, Kleene-
star, and substitution by a union-free language. Using an observation that the
shortest string of a union-free language is unique, he proved not closeness under
union, complementation, intersection, and substitution by a regular language.
Our first result complements the closure properties.

Theorem 1 (Closure Properties). The class of union-free regular languages
is closed under reversal, but not closed under cyclic shift, shuffle, symmetric
difference, difference, left and right quotients, and positional addition.

Proof. We prove the closeness under reversal by induction on the structure of a
regular expression. If r is ∅, or ε, or a, then the reversal is described by the same
expression. If r = st, or r = s∗, then the reversal is L(t)RL(s)R or (L(s)R)∗,
respectively, which are union-free due to closeness under concatenation and star.

To prove the non-closure properties, we give union-free languages such that
the shortest string in the resulting language is always of length two, and we show
that there are at least two such strings in all cases: {ab}shift = {a} {b} =
{ab}⊕{ba} = {ab, ba}; a(b∪ c)∗−a∗ = {ab, ac, . . .}; g\(ge∪gf)∗b = {eb, fb, . . .}
and a(eb∪fb)∗/b = {ae, af, . . . }; 88∗+33∗ = {11, 19, . . .}. As the shortest strings
are not unique, the resulting languages are not union-free. ut

The subset construction assures that every nfa of n states can be simulated by
a dfa of at most 2n states. The worst case binary examples are known for a long
time [20, 22, 24]. In addition, Domaratzki et al. [10] have shown that there are at
least 2n−2 distinct binary languages recognized by nfa’s of n states that require
2n deterministic states. However, none of the above mentioned automata is one-
cycle-free-path nfa. The following theorem shows that the bound 2n is tight in
the class of union-free regular languages as well.

Theorem 2 (NFA to DFA Conversion). For every positive integer n, there
exists a binary one-cycle-free-path nfa of n states whose equivalent minimal dfa
has 2n states.

Proof. Consider the binary 1cfp nfa with states 0, 1, . . . , n − 1, of which 0 is
the initial state, and n− 1 is the sole accepting state. By a, each state i goes to
{i+1}, except for state n−1 which goes to the empty set. By b, each state i goes
to {0, i}. Let us show that the corresponding subset automaton has 2n reachable
and pairwise inequivalent states. Each singleton {i} is reached from the initial
state {0} by ai, and the empty set is reached by an. Each set {i1, i2, . . . , ik},
where 0 6 i1 < i2 < · · · < ik 6 n − 1, of size k (2 6 k 6 n) is reached from
the set {i2 − i1, i3 − i1, . . . , ik − i1} of size k − 1 by the string bai1 . This proves
the reachability of all subsets. For inequivalence, notice that the string an−1−i

is accepted by the nfa only from state i. Two different subsets must differ in a
state i, and so the string an−1−i distinguishes the two subsets. ut
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We next study the nondeterministic state complexity of regular operations
in the class of union-free languages. Quite surprisingly, all upper bounds can be
reached by union-free languages, except for the reversal where the upper bound
is n instead of n + 1. To prove the results we use a fooling set lower-bound
technique [3–5, 11, 14].

A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called a fooling set
for a language L if (1) for all i, the string xiyi is in the language L, and (2) if
i 6= j, then at least one of the strings xiyj and xjyi is not in the language L.

It is well-known that the size of a fooling set for a regular language provides a
lower bound on the number of states in any nfa for this language. The argument
is simple. We can fix accepting computations of any nfa on strings xiyi. The
states on these computations reached after reading xi must be pairwise distinct,
otherwise the nfa would accept both xiyj and xjyi for two distinct pairs.

The next lemma shows that sometimes one more state is necessary. The
lemma can be used to simplify some proofs from the literature, for example, the
results on union, reversal, and cyclic shift of nfa languages.

Lemma 1. Let L be a regular language. Let A and B be sets of pairs of strings
and let u and v be two strings such that A∪B, A∪{(ε, u)}, and B∪{(ε, v)} are
fooling sets for L. Then every nfa for L has at least |A|+ |B|+ 1 states.

