
Fundamenta Informaticae XXI (2001) 1001–1013 1001

IOS Press

Regulated Nondeterminism in Pushdown Automata:
The Non-Regular Case

Tomáš Masopust
Mathematical Institute, Czech Academy of Sciences

Žižkova 22, 616 62 Brno, Czech Republic

masopust@math.cas.cz

Abstract. We continue the investigation of pushdown automata which are allowed to make a non-
deterministic decision if and only if their pushdown content forms a string belonging to a given
control language. We prove that if the control language is linear and non-regular, then the power
of pushdown automata regulated in this way is increased to the power of Turing machines. From
a practical point of view, however, it is inefficient to check the form of the pushdown content in
each computational step. Therefore, we prove that only two checks of the pushdown content are of
interest for these machines to be computationally complete. Based on this observation, we introduce
and discuss a new model of regulated pushdown automata.

1. Introduction

While finite automata are of great interest in the theory and applications of regular expressions and
languages, pushdown automata (PDAs) play an important role in the analysis of programming and natural
languages. However, it is well-known that both programming and natural languages have some features
that are not context-free, which means that not all these languages can be recognized by pushdown
automata. For that reason, there are attempts to introduce some regulating mechanisms to increase the
computational power of pushdown automata so that they are able to handle these features without loss of
the practical efficiency.

Motivated by some restrictions of context-free derivations studied in regulated rewriting (cf. [3, 4]),
so-called regulated pushdown automata have been introduced and studied in [7]. These automata are
pushdown automata with an additional control language over the alphabet of transitions restricting the
applications of the transition function. An input string is accepted by such a machine whenever the
pushdown automaton accepts the input by a sequence of transitions that forms a string belonging to the

Address for correspondence: Mathematical Institute, Czech Academy of Sciences, Žižkova 22, 616 62 Brno, Czech Republic

1002 T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case

given control language. On one hand, it has been shown that regular control languages do not affect the
power of pushdown automata. On the other hand, regulated pushdown automata with non-regular, linear
control languages are computationally complete (the reader is also referred to [10]).

Another variant of pushdown automata with some type of regulation is mentioned in [8], where
instead of a control language over the alphabet of transitions the automata are given a control language
over the alphabet of pushdown symbols. An input string is accepted whenever the pushdown automaton
accepts it by a computation each pushdown content of which forms a string belonging to the given control
language. It is proved that if the control language is regular, then the computational power is the same as
the power of pushdown automata. On the other hand, an example showing that non-regular, linear control
languages increase the power of these machines is presented. Nevertheless, the precise computational
power of these machines with non-regular, linear control languages was left open.

Recently, investigating the effect of nondeterminism on computations and the computational power
of pushdown automata, the above mentioned modification has been generalized, and so-called R-PDAs
have been introduced and studied in [9]. Specifically, given a control language R, an R-PDA is a push-
down automaton which makes a nondeterministic step whenever the pushdown content forms a string
that belongs to R, and makes a deterministic step whenever the pushdown content forms a string that
does not belong to R. Thus, according to this restriction, the R-PDA behaves nondeterministically if and
only if the pushdown content forms a string that belongs to R, and, thus, the nondeterministic behavior
of this machine is regulated. It has been shown (see [9]) that regular control languages do not affect
the computational power of pushdown automata, while non-regular, linear control languages increase
their computational power. For further results and properties concerning R-PDAs, where R is a regular
control language, the reader is referred to [9]. In there the case of the precise computational power of
R-PDAs with non-regular control languages is formulated as an open problem.

In this paper, we answer this question by showing that R-PDAs are computationally complete even
if the control language R is a very simple non-regular language, i.e., a linear language. In addition, from
the computational and descriptional complexity viewpoint, we demonstrate that only two checks of the
form of the pushdown content are of some interest during any computation and that the number of states
and pushdown symbols can be bounded.

Naturally, from the point of view of practical applications, to check the form of the pushdown content
in each computational step is not very effective. Therefore, based on the observation that only two
checks of the pushdown content are of interest during any computation, we introduce and discuss a new
variant of these machines, so-called state-controlled R-PDAs (R-sPDAs), which check the form of the
pushdown content only in some special states. Specifically, given a control language R, an R-sPDA
is a pushdown automaton which has a special set of distinguished states (so-called checking states) in
which the machine makes a computational step according to its transition function if and only if the
pushdown content forms a string that belongs to R; note that if the pushdown content does not form a
string from R, the computational process is finished and the machine rejects the input. In all other states,
the automaton behaves as an ordinary pushdown automaton. As a result, we have that two checks of the
form of the pushdown content make R-sPDAs computationally complete. On the other hand, we show
that R-sPDAs with only one check of the pushdown content are more powerful than ordinary pushdown
automata. However, their precise computational power is an open problem.

Finally, we discuss R-PDAs and R-sPDAs where the core pushdown automata are deterministic and
the control language R is linear (and deterministic context-free), and formulate some open problems.

