
Simple Restriction in Context-Free Rewriting

Tomáš Masopust1,∗

Faculty of Information Technology, Brno University of Technology
Božetěchova 2, Brno 61266, Czech Republic

Abstract

Many rewriting systems with context-free productions and with controlled derivations have been studied.
On one hand, these systems preserve the simplicity of applications of context-free productions and, on the
other hand, they increase the generative power to cover more aspects of natural and programming languages.
However, with λ-productions, many of these systems are computationally complete. It gives rise to a natural
question of what are the simplest restrictions of the derivation process of context-free grammars to obtain the
universal power. In this paper, we present such a simple restriction introducing so-called restricted context-
free rewriting systems. These systems are context-free grammars with a function assigning a nonterminal
coupled with + or − to each nonterminal. A production is applicable if it is applicable as a context-free
production and if the symbol assigned to the left-hand side of the production is coupled with +, then this
symbol has to appear in the sentential form, while if coupled with −, it must not appear in the sentential
form. This restriction is simpler than most of the other restrictions, since the context conditions are assigned
to nonterminals, not to productions, and their type is the simplest possible—a nonterminal.

Key words: Formal languages, context-free grammar, rewriting system, derivation restriction, generative
power.
2000 MSC: 68Q42, 68Q45

1. Introduction

Over its history, formal language theory has investigated and studied many variants of regulated gram-
mars based on context-free productions in order to increase the generative power of context-free grammars
so that they are able to cover more aspects of natural and programming languages. The main idea of the
regulation is to omit some of the context-free derivations so that although the production under considera-
tion is applicable to the current sentential form as a context-free production, it is not applicable according
to the regulation. Besides the other (mostly equivalent) regulating mechanisms, the following type of regu-
lation characterizes the basic idea of a restriction discussed in this paper: A production is applicable to the
current sentential form if it is applicable as a context-free production and, in addition, some symbols have
to appear in the sentential form, while some others must not. Representatives of such regulated grammars
are, for instance, random context grammars (see [1] for more details). It is well-known that random context
grammars characterize the family of recursively enumerable languages if λ-productions are allowed, and a
proper subfamily of the family of context-sensitive languages if λ-productions are not allowed. In addition,
it is obvious that the latter language family has the property that every recursively enumerable language is
a homomorphic image of a language of this family.

Undoubtably, regulating mechanisms are of some interest because they give a characterization of non-
context-free languages by applications of only simple context-free productions. However, besides random

∗Corresponding author.
Email address: tomas.masopust@mail.muni.cz (Tomáš Masopust)

1Tel. +420541141323, Fax. +420541141270

Preprint submitted to Journal of Computer and System Sciences October 8, 2009



context grammars, there are many other regulated grammars using different types of regulating mechanisms,
such as matrix grammars, graph controlled grammars, programmed grammars etc. (see [1, 2]). Many of
these grammars characterize the family of recursively enumerable languages if λ-productions are allowed.
This observation gives rise to a very natural question of what are the simplest extensions of context-free
grammars by a control of derivation to obtain the universal power.

In this paper, we present such a simple mechanism regulating the applications of context-free productions
according to the appearance of some symbols in the current sentential form. More specifically, we introduce
and study so-called restricted context-free rewriting system, which is a context-free based rewriting system
with an additional function assigning a nonterminal symbol coupled with a symbol + or − to each of its
nonterminals. A production of such a system is applicable if it is applicable as a context-free production and,
in addition, if the symbol assigned to the left-hand side of the production (to the rewritten nonterminal)
is coupled with +, then this symbol has to appear in the current sentential form, while if it is coupled
with −, then it is not allowed to appear in the current sentential form. Observe that this restriction is
simpler than most of the other restrictions used in the literature, since the context conditions are assigned
to nonterminals, not to productions, and their type is the simplest possible—a nonterminal symbol.