Proof. Consider an nfa for L, and let A = {(xi, yi) | i = 1, 2, . . . ,m} and B =
{(xm+j , ym+j) | j = 1, 2, . . . , n}. Since the strings xkyk are in L, we can fix an
accepting computation of the nfa on each string xkyk. Let pk be the state on
this computation that is reached after reading xk. Since A ∪ B is a fooling set
for L, the states p1, p2, . . . , pm+n must be pairwise distinct. Since A ∪ {(ε, u)}
is a fooling set, the initial state must be distinct from all states p1, p2, . . . , pm.
Since B ∪ {(ε, v)} is a fooling set, the initial state must also be distinct from all
states pm+1, pm+2, . . . , pm+n. Thus the nfa has at least m+ n+ 1 states. ut

Theorem 3 (Nondeterministic State Complexity). Let K and L be union-
free regular languages over an alphabet Σ accepted by an m-state and an n-state
one-cycle-free-path nfa, respectively. Then
1. nsc(K ∪ L) 6 m+ n+ 1, and the bound is tight if |Σ| > 2;
2. nsc(K ∩ L) 6 mn, and the bound is tight if |Σ| > 2;
3. nsc(KL) 6 m+ n, and the bound is tight if |Σ| > 2;
4. nsc(K L) 6 mn, and the bound is tight if |Σ| > 2;
5. nsc(K + L) 6 2mn+ 2m+ 2n+ 1, and the bound is tight if |Σ| > 6;
6. nsc(L2) 6 2n, and the bound is tight if |Σ| > 2;
7. nsc(Lc) 6 2n, and the bound is tight if |Σ| > 3;
8. nsc(LR) 6 n, and the bound is tight if |Σ| > 1;
9. nsc(L∗) 6 n+ 1, and the bound is tight if |Σ| > 1;

10. nsc(Lshift) 6 2n2 + 1, and the bound is tight if |Σ| > 2;

Proof. 1. To get an nfa for the union, we add a new initial state that goes
by the empty string to the initial states of the given automata. For tightness,
consider binary union-free languages (am)∗ and (bn)∗ [13], and the following
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sets of pairs of strings: A = {(ai, am−i) | i = 1, 2, . . . ,m − 1} ∪ {(am, am)}
and B = {(bj , bn−j) | j = 1, 2, . . . , n − 1} ∪ {(bn, bn)}. Let L = (am)∗ ∪ (bn)∗,
and let us show that the set A ∪ B is a fooling set for the language L. The
concatenation of the first and the second part of each pair results in a string
in {am, a2m, bn, b2n}, and so is in the language L. Next, the concatenation of
the first part of a pair and the second part of another pair results in a string in
{ar, am+r, bs, bn+s, arbs, bsar, ambn, bnam | 0 < r < m, 0 < s < n}, and so is not
in L. Finally, both sets A ∪ {(ε, bn)} and B ∪ {(ε, am)} are fooling sets for L as
well. By Lemma 1, every nfa for L has at least m+ n+ 1 states.

2. Standard cross-product construction provides the upper bound mn on
the intersection. To prove that the bound is tight consider binary 1cfp nfa’s that
count the number of a’s modulo m and the number of b’s modulo n, respectively.
Since the set {(aibj , am−ibn−j) | 0 6 i 6 m− 1, 0 6 j 6 n− 1} is a fooling set
of size mn for the intersection of the languages accepted by the two automata.

3. To get an nfa for the concatenation from two given nfa’s, we only need to
add an ε-transition from all final states in the first automaton to the initial state
in the second automaton. For tightness, consider languages (am)∗ and (bn)∗.
The set {(ai, am−ibn) | i = 0, 1, . . . ,m− 1} ∪ {(ambj , bn−j) | j = 1, 2, . . . , n} is a
fooling set of size m+ n for the concatenation of the two languages.

4. The state set of an nfa for the shuffle is the product of the state sets of given
nfa’s, and its transition function δ is defined using transitions functions δA and
δB of the given automata by δ((p, q), a) = {(δA(p, a), q), (p, δB(q, a))} [8]. This
gives the upper bound mn. The bound is reached by the shuffle of the languages
(am)∗ and (bn)∗ since the set {(aibj , am−ibn−j) | 0 6 i 6 m− 1, 0 6 j 6 n− 1}
is a fooling set of size mn for the shuffle.