T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case 1003

2. Preliminaries and Definitions

We assume that the reader is familiar with automata and formal language theory (see [12, 13]). For a
set A, |A| denotes the cardinality of A. For an alphabet (finite nonempty set) V , V ∗ represents the free
monoid generated by V , where the unit of V ∗ is denoted by ε. Set V + = V ∗ \ {ε}. For a string w ∈ V ∗,
|w| denotes the length of w, and wR denotes the mirror image (or reversal) of w. For a language L ⊆ V ∗,
LR = {wR : w ∈ L} denotes the mirror image of L.

A grammar is a quadruple G = (N,T, P, S), where N is the alphabet of nonterminals, T is the
alphabet of terminals such that N ∩ T = ∅, V = N ∪ T , S ∈ N is the start symbol, and P is a finite
set of productions of the form u → v, where u ∈ V ∗NV ∗ and v ∈ V ∗. For two strings x, y ∈ V ∗ and
a production u → v ∈ P , we define the relation xuy ⇒ xvy. The language generated by G is defined
as L(G) = {w ∈ T ∗ : S ⇒∗ w}, where⇒∗ is the reflexive and transitive closure of the relation⇒. In
addition, G is linear if each production u→ v ∈ P satisfies u ∈ N and v ∈ T ∗ ∪ T ∗NT ∗. A language
L is linear if there is a linear grammar G such that L = L(G).

A pushdown automaton (PDA) is a septupleM = (Q,Σ,Γ, δ, q0, Z0, F), where Q is a finite set of
states, Σ is the input alphabet, Γ is the pushdown alphabet, δ is a transition function fromQ×(Σ∪{ε})×Γ
to the set of finite subsets of Q× Γ∗, q0 ∈ Q is the initial state, Z0 ∈ Γ is the initial pushdown symbol,
and F ⊆ Q is the set of accepting states. A configuration of M is a triple (q, w, γ), where q is the
current state of M, w is the unread part of the input, and γ is the current content of the pushdown
(the leftmost symbol of γ is the topmost pushdown symbol). If p, q ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Σ∗,
γ, β ∈ Γ∗, Z ∈ Γ, and (p, β) ∈ δ(q, a, Z), then M makes a move from (q, aw, Zγ) to (p, w, βγ),
formally (q, aw, Zγ) `M (p, w, βγ). For simplicity, the initial pushdown symbol Z0 appears only at
the bottom of the pushdown during any computation, i.e., if (p, β) ∈ δ(q, a, Z), then either β does not
contain Z0, or β = β′Z0, where β′ does not contain Z0 and Z = Z0. As usual, the reflexive and
transitive closure of the relation `M is denoted by `∗M. The language accepted by M is defined as
T (M) = {w ∈ Σ∗ : (q0, w, Z0) `∗M (q, ε, γ) for some q ∈ F and γ ∈ Γ∗}.

A pushdown automaton M = (Q,Σ,Γ, δ, q0, Z0, F) is deterministic (DPDA) if there is no more
than one move the automaton can make from any configuration, i.e., the following two conditions hold:

1. |δ(q, a, Z)| ≤ 1, for all a ∈ Σ ∪ {ε}, q ∈ Q, and Z ∈ Γ, and

2. for all q ∈ Q and Z ∈ Γ, if δ(q, ε, Z) 6= ∅, then δ(q, a, Z) = ∅, for all a ∈ Σ.

In this case, we write δ(q, a, Z) = (p, γ) instead of δ(q, a, Z) = {(p, γ)}.
Let the family of languages accepted by automata of type X be denoted by L (X). Then it is well-

known that L (DPDA) ⊂ L (PDA).

2.1. Pushdown Automata with Regulated Nondeterminism

In comparison with the ordinary pushdown automata, R-PDAs are given a control language R over the
alphabet of pushdown symbols which restricts the nondeterministic behavior of the machine so that the
nondeterministic steps are allowed if and only if the current content of the pushdown forms a string that
belongs to R. If it does not belong to R, only deterministic steps are allowed.

Formally, letM = (Q,Σ,Γ, δ, q0, Z0, F) be a pushdown automaton, and let R ⊆ (Γ \ {Z0})∗ be
a control language over the alphabet of pushdown symbols. Then M is a (bottom-up) R-PDA if the
following two conditions are satisfied:

1004 T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case

1. for all q ∈ Q, a ∈ Σ ∪ {ε}, and Z ∈ Γ, δ can be written as

δ(q, a, Z) = δd(q, a, Z) ∪ δnd(q, a, Z) ,

where (Q,Σ,Γ, δd, q0, Z0, F) is a DPDA and (Q,Σ,Γ, δnd, q0, Z0, F) is a PDA, and

2. for all q, q′ ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Σ∗, Z ∈ Γ, and γ ∈ Γ∗,

(q, aw, Zγ) `M (q′, w, γ′γ) if

(a) either (q′, γ′) ∈ δnd(q, a, Z), Zγ = γ′′Z0, and (γ′′)R ∈ R,
(b) or δd(q, a, Z) = (q′, γ′), Zγ = γ′′Z0, and (γ′′)R /∈ R.

