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Abstract. Scattered context grammars with three nonterminals are known to be computationally
complete. So far, however, it was an open problem whether the number of parallel productions can
be bounded along with three nonterminals. In this paper, we prove that every recursively enumer-
able language is generated by a scattered context grammar with three nonterminals and five parallel
productions, each of which simultaneously rewrites no more than nine nonterminals.
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1. Introduction

Scattered context grammars (SCGs), introduced in [4] and also studied in e.g. [1, 3, 9, 12, 13, 16],
are rewriting devices based on context-free productions which simultaneously rewrite a finite number of
nonterminals in one derivation step. Although these grammars are originally introduced without erasing
productions (so-called propagating or nonerasing, the latter of which is preferred in this paper) and shown
to generate only context sensitive languages, it is known that allowing erasing productions makes SCGs
computationally complete. In what follows, erasing productions are implicitly considered.

Concerning the descriptional complexity, Meduna [10] proved that SCGs with three nonterminals
are computationally complete. In his construction, however, the number of parallel productions (those
which simultaneously rewrite more than one nonterminal) and the number of nonterminals simultane-
ously rewritten in one derivation step depend on the structure of the generated language. Specifically, the
number of parallel productions is not limited at all, while the constructed SCG simultaneously rewrites
more than 2n + 4 nonterminals in almost all derivation steps of any successful derivation, for some
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n strictly greater than the number of terminals of the generated language plus two. Later, Vaszil [15]
presented a construction bounding the number of parallel productions to two and the number of simulta-
neously rewritten nonterminals to four. However, this construction requires five nonterminals. Although
this construction has been improved since then (in the sense of the number of nonterminals, see [7]),
three nonterminals along with the bounded number of parallel productions were not achieved. Recently,
the number of nonterminals simultaneously rewritten by parallel productions has been bounded to nine
along with three nonterminals (see [8]), while the number of parallel productions was still unbounded.

In this paper, we prove that every recursively enumerable language is generated by a SCG with three
nonterminals and five parallel productions, each of which simultaneously rewrites no more than nine
nonterminals. Note that these numbers are only upper bounds and the question of whether this result can
be improved is open. On the other hand, the lower bound on the number of nonterminals and/or parallel
productions required by SCGs to be computationally complete is not known. The only known result
(see [11]) says that SCGs with one nonterminal are not able to generate the context sensitive language
{a22n

: n ≥ 0} (cf. Lemma 3.1).

2. Preliminaries and Definitions

In this paper, we assume that the reader is familiar with formal language theory (see [14]). For an alphabet
(finite nonempty set) V , V ∗ represents the free monoid generated by V , where the unit is denoted by λ.
Set V + = V ∗ − {λ}. For w ∈ V ∗ and a ∈ V , let |w|a denote the number of occurrences of a in w
and wR denote the mirror image of w. Let CF, CS, and RE denote the families of context-free, context
sensitive, and recursively enumerable languages, respectively.

A scattered context grammar (SCG) is a quadruple G = (N,T, P, S), where N is the alphabet of
nonterminals, T is the alphabet of terminals such that N ∩ T = ∅, S ∈ N is the start symbol, and P
is a finite set of productions of the form (A1, A2, . . . , An) → (x1, x2, . . . , xn), for some n ≥ 1, where
Ai ∈ N and xi ∈ (N∪T )∗, for i = 1, 2, . . . , n. If n ≥ 2, the production is said to be parallel; otherwise,
it is context-free. If for each i = 1, 2, . . . , n, xi 6= λ, the production is nonerasing; G is nonerasing if all
its productions are nonerasing. For u, v ∈ (N ∪ T )∗, u⇒ v provided that

1. u = u1A1u2A2u3 . . . unAnun+1,

2. v = u1x1u2x2u3 . . . unxnun+1, and

3. there is a production (A1, A2, . . . , An)→ (x1, x2, . . . , xn) ∈ P ,

where ui ∈ (N∪T )∗, for i = 1, 2, . . . , n+1. The language ofG is L(G) = {w ∈ T ∗ : S ⇒∗ w}, where
⇒∗ is the reflexive and transitive closure of⇒. A (nonerasing) scattered context language is a language
generated by a (nonerasing) SCG. By SCλ(n,m, p) we denote the family of languages generated by
SCGs with no more than n nonterminals and m parallel productions, each of which simultaneously
rewrites no more than p nonterminals. Considering only nonerasing SCGs, λ is removed. If a bound is
not considered or known, we write∞ on the corresponding position.