5. The nfa for positional addition in [18] consists of 2mn+2m+2n+1 states,
and it is shown here that the bound is reached by the positional addition of
union-free languages ((1∗5)m)∗ and ((2∗5)n)∗ over the alphabet {0, 1, 2, 3, 4, 5}.

6. Since L2 is the concatenation of the language L with itself, the upper bound
2n follows from part 3. To prove tightness consider the 1cfp nfa shown in Fig. 1.
Construct an nfa with the state set Q = {p0, p1, . . . , pn−1} ∪ {q0, q1, . . . , qn−1}

...
a a a a

b b bb
n−1n−210

Fig. 1. The one-cycle-free nfa reaching the bound 2n on square.

for the language L2 from two copies of the nfa for L by adding an ε-transition
from the final state in the first copy to the initial state in the second copy. The
initial state of the resulting nfa is p0, the only final state is qn−1. For each state
s in Q, define strings xs and ys as follows (notice that for each state s, the initial
state p0 goes to s by xs, and each s goes to the accepting state qn−1 by ys):
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xs =
{
ai if s = pi,
a2n−2bn−1−i if s = qi,

ys =

a2n−2−i if s = pi and i 6= n− 1,
bn−1a2n−2 if s = pn−1,
an−1−i if s = qi.

Then the set {(xs, ys) | s ∈ Q} is a fooling set for the language L2 of size 2n.
7. After applying subset construction to a given nfa and interchanging the

accepting and rejecting states, we get an nfa (even a dfa) of at most 2n states
for the complement of the language recognized by the given nfa. The bound has
been proved to be tight for a growing alphabet in [28], for a four-letter alphabet
in [5], and for a binary alphabet in [16]. However, the binary witness nfa’s in
[16] are not 1cfp. We prove the tightness of the bound also in the class of 1cfp
automata. To this aim consider the ternary language L recognized by the 1cfp
nfa in Fig. 2; denote the state set {0, 1, . . . , n− 1} by Q. By c, state n− 1 goes

a a a...a
b c

c c

b,c b,c
b,c

b,c
b b

10 n−2 n−1

Fig. 2. The one-cycle-free nfa reaching the bound 2n on complement.

to {0, 1, . . . , n − 1}, and each other state i goes to {i}. Transitions by a and b
are the same as in the automaton in the proof of Theorem 2. Therefore, in the
corresponding subset automaton, each subset S of the state set Q is reached
from the initial state {0} by a string xS in {a, b}∗. We are now going to define
strings yS so that the set {(xS , yS) | S ⊆ Q} would be a fooling set for Lc.

Let S be a subset of Q. If S = {0, 1, . . . , n − 2}, let yS = c, otherwise let
yS = y1y2 · · · yn, where for each i in Q, yn−i = a if i ∈ S, and yn−i = ca if i /∈ S.
Then the set {(xS , yS) | S ⊆ Q} is a fooling set for the language Lc of size 2n.

8. To get an n-state nfa for the reversal of a language accepted by an n-state
1cfp nfa, we reverse all transitions, make the initial state final, and (the only)
final state the initial. The unary union-free language an−1 reaches the bound.

9. The standard construction of an nfa for the Kleene star that adds a new
initial (and accepting) state connected through an ε-transition to the initial
state of the given nfa as well as ε-transitions from each final state to the initial
state, provides the upper bound n + 1. For tightness, consider the union-free
language an−1(an)∗. The set {(ε, ε)} ∪ {(ai, an−1−i) | i = 1, 2, . . . , n − 2} ∪
{(an−1, an), (an, an−1)} is a fooling set of size n+ 1 for the star of this language.

10. The nfa for cyclic shift in consists of 2n2 + 1 states, and the one-cycle-
free-free nfa in Fig. 1 reaches the bound [17]. To prove the result, a fooling set
of size 2n2 is described in [17], and then Lemma 1 is used to show that one more
state is necessary. ut
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4 Deterministic Union-Free Regular Languages

We now turn our attention to deterministic union-free languages, that is, to lan-
guages that are recognized by one-cycle-free-path deterministic finite automata.
We first show that deterministic union-free languages are properly included in
the class of union-free languages. Then we study the state complexity of regular
operations in the class of deterministic union-free languages.

Theorem 4 (1cfp DFAs vs. 1cfp NFAs). The class of deterministic union-
free languages is a proper subclass of the class of union-free regular languages.