Condition 2 says that whenever the pushdown content forms a string that does not belong to R,
the automaton operates deterministically. Note that these machines check the form of the pushdown
content in each computational step, and that this check is made in the bottom-up reading direction of the
pushdown content.

Analogously, the pushdown content can be checked in the reverse direction, which defines so-called
top-down R-PDAs. In this case, Condition 2 is replaced with Condition 2’ below:

2’. for all q, q′ ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Σ∗, Z ∈ Γ, and γ ∈ Γ∗,

(q, aw, Zγ) `M (q′, w, γ′γ) if

(a) either (q′, γ′) ∈ δnd(q, a, Z), Zγ = γ′′Z0, and γ′′ ∈ R,
(b) or δd(q, a, Z) = (q′, γ′), Zγ = γ′′Z0, and γ′′ /∈ R.

Thus, with respect to the direction in which the pushdown content is read during the check of its form
we have two variants of R-PDAs, namely bottom-up and top-down R-PDAs.

3. Computational Power of R-PDAs

In this section, we present the main results of this paper. First, recall that it is known that if the control
language R is regular, then every bottom-up R-PDA can effectively be transformed to an equivalent
pushdown automaton. In the following, we extend this theorem to top-down R-PDAs.

Theorem 3.1. Let R be a regular control language andM be a bottom-up or top-down R-PDA. Then
an equivalent pushdown automatonM′ can effectively be constructed.

Proof:
For bottom-up R-PDAs, a proof is given in [9]. The case of top-down R-PDAs then follows from the
closure property of regular languages under mirror image. ut

On the other hand, it has been demonstrated (cf. [8, 9]) that if the control language R is both linear
and deterministic context-free, then there is a bottom-up R-PDA accepting a non-context-free language.
For top-down R-PDAs, this is also demonstrated in the following example.

T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case 1005

Example 3.1. Let R = {anbn : n ≥ 1} be a language, and RR its mirror image; R and RR are both lin-
ear and deterministic context-free. LetM = ({qa, qb, qc, qd, qf}, {a, b, c, d}, {a, b, Z0}, δ, qa, Z0, {qf})
be a bottom-up R-PDA (top-down RR-PDA) operating as follows:

1. starting in qa,M deterministically repeats reading a from the input and pushing a to the pushdown;

2. reading the first b, M deterministically goes to state qb and pushes b to the pushdown, i.e., the
pushdown contains banZ0; being in qb,M deterministically repeats reading b from the input and
pushing b to the pushdown;

3. reading the first c,M goes to state qc by transitions which belong to δnd, checking that the push-
down content is bnanZ0, and removes b from the top of the pushdown;

4. being in qc,M deterministically repeats reading c from the input and removing b from the push-
down;

5. being in qc and having a on the top of the pushdown,M deterministically goes to state qd, reads d
from the input, and removes a from the pushdown, i.e., cn has been read;

6. being in qd,M deterministically repeats reading d from the input and removing a from the push-
down;

7. finally, being in qd and having Z0 on the top of the pushdown, M deterministically goes to the
final state qf from which no other symbol can be read; moreover, nothing is read from the input,
and Z0 is removed from the pushdown.

The language recognized by the bottom-up {anbn : n ≥ 1}-PDA (top-down {bnan : n ≥ 1}-PDA)M
is T (M) = {anbncndn : n ≥ 1}, which is a non-context-free language.

In what follows, we show that every recursively enumerable (RE) language is accepted by a bottom-
up (top-down) R-PDAM, for some convenient non-regular, linear control language R. Moreover, in the
case of top-down R-PDAs, we show that R can be both linear and deterministic context-free, which is
open for bottom-up R-PDAs. Furthermore, we prove some descriptional complexity results.

Theorem 3.2. Let L be an RE language. Then there exist a linear control language R and a bottom-up
R-PDAM such that L = T (M).

To prove this theorem, we need the following Geffert normal form. Let L ⊆ T ∗ be an RE language.
Then, by [5], there is a grammar G = ({S,A,B}, T, P ∪ {ABBBA → ε}, S) in Geffert normal form
such that L = L(G) and P contains only context-free productions of the following three forms:

S → uSa, S → uSv, S → uv ,

where u ∈ {AB,ABB}∗, v ∈ {BBA,BA}∗, and a ∈ T . In addition, any successful derivation of G
can be divided into the following two parts: the first part is of the form

S ⇒∗G w′1Sw
′
2w ⇒G w1w2w ,

generated only by context-free productions from P , where w1 ∈ {AB,ABB}∗, w2 ∈ {BBA,BA}∗,
and w ∈ T ∗, and the other part is of the form

w1w2w ⇒∗G w ,

1006 T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case

generated only by the erasing production ABBBA → ε. Note also that during the derivation, there is
no more than one occurrence of the string ABBBA in w1w2, which is “in the middle” of this string.