3. Results

First, the following example presents a simple SCG generating a non-context-free language.
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Example 3.1. Let G = ({S,A}, {a, b, c}, {(S) → (AAA), (A,A,A) → (aA, bA, cA), (A,A,A) →
(a, b, c)}, S). As any successful derivation is of the form S ⇒ AAA ⇒∗ an−1Abn−1Acn−1A ⇒
anbncn, we have L(G) = {anbncn : n ≥ 1} ∈ SC(2, 2, 3).

The following lemma shows a more complicated example of a nonerasing scattered context language.
The proof can be found in [6] (a sketch of the proof can also be found in [8]).

Lemma 3.1. {alk
n

: n ≥ 0} ∈ CS ∩ SC(12, 10, 4), for any k, l ≥ 2.

Geffert [2] proved that for every L ∈ RE, L ⊆ T ∗, there are alphabets H and Γ with T ⊆ Γ, and
homomorphisms g, h : H∗ → Γ∗ such that L = {w ∈ T ∗ : there is z ∈ H+ such that g(z) = wh(z)}.
Latteux and Turakainen [5] proved that these homomorphisms can be nonerasing. By a technique anal-
ogous to the one used in the proof of Theorem 4 in [5], we code each x ∈ Γ into ϕ(x) = ABiA such
that i > 0 and ϕ(x) 6= ϕ(y) whenever x 6= y; A and B are new symbols. Let w be a barred version
of w, i.e., w = ā1ā2 . . . ān for w = a1a2 . . . an. Then, it is shown in [2, 5] that there is a grammar
G′ = ({S′, A,B, Ā, B̄}, T, P ∪ {AĀ → λ,BB̄ → λ}, S′) with P containing the following types of
context-free productions

S′ → aS′ϕ(a)
R
, S′ → ϕ(g(y))S′ϕ(h(y))

R
, S′ → ϕ(g(y))ϕ(h(y))

R
,

where a ∈ T and y ∈ H , such that L(G′) = L. In addition, every successful derivation of G′ is of the
form S′ ⇒∗ ww′1S′w′2 ⇒ ww1w2 generated by productions from P , where w ∈ T ∗, w1 ∈ {A,B}+,
w2 ∈ {Ā, B̄}+, and ww1w2 ⇒∗ w by productionsAĀ→ λ andBB̄ → λ. Note that this form is similar
to the one shown by Geffert [2] with the difference that in each production S → uSv or S → uv, we
have u 6= λ 6= v, which is important in what follows.

Theorem 3.1. SCλ(3, 5, 9) = RE.

Proof:
Let L ∈ RE, L ⊆ T ∗, and G′ = ({S′, A,B, Ā, B̄}, T, P ′ ∪ {AĀ→ λ,BB̄ → λ}, S′) be a grammar in
the form mentioned above such that L = L(G′). Let h : ({A,B, Ā, B̄} ∪ T )∗ → ({A,B} ∪ T )∗ be a
homomorphism defined as h(A) = ABB, h(Ā) = BBA, h(B) = h(B̄) = BAB, h(a) = BaBA, for
a ∈ T . Define the SCG G = ({S,A,B}, T, P, S) with P constructed as follows:

1. (S)→ (SBBASABBSA)

2. (S)→ (h(a)Sh(u)) if S′ → aS′u ∈ P ′,

3. (S)→ (h(v)Sh(u)) if S′ → vS′u ∈ P ′,

4. (S,B,B,A, S,A,B,B, S)→ (λ, λ, λ, S, S,ABBS, λ, λ, λ),

5. (S,B,B,A, S,A,B,B, S)→ (λ, λ, λ, S, S, S, λ, λ, λ),

6. (S,A,B,B, S,B,B,A, S)→ (λ, λ, λ, S, S, S, λ, λ, λ),

7. (S,B,A,B, S,B,A,B, S)→ (λ, λ, λ, S, S, S, λ, λ, λ),

8. (S, S, S,A)→ (λ, λ, λ, λ) .
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To proveL(G′) ⊆ L(G), consider a successful derivation ofG′. The beginning of such a derivation is
of the form S′ ⇒∗ a1a2 . . . anS