Proof. Let k > 3. We show that there exists a unary union-free regular language
such that every dfa for this language has at least k final states, and so the
language is not deterministic union-free. Set n = k(k − 1)/2.

Define a unary 2n-state dfa with states 0, 1, . . . , 2n−1, of which 0 is the initial
state. The set of final states is {0, n, n+(k−1), n+(k−1)+(k−2), . . . , 2n−1}.
Each state i goes by a to state i+ 1, except for state 2n− 1 that goes to itself.
Let L be a language recognized by this dfa. Since

n+ (k − 1) + (k − 2) + · · ·+ (k − (k − 2)) = 2n− 1,

there are k − 2 final states greater than n, and so the dfa has k final states.
Moreover, state 2n−2 is not final. We now show that the automaton is minimal.
Let i and j be two states with i < j. Then there exists an integer m such that by
the string am, state j goes to state 2n−1, while state i goes to state 2n−2. Since
state 2n − 1 is final and state 2n − 2 is not, the states i and j are inequivalent
and the dfa is minimal. It turns out that every dfa for the language L must have
at least k final states, and so the language L is not deterministic union-free.

To prove that the language L is union-free, we describe a 1cfp nfa for L. The
only initial and final state of the nfa is state 0. Next, construct k+n cycles that
are pairwise disjoint, except for state 0. The length of the cycles is consequently
n, n+ (k − 1), n+ (k − 1) + (k − 2), . . . , 2n− 1, and then 2n, 2n+ 1, . . . , 3n− 1.
The automaton is 1cfp nfa, accepts all strings in L of length less that 2n, as well
as all strings of length at least 2n, but no other strings since going through more
than one cycle results in a string of length at least 2n. ut

The next theorem shows that deterministic union-freeness of languages does
not accelerate basic regular operations. This contrasts with the results in pre-
viously studied subclasses of regular languages such as finite, unary, prefix-,
suffix-, factor-, subword-free (or closed, or convex) etc. In the case of intersec-
tion and square, the known witness languages are deterministic union-free [33,
27]. Slightly changed Maslov’s automata [21] provide lower bounds for star and
concatenation, while a modification of the hardest dfa in [17] gives a lower bound
for cyclic shift. In the case of reversal, the paper [30] claims that there is a binary
n-state dfa language whose reversal requires 2n deterministic states. Although
the witness automaton is one-cycle-free-path dfa, the result cannot be used be-
cause the proof is not correct. If n = 8, then the resulting dfa has only 252 states
instead of 256, as the reader can verify using a software, for example, in [1].
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Theorem 5 (State Complexity). Let K and L be deterministic union-free
regular languages over an alphabet Σ accepted by an m-state and an n-state
one-cycle-free-path dfa, respectively. Then
1. sc(K ∪ L) 6 mn, and the bound is tight if |Σ| > 2;
2. sc(K ∩ L) 6 mn, and the bound is tight if |Σ| > 2;
3. sc(K − L) 6 mn, and the bound is tight if |Σ| > 2;
4. sc(K ⊕ L) 6 mn, and the bound is tight if |Σ| > 2;
5. sc(KL) 6 m2n − 2n−1 (m > 2, n > 3), and the bound is tight if |Σ| > 2;
6. sc(L2) 6 n2n − 2n−1, and the bound is tight if |Σ| > 2;
7. sc(Lc) 6 n, and the bound is tight if |Σ| > 1;
8. sc(L∗) 6 2n−1 + 2n−2 (n > 2), and the bound is tight if |Σ| > 2;
9. sc(LR) 6 2n (n > 2), and the bound is tight if |Σ| > 3;

10. sc(Lshift) 6 2n2+n log n. The bound 2n2+n log n−5n can be reached if |Σ| > 4.

Proof. 1.-4. The cross-product construction gives the upper bound mn. For all
four operations, the bound is reached by deterministic union-free binary lan-
guages ((b∗a)m)∗ and ((a∗b)n)∗: the strings aibj with 0 6 i 6 m − 1 and
0 6 j 6 n−1 are pairwise inequivalent in the right-invariant congruence defined
by the intersection (union, difference, symmetric difference, respectively).