Proof:
Let L ⊆ T ∗ be an RE language, and let G = ({S,A,B}, T, P ∪ {ABBBA → ε}, S) be a grammar
in Geffert normal form such that L = L(G). Let G1 = (N1, T1, P1, S1) be a linear grammar, where
N1 = {S1, S}, T1 = T ∪{A,B, $}, for $ and S1 being new symbols, and P1 = P ∪{S1 → $$S}. Then
L(G1) = {$$w1w2w : S ⇒∗G w′1Sw

′
2w ⇒G w1w2w}. Let G2 = (N2, T2, P2, S2) be a linear grammar,

where N2 = {S2, Y, Z}, T2 = T ∪ {A,B, $}, and P2 = {S2 → $Y, Y → Z,Z → ABZBBA,Z →
ABBZBA,Z → ε} ∪ {Y → Y a : a ∈ T}. Then L(G2) = {$w1w2w : w1 ∈ {AB,ABB}∗, w2 ∈
{BBA,BA}∗, w ∈ T ∗}, where each $w1w2w ∈ L(G2) can be reduced to $w by the repeated elimina-
tion of the string ABBBA. In other words, w1w2 ⇒∗ ε by the production ABBBA→ ε. Let the linear
control language be

R = L(G1)R ∪ L(G2)R ∪ ({A,B} ∪ T)∗ ,

and define the R-PDAM = ({q0, q1, qf}, T, T ∪ {A,B, $, Z0}, δ, q0, Z0, {qf}), where δ is defined as
follows:

δnd(q0, ε,X) = {(q0, aX) : a ∈ T ∪ {A,B}}, X ∈ {A,B,Z0} ∪ T,
δnd(q0, ε,X) = {(q0, $$X)}, X ∈ {A,B,Z0} ∪ T,
δnd(q0, ε, $) = {(q1, ε)},
δnd(q1, ε, $) = {(q1, ε)},
δnd(q1, ε,X) = {(q1, ε)}, X ∈ {A,B},
δnd(q1, a, a) = {(q1, ε)}, a ∈ T,
δnd(q1, ε, Z0) = {(qf , ε)} .

Finally, δd is empty.
Informally,M operates so that it first nondeterministically pushes symbols from T ∪{A,B} onto its

pushdown, which is possible because ({A,B}∪T)∗ ⊆ R. Then, when $$ is pushed onto the pushdown,
i.e., the configuration is of the form (q0, w, $$γZ0), for some γ ∈ Γ∗, M verifies that $$γ belongs
to L(G1). If so, one symbol $ is removed, (q0, w, $$γZ0) `M (q1, w, $γZ0), andM verifies that $γ
belongs to L(G2). If so, then γ = w1w2w, where

• S ⇒∗ w′1Sw′2w ⇒ w1w2w in G,

• w1 ∈ {AB,ABB}∗, w2 ∈ {BBA,BA}∗, w ∈ T ∗, and

• the production ABBBA→ ε can be used to eliminate the string w1w2,

i.e., there is a derivation w1w2w ⇒∗G w in G. The automaton then finishes the computation as follows:
(q1, w, $w1w2wZ0) `M (q1, w, w1w2wZ0) `∗M (q1, w, wZ0) `∗M (q1, ε, Z0) `M (qf , ε, ε).

Formally, to prove that L(G) ⊆ T (M), let S ⇒∗ w′1Sw′2w ⇒ w1w2w ⇒∗ w be a successful
derivation of G. Then the corresponding computation ofM accepting w is as follows:

(q0, w, Z0) `∗ (q0, w, wZ0) `∗ (q0, w, w2wZ0) `∗ (q0, w, w1w2wZ0)
` (q0, w, $$w1w2wZ0) ` (q1, w, $w1w2wZ0) ` (q1, w, w1w2wZ0)
`∗ (q1, w, wZ0) `∗ (q1, ε, Z0) ` (qf , ε, ε) .

T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case 1007

Thus, w ∈ T (M) is satisfied.
On the other hand, to prove T (M) ⊆ L(G), consider a computation of M accepting w. Such a

computation is of the form

(q0, w, Z0) `∗ (q0, w, γZ0)
` (q0, w, $$γZ0) (1)

` (q1, w, $γZ0) (2)

` (q1, w, γZ0) `∗ (q1, ε, Z0) ` (qf , ε, ε)

for some γ ∈ Γ∗. From the verification process made during the computational step (2), it follows that
$γ ∈ L(G2), which means that γ = w1w2w

′, where w1 ∈ {AB,ABB}∗, w2 ∈ {BBA,BA}∗, w′ ∈
T ∗, and the string w1w2 can be eliminated by the repeated application of the production ABBBA→ ε.
Moreover, from the verification process made during the computational step (1), it follows that there is a
derivation S ⇒∗ w′1Sw′2w′ ⇒ w1w2w

′ in G. It remains to prove that w′ = w. However, by examining
the following part of the computation,

(q1, w, $w1w2w
′Z0) ` (q1, w, w1w2w

′Z0) `∗ (q1, w, w2w
′Z0)

`∗ (q1, w, w′Z0) `∗ (q1, ε, Z0) ` (qf , ε, ε) ,

it immediately follows that the strings w′ and w are equal because the only transitions reading the input
are of the form δnd(q1, a, a) = {(q1, ε)}, for a ∈ T . Thus, w ∈ L(G) is satisfied. ut

From the descriptional complexity point of view, we have the following corollary.