As the main result, we present a characterization of recursively enumerable languages in terms of re-
stricted context-free rewriting systems. This characterization results in some new normal forms for random
context grammars and their variants discussed in the literature (see [3–7]), as well as for matrix grammars.
As it is not hard to see that any restricted context-free rewriting system can be thought of as a (very simple
type of) random context grammars, it immediately follows that nonterminals coupled with both + and
− are required because it is well-known that random context grammars with all permitting (forbidding,
respectively) sets being empty characterize a proper subfamily of the family of (even) recursive languages
(see [8] and also [9, 10]).

Finally, in Section 4 and in the conclusion of this paper, we discuss some questions concerning restricted
context-free rewriting systems without λ-free productions and summarize open problems.

2. Preliminaries and Basic Definitions

In this paper, we assume that the reader is familiar with formal language theory (see [1, 11, 12]). For
an alphabet (finite nonempty set) V , V ∗ represents the free monoid generated by V . The unit of V ∗ is
denoted by λ. Set V + = V ∗ − {λ}. For w ∈ V ∗, |w| denotes the length of w and alph(w) denotes the set
of all symbols occurring in w. Let L (RE) and L (CS) denote the families of recursively enumerable and
context-sensitive languages, respectively.

A context-free grammar is a quadruple G = (N,T, P, S), where N is the alphabet of nonterminals, T is
the alphabet of terminals such that N ∩T = ∅, V = N ∪T is the total alphabet, S ∈ N is the start symbol,
and P is a finite set of productions of the form A → x, where A ∈ N and x ∈ V ∗. If x ∈ V +, then the
production A→ x is said to be λ-free. G is λ-free if all its productions are λ-free. For two strings u, v ∈ V ∗,
we define the relation uAv ⇒ uxv provided that A → x ∈ P . The language generated by G is defined as
L(G) = {w ∈ T ∗ : S ⇒∗ w}, where ⇒∗ is the reflexive and transitive closure of the relation ⇒. The family
of languages generated by context-free grammars and λ-free context-free grammars are denoted by L (CF)
and L (CF− λ), respectively. Note that it is well-known that these two language families coincide, i. e.,
L (CF) = L (CF− λ).

An unordered scattered context grammar (with appearance checking) is a quintuple G = (N,T, P, S,R),
where N is the alphabet of nonterminals, T is the alphabet of terminals such that N ∩ T = ∅, V = N ∪ T is
the total alphabet, S ∈ N is the start symbol, P is a finite set of productions of the form (A1, A2, . . . , An)→
(w1, w2, . . . , wn), n ≥ 1, where Ai ∈ N and wi ∈ V ∗, for all i = 1, . . . , n, and R is a finite set of context-free
productions. If wi ∈ V +, for all i = 1, . . . , n, then the production is said to be λ-free. G is λ-free if all
its productions are λ-free. A production (A1, A2, . . . , An) → (w1, w2, . . . , wn) ∈ P is applied to a string
x = x1Ai1x2Ai2x3 . . . xuAiu

xu+1, where xi ∈ V ∗, for i = 1, . . . , u+ 1, provided that

1. (Ai1 , Ai2 , . . . , Aiu
) is a permutation of a subsequence of (A1, A2, . . . , An), and

2. if Aj ∈ {A1, A2, . . . , An} − {Ai1 , Ai2 , . . . , Aiu
}, then Aj does not occur in x and Aj → wj ∈ R.

2



This application results in the string y = x1wi1x2wi2x3 . . . xuwiuxu+1, written as x ⇒ y. The language
generated by G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}, where ⇒∗ is the reflexive and transitive closure of
the relation ⇒. The families of languages generated by unordered scattered context grammars and λ-free
unordered scattered context grammars are denoted by L (uSC, ac) and L (uSC− λ, ac), respectively.

An unordered scattered context grammar G = (N,T, P, S,R) is said to be 2-limited if

1. (A1, . . . , An)→ (w1, . . . , wn) ∈ P implies n ≤ 2 and |wi| ≤ 2, for i = 1, 2; and
2. n = 1 implies A1 = S.