5. The upper bound is m2n − 2n−1 [21, 33]. Notice that neither the ternary
witness automata in [33] nor binary witness automata in [15] are 1cfp dfa’s.
However, Maslov [21] claimed the result for two binary languages accepted by
automata, the first of which is 1cfp dfa, while the second one can be made to
be 1cfp dfa by changing its accepting state from n− 1 to n− 2. Since no proof
is provided in [21], we recall the two automata and show that they reach the
upper bound. Consider languages accepted by the 1cfp dfa’s shown in Fig. 3.
Construct an nfa for the concatenation of the two languages from these dfa’s

q qq ...a a a

a

0 1 n−2 n−1

a a a

b b b... b

b

a,b

a

b b b

0 1 m−1

n−3

Fig. 3. The one-cycle-free-path dfa’s reaching the bound m2n−2n−1 on concatenation.

by adding an ε-transition from state qm−1 to state 0. The initial state of the
nfa is state q0, the sole accepting state is n − 2. We first prove by induction
on the size of subsets that each set {qi} ∪ S, where 0 6 i 6 m − 2 and S is a
subset of {0, 1, . . . , n − 1}, as well as each set {qm−1} ∪ T , where T is a subset
of {0, 1, . . . , n − 1} containing state 0, is reachable. Each singleton {qi} with
i 6 m − 2 is reached from the initial state {q0} by ai. Assume the reachability
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of all appropriate sets of size k. Let S = {qi, j1, j2, . . . , jk} be a subset of size
k + 1. First, let i = m − 1, and so j1 = 0. Since the symbol a is a permutation
symbol in the second dfa, we can use j	 r to denote the state that goes to state
j by ar. Consider the set S′ = {qm−2, j2 	 1, . . . , jk 	 1} of size k. The set S′ is
reachable by the induction hypothesis, and since S′ goes to S by a, the set S is
reachable as well. Now let i 6 m− 2 and j1 = 0. Then the set S is reached from
the set {qm−1, 0, j2 	 (i+ 1), . . . , jk 	 (i+ 1)} by ai+1. Finally, if i 6 m− 2 and
j1 > 0, then the set S is reached from the set {qi, 0, j2 − j1, j3 − j1, . . . , jk − j1}
by bj1 . This concludes the proof of reachability. Now let {qi}∪S and {qj}∪T be
two different reachable sets. If i < j, then the string bam−j−1bn−2 distinguishes
the two subsets. If i = j, then S and T differ in a state j, and moreover, j > 0
if i = m − 1. Then either the string bn−j−2 (if j 6 n − 3), or the empty string
(if j = n− 2), or the string a (if j = n− 1) distinguishes the two subsets.

6. The upper bound follows from the upper bound on concatenation, and,
as shown in [27], is reached by the binary language recognized by the 1cfp dfa
with states 0, 1, . . . , n − 1, of which 0 is the initial state, and n − 1 is the sole
accepting state; by a, each state i goes to state i+ 1 mod n, and by b, each state
i goes to itself except for state 1 that goes to state 0 by b.

7. To get a dfa for the complement we only need to exchange the accepting
and rejecting states. The bound is reached by the language (an)∗.

8. The upper bound is 2n−1 + 2n−2 [33]. The witness language in [33] is not
deterministic union-free. However, Maslov [21] provides deterministic union-free
witness example shown in Fig. 4. Since there is no proof in [21], we give it here.
Construct an nfa for the star of the language accepted by the 1cfp dfa in Fig. 4

...
a a a a

b b bb

b

a

0 n−2 n−11

Fig. 4. The one-cycle-free-path dfa reaching the bound 2n−1 + 2n−2 on star.

by adding a new initial and accepting state q0 that goes to state 1 by a and to
state 0 by b, and by adding the transition by a from state n− 2 to state 0. The
initial state {q0} and all singletons {i} are reachable. Assume that all subsets of
size k−1 containing state 0, or containing neither 0 nor n−1 are reachable. Let
S = {i1, i2, . . . , ik} be a subset of size k with 0 6 i1 < i2 < · · · < ik 6 n−1 (and
if i1 > 0 then ik < n−1). First, let i1 = 0. Then the set S is reached from the set
{i2 +(n−1)− ik−1, i3 +(n−1)− ik−1, . . . , ik−1 +(n−1)− ik−1, n−2} of size
k−1, containing neither 0 nor n−1, by the string abn−1−ik . Now let i1 > 0. Then
ik < n− 1, and the set S is reached from the set {0, i2 − i1, i3 − i1, . . . , ik − i1},
which contains state 0, by a. To prove inequivalence notice that the initial (and
accepting) state {q0} cannot be equivalent to any state not containing state
n − 1. However, the string an is accepted by the nfa from state n − 1 but not
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from state q0. Two different subsets of the state set of the given dfa differ in a
state i, and the string an−1−i distinguishes the two subsets.