Corollary 3.1. Let L be an RE language. Then there exist a linear language R and a bottom-up (top-
down) R-PDAM = (Q,Σ,Γ, δ, q0, Z0, F) such that |Q| ≤ 3, |Γ| ≤ |Σ|+ 4, and L = T (M).

Proof:
For the top-down R-PDAs, let R = L(G1) ∪ L(G2) ∪ ({A,B} ∪ T)∗. The proof then immediately
follows from the construction given in the proof of the previous theorem. ut

In general, the proof of Theorem 3.2 is based on the fact that for any RE language L, there exist
a homomorphism h and two linear languages L1 and L2 such that LR = h(L1 ∩ L2). The bottom-
up R-PDA recognizing L operates so that it first nondeterministically pushes some symbols onto its
pushdown, and then verifies that its pushdown content, say γ, forms a string that belongs to L1 and L2,
i.e., γ ∈ L1∩L2. After that verification, the automaton repeats reading a symbol, X , from the pushdown
and h(X)R from the input.

Furthermore, it is known that the linear languages L1 and L2 can be of some special minimal forms,
i.e., they belong to some proper subfamilies of the family of linear languages. For an overview of these
minimal forms the reader is referred to Table 1 in [11].

In addition, the following result can be achieved by a simple modification of grammars G1 and G2

from Theorem 3.2 so that each production S → α ∈ P1 of G1 is replaced with S → αci, where ci,
for each 1 ≤ i ≤ |P1|, is a new symbol, and G2 is modified in a corresponding way. Then it is not
hard to see that the language L(G1)R is linear and deterministic context-free, since for each production
S → (civiSui)R ∈ P1, the symbol ci says that vR

i be read from the input and uR
i be pushed to the

pushdown. Using these modified grammars and the notation Li = L(Gi)R, for i = 1, 2, we have the
following corollary.

1008 T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case

Corollary 3.2. Let L be an RE language. Then there are two linear and deterministic context-free lan-
guages L1 and L2, a regular language R, and a bottom-up (L1∪L2∪R)-PDAM such that L = T (M).

It is an open problem whether there are such languages L1, L2, and R that the union L1 ∪ L2 ∪ R
is also a linear and deterministic context-free language. In other words, it is open whether any RE
language can be recognized by a bottom-up R′-PDA, where R′ is linear and deterministic context-free.
This situation is different in the case of top-down R-PDAs.

Theorem 3.3. Let L be an RE language. Then there exist a linear and deterministic context-free control
language R and a top-down R-PDAM such that L = T (M).

Proof:
Let L1 and L2 be constructed as in the remark above of Corollary 3.2 (but with the modification that
instead of S → αci we have S → ciα, for S → α ∈ P , the construction of L2 is modified correspond-
ingly, Li = L(Gi), i = 1, 2), i.e., we use the deterministic variants of languages defined in the proof of
Theorem 3.2. Then we can see thatR = L1∪L2∪({A,B}∪T)∗ is linear and deterministic context-free,
since the strings of L1 begins with two symbols $, those of L2 with only one $, and ({A,B} ∪ T)∗ is a
regular language. ut

Using the definitions and results of [11], we immediately obtain the following corollary. First, how-
ever, recall that a linear language L ⊆ T ∗ is minimal linear if it is generated by a linear grammar
G = (N,T, P, S), where N = {S} is a singleton set and G has a unique terminal production S → c,
where c ∈ T appears only in this production. In addition, G = ({S}, T, P, S) is (1, 1)-minimal linear if
it is minimal linear and for each production S → αSβ ∈ P , where α, β ∈ T ∗, |α| = |β| = 1 is satisfied.
A language is (1, 1)-minimal linear if it is generated by a (1, 1)-minimal linear grammar.

Corollary 3.3. Let L be an RE language. Then there exist a minimal linear language L1 ⊆ Σ∗, a (1, 1)-
minimal linear language L2 ⊆ Σ∗, a regular languageR ⊆ Σ∗, and a bottom-up (L1c1∪L2c2∪R)-PDA
M, where c1 6= c2, c1, c2 /∈ Σ, such that L = T (M).

Proof:
It is proved in [11] that for every RE language L, there exist a minimal linear language L1 ⊆ Σ∗, a (1, 1)-
minimal linear language L2 ⊆ Σ∗, and a homomorphism h : Σ∗ → Σ∗ such that LR = h(L1 ∩ L2). Let
R = Σ∗ be a regular language, c1, c2 /∈ Σ be two different symbols, and (L1c1 ∪L2c2 ∪R)-PDAM be
constructed by the method discussed above. Here, ci is used to check that the pushdown content forms a
string belonging to Li, for i = 1, 2, i.e., c1 stands for $$ and c2 for $ in the proof of Theorem 3.2. Thus,
L = T (M) is satisfied. ut

Corollary 3.4. Let L be an RE language. Then there exist a minimal linear language L1 ⊆ Σ∗, a (1, 1)-
minimal linear language L2 ⊆ Σ∗, a regular language R ⊆ Σ∗, and a top-down (c1L1 ∪ c2L2 ∪R)-PDA
M, where c1 6= c2, c1, c2 /∈ Σ, such that L = T (M).