′u ⇒∗ a1a2 . . . anv̄S
′ūu ⇒ a1a2 . . . anv

′u′u, for some v′ ∈ {A,B}+,
u′u ∈ {Ā, B̄}+, and ai ∈ T , for i = 1, 2, . . . , n, n ≥ 0. Let v′u′u be of the form Xv′′Y Uu′′V ,
for some v′′ ∈ {A,B}∗, u′′ ∈ {Ā, B̄}∗, X,Y ∈ {A,B}, and U, V ∈ {Ā, B̄}. (Analogously for all
strings of shorter length.) Then, the derivation proceeds by production Y U → λ, Y U ∈ {AĀ,BB̄},
and a1a2 . . . anXv

′′Y Uu′′V ⇒ a1a2 . . . anXv
′′u′′V . Summarized, the derivation proceeds by a se-

quence (Y U → λ)p1p2 . . . pr(XV → λ) of productions AĀ → λ and BB̄ → λ, for some r ≥
0, i.e., a1a2 . . . anv

′u′u = a1a2 . . . anXv
′′Y Uu′′V ⇒ a1a2 . . . anXv

′′u′′V ⇒∗ a1a2 . . . anXV ⇒
a1a2 . . . an, which implies that v′ = (u′u)R. Then, the derivation of the same string is simulated in G as
follows. (Regular expressions appearing in the square brackets denote the productions applied in G.)

S ⇒ SBBASABBSA [1]
⇒∗ SBBAh(a1a2 . . . an)Sh(u)ABBSA [2∗]
⇒∗ SBBAh(a1a2 . . . an)h(v′)Sh(u′u)ABBSA [3∗]
⇒∗ a1a2 . . . an−1SBanBAh(v′)Sh(u′u)ABBSA [4∗]
⇒ a1a2 . . . anSh(v′)Sh(u′u)SA [5]
= a1a2 . . . anSh(X)h(v′′)h(Y )Sh(U)h(u′′)h(V )SA
⇒ a1a2 . . . anSh(v′′)h(Y )Sh(U)h(u′′)SA [6 + 7]
⇒∗ a1a2 . . . anSh(Y )Sh(U)SA [qr . . . q2q1]
⇒ a1a2 . . . anSSSA [6 + 7]
⇒ a1a2 . . . an [8]

where for each i = 1, 2, . . . , r,

qi =

{
(S,A,B,B, S,B,B,A, S)→ (λ, λ, λ, S, S, S, λ, λ, λ) if pi = AĀ→ λ,

(S,B,A,B, S,B,A,B, S)→ (λ, λ, λ, S, S, S, λ, λ, λ) otherwise.

On the other hand, to prove L(G) ⊆ L(G′), let S ⇒∗ x be a derivation of x ∈ ({S,A,B} ∪ T )∗,
and let i and j be numbers of applications of production 1 and 8, respectively, in that derivation. With
respect to h and the form of productions, it can be seen that there exists k ≥ 0 such that

|x|B = 2k, |x|A = k + i− j, |x|S = 1 + 2i− 3j .

Assume that x ∈ T ∗, then |x|A = |x|B = |x|S = 0, which implies 2k = 0 and i = j = 1, i.e., each
of productions 1 and 8 is applied exactly once in each successful derivation. Clearly, production 8 is
applied as the last production.

To prove that production 1 is applied as the first production, assume that a production constructed in
2 or 3 of the form (S)→ (h(v)Sh(u)), where v ∈ {A,B}+ ∪ T and u ∈ {Ā, B̄}+, is applied first. As
production 1 has to be applied to introduce two other Ss, consider the derivation from the beginning to
the first application of production 1, i.e., S ⇒ h(v)Sh(u) ⇒∗ h(v)h(v′)SBBASABBSAh(u′)h(u).
As h(v) ∈ {ABB,BAB,BaBA : a ∈ T}+ and h(u) ∈ {BBA,BAB}+ are nonempty, and there is
no production removing symbols occurring before the first or after the last S, neither h(v) nor h(u) can
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be eliminated—a contradiction; the derivation is not successful. Thus, any successful derivation of G is
of the form