Mayer [13] proved that L (uSC, ac) = L (RE) and that every recursively enumerable language is gen-
erated by a 2-limited unordered scattered context grammar. The proof of the latter result follows by the
standard construction introduced in [14] and by the corresponding modification of R. Thus, as a result of
the construction given in [14], we can without loss of generality assume that (A,B) → (x, y) ∈ P implies
that A 6= B.

To prove the main result, the following lemma is needed.

Lemma 1. For every unordered scattered context grammar G′, there is a 2-limited unordered scattered
context grammar G = (N,T, P, S,R) such that S does not occur on the right-hand side of any production
and if (A,B)→ (x, y) ∈ P , then A 6= B.

Proof. By [13], there is a 2-limited unordered scattered context grammar G = (N,T, P, S) such that
L(G′) = L(G) and if (A,B)→ (x, y) ∈ P , then A 6= B. If S occurs on the right-hand side of a production,
we construct an equivalent 2-limited unordered scattered context grammar Ḡ as follows. Let S′ and S1

be two new nonterminals not contained in N and set N ′ = N ∪ {S′, S1}, P ′ = P ∪ {(S′) → (S1S)}, and
replace all productions of the form (S) → (w) in P ′ with (S1, S) → (S1, w) and (S1, S) → (λ,w). Then,
Ḡ = (N ′, T, P ′, S′, R) is as required and it is not hard to see that L(G) = L(Ḡ).

3. Restricted Context-Free Rewriting Systems

A restricted context-free rewriting system is a quintuple G = (N,T, P, S, f), where (N,T, P, S) is a
context-free grammar and f : N → {+,−} ×N is a function.

For two strings u, v ∈ V ∗, where V = N ∪ T , and a production A → x ∈ P , we define the relation
uAv ⇒ uxv provided that

1. either f(A) = (+, X) and X ∈ alph(uAv),
2. or f(A) = (−, X) and X 6∈ alph(uAv),

where X ∈ N is a nonterminal. The language generated by G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w},
where ⇒∗ is the reflexive and transitive closure of the relation ⇒.

The families of languages generated by restricted context-free rewriting systems and λ-free restricted
context-free rewriting systems are denoted by L (rRS,CF) and L (rRS,CF− λ), respectively.

4. Examples

In this paper, we prove that restricted context-free rewriting systems with λ-productions are compu-
tationally complete. On the other hand, however, the question of what is the generative power of λ-free
restricted context-free rewriting systems is open. Therefore, in this section, we present two examples of
λ-free restricted context-free rewriting systems demonstrating their ability to generate non-context-free and
non-semi-linear languages.

Example 1. Let G = ({S,A,B,C,A′, B′, C ′}, {a}, P, S, f) be a restricted context-free rewriting system,
where P = {S → ABC, A → aA′, A → a, B → bB′, B → b, C → cC ′, C → c, A′ → A, B′ → B, C ′ → C}
and f is defined as follows.

3



1. f(S) = (+, S),
2. f(A) = (−, C ′),
3. f(B) = (−, A),
4. f(C) = (−, B),

5. f(A′) = (+, C ′),

6. f(B′) = (+, A),

7. f(C ′) = (+, B).

Then, it is quite obvious that L(G) = {anbncn : n ≥ 1}.
The next example shows that there are unary non-context-free languages generated by λ-free restricted

context-free rewriting systems.

Example 2. Let G = ({S,A,B,X,X ′, Y, Z, a′}, {a}, P, S, f) be a restricted context-free rewriting system,
where P and f are defined as follows.

1. S → BX,
2. B → aA2,
3. B → a′,
4. A→ B,
5. X → Y ,
6. X → Z,
7. Y → X ′,
8. X ′ → X,
9. a′ → a,

10. Z → a.

1. f(S) = (+, S),

2. f(B) = (+, X),

3. f(A) = (+, Y ),

4. f(X) = (−, B),

5. f(Y ) = (−, A),

6. f(X ′) = (−, a′),
7. f(a′) = (+, Z),

8. f(Z) = (−, a′).