T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case 1009

4. State-Controlled R-PDAs

From a practical point of view, it is obvious that the less checks of the pushdown content the automaton
makes, the more efficient the computation can be. In R-PDAs, the pushdown content is checked in each
computational step. However, taking a careful look at the proof of Theorem 3.2, we can see that only
two checks are of interest: the first check is made when $$ is pushed onto the pushdown, and the other
when the first $ is removed. This observation motivates the following definition of R-sPDAs.

LetM = (Q,Σ,Γ, δ, q0, Qc, Z0, F) be a pushdown automaton, where Qc ⊆ Q is a set of checking
states, and all other symbols are as in an ordinary pushdown automaton. Let R ⊆ (Γ \ {Z0})∗ be a
control language. Then M is called a bottom-up (top-down) state-controlled R-PDA (or R-sPDA for
short) if for all q, q′ ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Σ∗, Z ∈ Γ, and γ ∈ Γ∗,

(q, aw, Zγ) `M (q′, w, γ′γ)

if (q′, γ′) ∈ δ(q, a, Z) and

1. either q ∈ Q \Qc,

2. or q ∈ Qc, Zγ = γ′′Z0, and (γ′′)R ∈ R (or γ′′ ∈ R in the case of top-down R-sPDAs).

Note that if q ∈ Qc and (γ′′)R /∈ R (or γ′′ /∈ R, respectively), then there is no possible computational
step and the automaton rejects the input.

The reader can imagine R-sPDAs as pushdown automata with an oracle which answers questions of
whether the current content of the pushdown forms a string belonging to R.

The following theorem can be proved by the same technique used in the case of R-PDAs, where R
is a regular control language, see Theorem 3.1.

Theorem 4.1. Let R be a regular language andM be a bottom-up (top-down) R-sPDA. Then an equiv-
alent pushdown automatonM′ can effectively be constructed.

Now, we can prove the following result concerning the case of non-regular control languages.

Theorem 4.2. Let L be an RE language. Then there exist a linear language R and a bottom-up (top-
down) R-sPDAM such that L = T (M). In addition,M checks the form of its pushdown content no
more than twice during any computation.

Proof:
Consider the proof of Theorem 3.2 and modify the grammars G1 and G2 so that L(G1) = {$w1w2w :
S ⇒∗G w′1Sw

′
2w ⇒G w1w2w} and L(G2) = {w1w2w : w1 ∈ {AB,ABB}∗, w2 ∈ {BBA,BA}∗, w ∈

T ∗}, where w1w2w ∈ L(G2) implies w1w2w ⇒∗ w by the production ABBBA → ε. Let R =
L(G1)R ∪ L(G2)R be the linear control language (or R = L(G1) ∪ L(G2) in the case of top-down
R-sPDAs), and define the R-sPDAM = (Q,T,Γ, δ, q0, {qc}, Z0, F) so that Q = {q0, q1, qc, qf}, Qc =
{qc}, Γ = T ∪ {A,B, $, Z0}, F = {qf}, and δ is defined as follows: δ(q0, ε,X) = {(q0, αX) : α ∈
T ∪ {A,B}}, δ(q0, ε,X) = {(qc, $X)}, δ(qc, ε, $) = {(qc, ε)}, δ(qc, ε,X) = {(q1, X)}, δ(q1, ε, Y) =
{(q1, ε)}, δ(q1, a, a) = {(q1, ε)}, and δ(q1, ε, Z0) = {(qf , ε)}, whereX ∈ {A,B,Z0}∪T , Y ∈ {A,B},
and a ∈ T . The proof now proceeds analogously to the proof of Theorem 3.2. ut

1010 T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case

As a corollary, we have the following descriptional complexity result.

Corollary 4.1. Let L be an RE language. Then there exist a linear language R and a bottom-up (top-
down) R-sPDA M = (Q,Σ,Γ, δ, q0, Qc, Z0, F) which checks the form of the pushdown content no
more than twice during any computation, such that |Q| ≤ 4, |Qc| = 1, |Γ| ≤ |Σ|+ 4, and L = T (M).

The following result is similar to Corollary 3.2 (using the deterministic variants of those linear lan-
guages as discussed above of Corollary 3.2, where the construction of the proof of Theorem 4.2 is used
instead of the construction of the proof of Theorem 3.2).

Corollary 4.2. Let L be an RE language. Then there exist two linear and deterministic context-free
languages L1, L2, and a bottom-up (L1 ∪L2)-sPDAM which checks the form of the pushdown content
no more than twice during any computation, such that L = T (M).

Similarly as for bottom-up R-PDAs, it is an open problem whether any RE language can be recog-
nized by a bottom-up R-sPDA, where R is linear and deterministic context-free.