S ⇒ SBBASABBSA⇒∗ w1Sw2Sw3Sw4A⇒ w1w2w3w4 ,

for some terminal strings w1, w2, w3, w4 ∈ T ∗.
Consider the beginning of a successful derivation of G of the form S ⇒ SBBASABBSA ⇒∗

u1Su2Su3Su4A. We need to prove that u1 ∈ T ∗, u2 ∈ (BBA+λ){BaBA : a ∈ T}∗{ABB,BAB}∗,
u3 ∈ {BAB,BBA}∗(ABB + λ), and u4 = λ. To do this, examine all the possible derivation steps
from a sentential form

w1Sw2Sw3SA , (1)

forw1 ∈ T ∗,w2 ∈ (BBA+λ){ABB,BAB,BaBA : a ∈ T}∗, andw3 ∈ {BAB,BBA}∗(ABB+λ).
If a production constructed in 2 or 3 of the form (S) → (h(v)Sh(u)) is applied, then there are the

following possibilities: (i) w1Sw2Sw3SA ⇒ w1h(v)Sh(u)w2Sw3SA, and the derivation is not suc-
cessful because h(v) ∈ {ABB,BAB,BaBA : a ∈ T}+ cannot be eliminated; (ii) w1Sw2Sw3SA ⇒
w1Sw2h(v)Sh(u)w3SA, and the proof proceeds by induction because the sentential form is of the
form (1); (iii) w1Sw2Sw3SA ⇒ w1Sw2Sw3h(v)Sh(u)A, and the derivation is not successful because
h(u) ∈ {BAB,BBA}+ cannot be eliminated. Thus, productions 2 and 3 can only be applied to the
middle S.

Productions 4 to 7 are applied: Production 4 implies that w2 = BaBAw′2, w3 = w′3ABB, and
w1Sw2Sw3SA ⇒ w1aSw

′
2Sw3SA; production 5 implies that w2 = BaBAw′2, w3 = w′3ABB, and

w1Sw2Sw3SA ⇒ w1aSw
′
2Sw

′
3SA; production 6 implies that w2 = ABBw′2, w3 = w′3BBA, and

w1Sw2Sw3SA ⇒ w1Sw
′
2Sw

′
3SA; and production 7 implies that w2 = BABw′2, w3 = w′3BAB, and

w1Sw2Sw3SA⇒ w1Sw
′
2Sw

′
3SA; for some w′2 ∈ {ABB,BAB,BbBA : b ∈ T}∗, a ∈ T ∪ {λ}, and

w′3 ∈ {BAB,BBA}∗; otherwise, A or B is moved before the first or after the last S, and the derivation
is not successful. In all cases, the proof proceeds by induction.

Thus, we have shown that if S ⇒ SBBASABBSA ⇒∗ u1Su2Su3Su4A, then u1 ∈ T ∗, u2 ∈
(BBA + λ){ABB,BAB,BaBA : a ∈ T}∗ and u3 ∈ {BAB,BBA}∗(ABB + λ) because if BBA
(ABB) is once removed from the prefix SBBA (suffix ABBSu4A), then it can never be generated
again between the first (second) and the second (third) S in any successful derivation, and u4 = λ.

To complete the proof, it remains to show that u2 ∈ (BBA+λ){BaBA : a ∈ T}∗{ABB,BAB}∗.
Consider the longest part of the successful derivation generated by production 1 followed by a sequence
of productions 2 and 3, which is, according to the previous results, of the form

S ⇒ SBBASABBSA⇒∗ wSBBAvSuABBSA ,

where w ∈ T ∗ (clearly, w = λ here), v ∈ {ABB,BAB,BaBA : a ∈ T}∗, and u ∈ {BAB,BBA}∗.
For the same reason as above, only productions 4 and 5 are applicable:

wSBBAvSuABBSA ⇒ wSvSuABBSA [4] (2)

wSBBAvSuABBSA ⇒ wSvSuSA [5] (3)

As productions 2 and 3 can be applied now, let

wSvSuABBSA ⇒∗ wSvv′Su′uABBSA [(2 + 3)∗] (4)

resp. wSvSuSA ⇒∗ wSvv′Su′uSA [(2 + 3)∗] (5)
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be the longest parts of the successful derivation generated by productions 2 and 3, i.e., the application of
one of productions 4 to 8 follows. In addition, u, v, w are as above, and from the form of productions 2
and 3 we have that v′ ∈ {ABB,BAB,BaBA : a ∈ T}∗ and u′ ∈ {BAB,BBA}∗.