Consider a sentential form a2k−1B2k

X, for some k ≥ 0. Clearly, BX is of this form for k = 0. Then, the
only successful derivations are the following (in what follows, ⇒(x) means that the derivation step is made
by production (x)):

a2k−1B2k

X ⇒∗(2) a2k−1a2k

A2k+1
X ⇒(5) a2k+1−1A2k+1

Y

⇒∗(4) a2k+1−1B2k+1
Y ⇒(7) a2k+1−1B2k+1

X ′

⇒(8) a2k+1−1B2k+1
X

and
a2k−1B2k

X ⇒∗(3) a2k−1a′2
k

X ⇒(6) a
2k−1a′2

k

Z ⇒∗(9) a2k−1a2k

Z ⇒(10) a
2k+1

.

Then, by induction, we have that L(G) = {a2n

: n ≥ 1}.

5. Main Result

In this section, we prove that every recursively enumerable language can be generated by a restricted
context-free rewriting system.

Theorem 2. L (rRS,CF) = L (RE).

Proof. Let L ∈ L (RE). Without loss of generality, L is generated by a 2-limited unordered scattered
context grammar G = (N,T, P, S,R) satisfying Lemma 1. Let n be the number of productions in P . Then,

P =
k−1⋃
i=1

((S)→ (wi)) ∪
n⋃

i=k

((Ai1, Ai2)→ (wi1, wi2)) ,

where 1 ≤ k ≤ n, and Ai1 6= Ai2. Construct G′ = (N ′, T, P ′, S′, f) as follows.

• For each p = (A,B)→ (x, y) ∈ P , if A→ x ∈ R, add (B,A)→ (y, x) to P .
4



Set N ′ = N ∪{A′ : A ∈ N}∪{Bp : p = (A,B)→ (x, y) ∈ P}∪{Al : A ∈ N}∪{Ar : A ∈ N}∪{#, $, X, Y }∪
{p, p′, p′′, p′′′, piv, pv : p ∈ P} (all these sets are pairwise disjoint), and define P ′ as follows.

1. For each (S)→ (w) ∈ P , add S → w with f(S) = (+, S) to P ′.
2. For each A ∈ N , add

(a) A→ Al and A→ Ar with f(A) = (+, A) to P ′.
3. For each p = (A,B)→ (x, y) ∈ P , add the following productions to P ′:

(a) Al → X#A′ with f(Al) = (−,#)
(b) Br → Bp$X with f(Br) = (−, $)
(c) X → λ with f(X) = (−, Y )
(d) A′ → p with f(A′) = (−, X)
(e) p→ p′ with f(p) = (+, Bp)
(f) Bp → y with f(Bp) = (+, p′)
(g) p′ → Y x with f(p′) = (−, Bp)
(h) #→ λ with f(#) = (+, Y )
(i) $→ λ with f($) = (+, Y )
(j) Y → λ with f(Y ) = (−, X)

4. If B → y ∈ R, add to P ′ also
(a) A′ → p′′
(b) p′′ → p′′′ with f(p′′) = (−, B)
(c) p′′′ → piv with f(p′′′) = (−, Bl)
(d) piv → pv with f(piv) = (−, Br)
(e) pv → Y x with f(pv) = (−, $)

where p, p′, p′′, p′′′, piv, and pv are new nonterminals added to N ′.
As the main idea of the proof is quite obvious from the construction, we only explain the meaning of

some symbols. The precise formal proof follows. Clearly, # and $ blocks the applications of productions (3a)
and (3b), respectively. Symbols X and Y play the crucial role in the construction; X is introduced at the
beginning of the simulation of a production and verifies that the previous simulation has been completed,
while Y is introduced after the simulation of a production to express that the simulation is complete. Then,
# and $ can be removed and a new simulation can begin. Notice that having both X and Y in the sentential
form blocks the derivation. Therefore, Y has to be removed before the new simulation starts.