On the other hand, for top-downR-sPDAs, we can see that using the combination of constructions of
the proofs of Theorems 4.2 and 3.3 the language L1 ∪ L2 is linear and deterministic context-free, since
the strings of L1 begins with $ while those of L2 does not. Thus, we have the following result.

Corollary 4.3. Let L be an RE language. Then there exist a linear and deterministic context-free lan-
guage R and a top-down R-sPDA M which checks the form of the pushdown content no more than
twice during any computation, such that L = T (M).

Furthermore, using the results of [11], we have the following consequences.

Corollary 4.4. Let L be an RE language. Then there exist a minimal linear language L1 ⊆ Σ∗, a (1, 1)-
minimal linear language L2 ⊆ Σ∗, $ /∈ Σ, and a bottom-up (L1$∪L2)-sPDAM which checks the form
of the pushdown content no more than twice during any computation, such that L = T (M).

Proof:
It is proved in [11] that for every RE language L, there exist a minimal linear language L1 ⊆ Σ∗, a (1, 1)-
minimal linear language L2 ⊆ Σ∗, and a homomorphism h : Σ∗ → Σ∗ such that LR = h(L1 ∩ L2).
Let $ /∈ Σ be a new symbol, and let the bottom-up (L1$ ∪ L2)-sPDAM be constructed by the method
discussed above of Corollary 3.2. Then L = T (M). ut

Corollary 4.5. Let L be an RE language. Then there exist a minimal linear language L1 ⊆ Σ∗, a (1, 1)-
minimal linear language L2 ⊆ Σ∗, $ /∈ Σ, and a top-down ($L1 ∪ L2)-sPDAM which checks the form
of the pushdown content no more than twice during any computation, such that L = T (M).

By a simple modification, Example 3.1 demonstrates that there is a bottom-up (top-down) R-sPDA,
whereR is linear and deterministic context-free, recognizing the non-context-free language {anbncndn :
n ≥ 1}with only one check of the pushdown content. However, the question of the computational power
of R-sPDAs performing only one check is open.

T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case 1011

4.1. Deterministic State-Controlled R-PDAs

In this section, we consider deterministic R-sPDAs (R-sDPDAs), which means that the core pushdown
automaton of theR-sPDA is deterministic, with a linear (or linear and deterministic context-free) control
language R.

As the core pushdown automata ofR-sDPDAs are deterministic, these machines are able to recognize
any deterministic context-free language. In addition, as these machines can work so that they only copy
the whole input to the pushdown, it is obvious that any linear language L can be recognized by a bottom-
up L-sDPDA (top-down LR-sDPDA) M (assuming that the automaton can recognize the end of the
input and go to the checking state). However, by a simple modification of Example 3.1, the following
example illustrates that there are non-context-free languages that can be accepted by R-sDPDAs with a
linear and deterministic context-free control language R and only one check of the pushdown content.

Example 4.1. Let R = {anbn−1 : n ≥ 1}. Then R is linear and deterministic context-free. Let
M = ({qa, qb, qc, qd, qch, qf}, {a, b, c, d}, {a, b, Z0}, δ, qa, {qch}, Z0, {qf}) be a bottom-up R-sDPDA
(top-down RR-sDPDA) operating as follows:

1. Starting in qa,M repeats reading a from the input and pushing a to the pushdown.

2. Reading the first b,M goes to state qb and pushes b to the pushdown, i.e., the pushdown contains
banZ0. Then, being in qb,M deterministically repeats reading b from the input and pushing b to
the pushdown.

3. Reading the first c,M goes to state qch and removes b from the pushdown top. In the next step,
it checks that the pushdown content is of the form bn−1anZ0 and goes either to qc, when reading
c from the input and removing b from the pushdown, or to qd, when reading d from the input and
removing a from the pushdown.

4. Being in qc,M repeats reading c from the input and removing b from the pushdown; being in qc
and having a on the top of the pushdown,M goes to qd and repeats reading d from the input and
removing a from the pushdown, i.e., cn has been read.

5. Finally, being in qd, M repeats reading d from the input and removing a from the pushdown;
being in qd and having Z0 on the top of the pushdown,M goes to the final state qf from which no
other symbol can be read; moreover, nothing is read from the input and Z0 is removed from the
pushdown.

Thus, T (M) = {anbncndn : n ≥ 1}, which is a non-context-free language.

Let L1 and L2 be two linear languages. Construct the following bottom-up (L1$ ∪ L2)-sDPDA
(top-down ($LR

1 ∪ LR
2)-sDPDA)M such that T (M) = L1 ∩ L2. M operates so that it first copies the

whole input to the pushdown and then (assuming thatM can recognize the end of the input and change
its state) it goes to the checking state pushing $ onto the top of the pushdown. Now,M checks that the
pushdown content (the input, ignoring $) belongs to L1. If so, $ is removed from the pushdown andM
checks that the pushdown content also belongs to L2. If both these checks are positive, we have that
the input belongs to the intersection of those two linear languages. By a simple modification, we can
generalize this method to a finite intersection of linear languages.