9. The reversal of a dfa language is accepted by the nfa obtained from the
given dfa by reversing all transitions, making all accepting states initial, and
the initial state accepting. The subset construction gives a dfa of at most 2n

states. As pointed out by Mirkin [23], the Lupanov’s ternary worst-case example
for nfa-to-dfa conversion in [20] is, in fact, a reversed dfa. Leiss [19] presented a
ternary and a binary dfa’s that reach the the upper bound. Since none of these
automata is 1cfp dfa, let us consider the 1cfp dfa shown in Fig. 5. Construct

... ccccc

c

a,ba,ba,ba,bb,c

a

a,b
10 2 n−3 n−2 n−1

Fig. 5. The one-cycle-free-path dfa reaching the bound 2n on reversal.

the reversed nfa. Notice that in this nfa each state i goes to state (i+ 1) mod n
by ca. It turns out that in the subset automaton, each subset not containing
state 0 is reached from a subset containing state 0 by a string in (ca)∗. Let
us show by induction on the size of subsets that each subset of the state set
{0, 1, . . . , n − 1} containing state 0 is reachable in the subset automaton. The
singleton {0} is reached from the initial state {1} of the subset automaton by
a. The subset {0, i1, i2, . . . , ik}, where 1 6 i1 < i2 < · · · < ik 6 n − 1, of size
k + 1 is reached from the set {0, i2 − i1 + 1, i3 − i1 + 1, . . . , ik − i1 + 1} of size
k by the string bci1−1. Finally, the empty set is reached from state {1} by b.
For inequivalence, notice that the string cn−1−i is accepted by the nfa only from
state i for i = 1, 2, . . . , n− 1, and the string acn−2 only from state 0.

10. The upper bound is from [21, 17]. The work [17] proves the lower bound
2n2+n log n−5n for the language recognized by the dfa over the alphabet {a, b, c, d}
with states 0, 1, . . . , n − 1, of which 0 is the initial state and n − 1 is the sole
accepting state, and transitions are defined as follows: By a, states 0 and n− 1
go to itself and there is a circle (1, 2, . . . , n− 2); by b, state 0 goes to itself and
there is a circle (1, 2, . . . , n − 1); by c, all states go to itself except for state 0
that goes to 1 and state 1 that goes to 0; by d, all states go to state 0 except
for state n − 1 that goes to state 1. This automaton is not one-cycle-free-path
dfa. Therefore, let us change transitions on symbol b so that in a new dfa by b,
all states go to itself except for state n − 2 that goes to n − 1 and state n − 1
that goes to n − 2. The resulting automaton is a 1cfp dfa, and moreover, the
transitions by old symbol b are now implemented by the string ba. It turns out
that the proof in [17] works for the new 1cfp dfa if we replace all occurrences of
b in the proof by the string ba. ut
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5 Conclusions

We investigated union-free regular languages that can be described by regular
expressions without the union operation. Using known results of Nagy [26] on
characterization of automata accepting those languages, we proved some closure
properties, and studied the nondeterministic state complexity of regular oper-
ations. We showed that all known upper bounds can be reached by union-free
languages, except for the reversal, where the tight bound is n instead of n + 1.
We also defined deterministic union-free languages as languages recognized by
deterministic one-cycle-free-path automata, and proved that they are properly
included in the class of union-free languages. We examined the state complexity
of quite a number of regular operations, and showed that deterministic union-
freeness of languages accelerates none of them. This contrasts with the results on
complexity of operations in previously studied subclasses of regular languages.

Some questions remain open. We conjecture that for the difference of two
union-free languages, nfa’s need m2n states, and we do not now the result on
the shuffle of deterministic union-free languages. A description of deterministic
union-free regular languages in terms of regular expressions or grammars, as well
as the case of unary union-free languages, is of interest too.
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