To prove that L(G) ⊆ L(G′), consider a derivation step, w1Aw2Bw3 ⇒ w1xw2yw3, of G according to
p = (A,B)→ (x, y). In G′, the derivation is as follows.

w1Aw2Bw3 ⇒(2a) w1Alw2Bw3 ⇒(2a) w1Alw2Brw3

⇒(3a) w1X#A′w2Brw3 ⇒(3b) w1X#A′w2Bp$Xw3

⇒(3c) w1#A′w2Bp$Xw3 ⇒(3c) w1#A′w2Bp$w3

⇒(3d) w1#pw2Bp$w3 ⇒(3e) w1#p′w2Bp$w3

⇒(3f) w1#p′w2y$w3 ⇒(3g) w1#Y xw2y$w3

⇒(3h) w1Y xw2y$w3 ⇒(3i) w1Y xw2yw3

⇒(3j) w1xw2yw3 .

If there is no B in the sentential form and B → y ∈ R, the derivation is as follows.

w1Aw2 ⇒(2a) w1Alw2 ⇒(3a) w1X#A′w2 ⇒(3c) w1#A′w2

⇒(4a) w1#p′′w2 ⇒(4b) w1#p′′′w2 ⇒(4c) w1#pivw2

⇒(4d) w1#pvw2 ⇒(4e) w1#Y xw2 ⇒(3h) w1Y xw2

⇒(3j) w1xw2 .

The proof of this inclusion then follows by induction.
To prove that L(G′) ⊆ L(G), consider a successful derivation in G′. As it depends only on the presence

of some symbols in the sentential form, their positions are disregarded. Assume that the current sentential
form is w = w1Alw2Brw3, where w ∈ (N ∪ T ∪ {Cl : C ∈ N} ∪ {Cr : C ∈ N})∗.

5



As the derivation is successful, productions constructed in (2a) have been applied in a correct form,
it means that for some production (A,B) → (x, y), there are symbols Al and Br in the sentential form.
As these symbols cannot be replaced while there is # or $ in the sentential form, respectively, we do not
consider the possibly applicable productions constructed in (2a). Thus, now only productions constructed
in (3a) and (3b) are applicable.

3a: (These labels are sequences of productions applied so far.) (3a) is applied, i. e.

w1Alw2Brw3 ⇒(3a) w1X#A′w2Brw3 , (1)

then only (3b) and (3c) are applicable.
3a3b: (3b) is applied, then only (3c) is applicable (twice), then only (3d) and (4a) (however, (4a) blocks

the derivation). Thus, (3d) is applied, and then only (3e), then only (3f), then only (3g), i. e.

w1X#A′w2Brw3 ⇒(3b) w1X#A′w2Bp$Xw3 (2)
⇒(3c) w1#A′w2Bp$Xw3 (3)
⇒(3c) w1#A′w2Bp$w3 (4)
⇒(3d) w1#pw2Bp$w3 (5)
⇒(3e) w1#p′w2Bp$w3 (6)
⇒(3f) w1#p′w2y$w3 (7)
⇒(3g) w1#Y xw2y$w3 , (8)

and only (3h), (3i), and (3j) are applicable. However, (3j) blocks the derivation.
3a3b3c3c3d3e3f3g3h: (3h) is applied, i. e.

w1#Y xw2y$w3 ⇒(3h) w1Y xw2y$w3 , (9)

and only (3a), (3i), and (3j) are applicable. However, (3a) introduces X to the sentential form, which blocks
the derivation because neither X nor Y can be removed (see productions (3c) and (3j)).