1012 T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case

Corollary 4.6. Let L1, L2, . . . , Ln be linear languages, for some n ≥ 2. Then there is a bottom-up
(L1$n−1∪L2$n−2∪· · ·∪Ln)-sDPDA (top-down ($n−1LR

1 ∪$n−2LR
2 ∪· · ·∪LR

n)-sDPDA)M recognizing
the language

⋂n
i=1 Li.

The following theorem shows that the membership problem for R-sDPDAs with R being linear is
decidable.

Theorem 4.3. If a language L is recognized by a bottom-up (top-down) R-sDPDA, for some linear
control language R, then L is recursive.

Proof:
Let M be an R-PDA, and let M′ be its core deterministic pushdown automaton. By the construction
of Lemma 12.1 in [6], we can construct an equivalent deterministic pushdown automaton M′′ to M′
which never performs an infinite loop. Note that M′′ has the same pushdown alphabet as M′. Thus,
replacingM′ withM′′ inM, we have an equivalent R-PDA toM, denoted asM′′′. As the checks of
the pushdown content can be performed by a Turing machine which always halts, since R is linear, and
becauseM′′ always halts, we have thatM′′′ always halts. ut

Note that the computational power as well as all other properties of R-sDPDAs with a linear control
language R are open. In addition, the power of these machines over a one-letter alphabet is an open
problem, too. Are these machines powerful enough to recognize a non-regular language over a one-letter
alphabet?

5. Conclusion

In this paper, we have shown that every RE language can be recognized by a bottom-up (top-down)
R-PDA, where R is a non-regular, linear (and deterministic context-free, respectively) control language.
In addition, only two checks of the form of the pushdown content are of interest during any computation
of these machines. Based on this observation, a new type of R-PDAs has been introduced and discussed,
so-called state-controlledR-PDAs. As an immediate consequence of the results concerningR-PDAs, we
have that every RE language can be accepted by an R-sPDA which makes no more than two checks of
the form of the pushdown content during any computation. On the other hand, it has also been shown that
R-sPDAs with only one check of the pushdown content during any computation are powerful enough
to recognize non-context-free languages. However, their precise computational power is left as an open
problem.

Furthermore, from a practical point of view, it is of some interest to study the deterministic variant of
R-sPDAs, where the core pushdown automaton is deterministic and the control language R is linear and
deterministic context-free, since the languages recognized by those machines can be analyzed in linear
time (assuming that the number of checks is bounded by a constant). It has been shown that there are
non-context-free languages that can be accepted by R-sDPDAs with a linear and deterministic context-
free control language R and with only one check of the pushdown content. It has also been proved
that any deterministic context-free language and any language that can be written as a finite intersection
of linear languages can be recognized by such a machine, and that any language recognized by such a
machine is recursive. However, the precise computational power as well as all other properties are left
open.

T. Masopust / Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case 1013

Finally, another interesting variant of these machines seems to be so-called visibly (also called input-
driven)R-sPDAs, where the pushdown operations are driven by the input symbols (see [1, 2]). However,
this is a part of the future research.

Acknowledgements

The author gratefully acknowledges useful suggestions and comments of the anonymous referees. This
work was supported by the Czech Academy of Sciences, Institutional Research Plan no. AV0Z10190503.

References
[1] Alur, R., Madhusudan, P.: Visibly pushdown languages, Proceedings of the 36th Annual ACM Symposium

on Theory of Computing (L. Babai, Ed.), ACM, 2004.

[2] Bollig, B.: On the expressive power of 2-stack visibly pushdown automata, Logical Methods in Computer
Science, 4(4), 2008, 1–35.

[3] Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.

[4] Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations, Handbook of Formal Languages
(G. Rozenberg, A. Salomaa, Eds.), 2, Springer, Berlin, 1997.

[5] Geffert, V.: Normal Forms for Phrase-Structure Grammars, RAIRO – Theoretical Informatics and Applica-
tions, 25(5), 1991, 473–496.

[6] Hopcroft, J. E., Ullman, J. D.: Formal Languages and Their Relation to Automata, Addison-Wesley, Reading,
Massachusetts, 1969.

[7] Kolář, D., Meduna, A.: Regulated Pushdown Automata, Acta Cybernetica, 4, 2000, 653–664.

[8] Křivka, Z.: Rewriting Systems with Restricted Configurations, Ph.D. Thesis, Faculty of Information Tech-
nology, Brno University of Technology, Brno, 2008.

[9] Kutrib, M., Malcher, A., Werlein, L.: Regulated Nondeterminism in Pushdown Automata, Theoretical Com-
puter Science, 410(37), 2009, 3447–3460.

[10] Meduna, A., Kolář, D.: One-Turn Regulated Pushdown Automata and Their Reduction, Fundamenta Infor-
maticae, 51(4), 2002, 399–405.

[11] Okawa, S., Hirose, S.: Homomorphic characterizations of recursively enumerable languages with very small
language classes, Theoretical Computer Science, 250(1-2), 2001, 55–69.

[12] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

[13] Salomaa, A.: Computation and Automata, Cambridge University Press, Cambridge, 1985.