I. In derivation (4), each of productions 6, 7, and 8 leads to an incorrect sentential form because after the
application of any of these productions, BA or B is the suffix of the sentential form. Thus, either
production 4 or 5 has to be applied. It implies that vv′ is of the form BaBAv′′, for some a ∈ T
and v′′ ∈ {ABB,BAB,BbBA : b ∈ T}∗, i.e.,

wSBaBAv′′Su′uABBSA ⇒ waSv′′Su′uABBSA [4] (6)

and the derivation proceeds as in (4), or

wSBaBAv′′Su′uABBSA ⇒ waSv′′Su′uSA [5] (7)

and the derivation proceeds as in (5). By induction,

wSBBAvSuABBSA ⇒∗ ww′Sv′′′Su′′′SA [(2 + 3 + 4)∗5] , (8)

for ww′ ∈ T ∗, v ∈ {BaBA : a ∈ T}∗{v′′′}, v′′′ ∈ {ABB,BAB,BaBA : a ∈ T}∗, and
u′′′ ∈ {BAB,BBA}∗.

II. In derivation (5), each of productions 4 and 5 leads to an incorrect sentential form, and production 8
finishes the derivation, i.e., vv′ = u′u = λ. Assume that either production 6 or 7 is applied. Then,
either vv′ = ABBv′′ and u′u = u′′BBA, or vv′ = BABv′′ and u′u = u′′BAB, i.e.,

wSABBv′′Su′′BBASA ⇒ wSv′′Su′′SA [6] (9)

or wSBABv′′Su′′BABSA ⇒ wSv′′Su′′SA [7] (10)

and the derivation proceeds as in (5).

Note that the application of production 2 would lead, in its consequence, to an incorrect sentential
form because the derivation would reach one of the sentential forms wSBaBAxSyBABSA or
wSBaBAxSyBBASA, and productions 6 and 7 would move B to the left of the first S.

By induction, the successful derivation proceeds as

wSvSuSA ⇒∗ wSSSA⇒ w [(3 + 6 + 7)∗8] . (11)

Thus, we have shown that the sequence (6+7)(2+3)∗(4+5) of productions cannot be applied in any
successful derivation of G. Therefore, all applications of productions 4 and 5 precede any application of
productions 6 and 7, which means that u2 ∈ (BBA+ λ){BaBA : a ∈ T}∗{ABB,BAB}∗.

Finally, skipping all productions 6 and 7 in the considered successful derivation S ⇒∗ w, we have

S ⇒ SBBASABBSA [1]
⇒∗ wSh(v)Sh(u)SA [(2 + 3 + 4)∗53∗]
⇒ wh(vu) [8] ,

where w ∈ T ∗, h(v) ∈ {ABB,BAB}+, h(u) ∈ {BAB,BBA}+, and h(v) = h(u)R (see II above).
Then, by applications of the corresponding productions constructed in 2 and 3, ignoring productions 4
and 5, and applying S′ → xy in the last application of production 3 of the form (S) → (h(x)Sh(y)),
we have that S′ ⇒∗ wvu in G′. As h(v) = h(u)R, we have (by the definition of h) that v = uR, and
therefore wvu⇒∗ w by productions AĀ→ λ and BB̄ → λ, which completes the proof. ut
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4. Conclusion and Discussion

We have improved the descriptional complexity of scattered context grammars with three nonterminals
by showing that SCλ(3, 5, 9) = RE. However, we have not proved the optimality, so it is open whether
this result can be improved. In what follows, we give a brief overview of the latest results and open
problems concerning the descriptional complexity of SCGs.

1. It is shown in [11] that {a22n

: n ≥ 0} /∈ SCλ(1,∞,∞). On the other hand, it is open (due to
erasing productions) whether SCλ(1,∞,∞)− CS = ∅.

2. So far, we only know CF ⊂ SCλ(2,∞,∞) ⊆ RE. The proper inclusion is shown in Example 3.1.

3. It is shown in [7] that SCλ(4, 3, 6) = RE.

4. It is shown in [15] that SCλ(5, 2, 4) = RE.

5. What is the generative power of SCGs with only one parallel production?

6. We know SC(∞,∞,∞) ⊆ CS. However, is this inclusion proper? Are there n,m, p such that
SC(∞,∞,∞) ⊆ SC(n,m, p)?
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