3a3b3c3c3d3e3f3g3h3i: (3i) is applied, i. e.

w1Y xw2y$w3 ⇒(3i) w1Y xw2yw3 , (10)

and only (3a), (3b), and (3j) are applicable. However, both (3a) and (3b) introduce X to the sentential
form, which blocks the derivation as explained above. Thus, we obtain

w1Y xw2yw3 ⇒(3j) w1xw2yw3 . (11)

3a3b3c3c3d3e3f3g3h3j: (3j) is applied, then only (3a), then only (3c), i. e.

w1Y xw2y$w3 ⇒(3j) w1xw2y$w3 (12)
⇒(3a) w11X#C ′w12xw2y$w3 (13)
⇒(3c) w11#C ′w12xw2y$w3 , (14)

and only (3d) and (4a) are applicable. However, by (3d),

w11#C ′w12xw2y$w3 ⇒(3d) w11#qw12xw2y$w3 , (15)

and, by (4a),

w11#C ′w12xw2y$w3 ⇒(4a) w11#q′′w12xw2y$w3 (16)
⇒(4b) w11#q′′′w12xw2y$w3 (17)

⇒(4c) w11#qivw12xw2y$w3 (18)
⇒(4d) w11#qvw12xw2y$w3 , (19)

6



and the derivation is blocked. (In the last derivation step, we assume that there are no D, Dl, and Dr in
the sentential form, for q = (C,D)→ (u, v). If there is one of them, the derivation is blocked earlier.)

3a3b3c3c3d3e3f3g3i: (3i) is applied, i. e.

w1#Y xw2y$w3 ⇒(3i) w1#Y xw2yw3 , (20)

then only (3b), (3h), and (3j) are applicable. However, (3b) introduces X to the sentential form, which
blocks the derivation because neither X nor Y can be removed.

3a3b3c3c3d3e3f3g3i3h: (3h) is applied, i. e.

w1#Y xw2yw3 ⇒(3h) w1Y xw2yw3 , (21)

and the derivation continues as in (10).
3a3b3c3c3d3e3f3g3i3j: (3j) is applied, then only (3b), and then only (3c) is applicable, i. e.

w1#Y xw2yw3 ⇒(3j) w1#xw2yw3 (22)
⇒(3b) w1#xw2yw31Dq$Xw32 (23)
⇒(3c) w1#xw2yw31Dq$w32 , (24)

and the derivation is blocked.
3a3c: (3c) is applied, i. e.

w1X#A′w2Brw3 ⇒(3c) w1#A′w2Brw3 , (25)

and only (3b), (3d), and (4a) are applicable. If (3b) is applied, w1#A′w2Brw3 ⇒(3b) w1#A′w2Bp$Xw3, the
derivation continues as in (3).

3a3c3d: (3d) is applied, then only (3b) is applicable, then only (3c) and (3e) are applicable. If (3c) is
applied, the derivation continues as in (5). Thus, (3e) is applied. Then, only (3f) and (3c) are applicable.
If (3c) is applied, the derivation continues as in (6). Thus, (3f) is applied. Then, only (3c) and (3g) are
applicable. If (3c) is applied, the derivation continues as in (7). Thus, (3g) is applied;

w1#A′w2Brw3 ⇒(3d) w1#pw2Brw3 (26)
⇒(3b) w1#pw2Bp$Xw3 (27)
⇒(3e) w1#p′w2Bp$Xw3 (28)
⇒(3f) w1#p′w2y$Xw3 (29)
⇒(3g) w1#Y xw2y$Xw3 , (30)

and the derivation is blocked; neither X not Y can be removed.
3a3c4a: (4a) is applied, w1#A′w2Brw3 ⇒(4a) w1#p′′w2Brw3, then it is not hard to see that the

derivation will block; of course, only productions constructed in (3b) are applicable from the group of
productions constructed in (3), which introduce $, and then productions from the group of productions
constructed in (4) will block the derivation because there is B, Bl, Br, or $ in the sentential form.

3b: (3b) is applied, then only (3a) and (3c) are applicable. If (3a) is applied, the derivation continues
as in (2). Thus, (3c) is applied. Then, only (3a) followed by (3c) is applicable;

w1Alw2Brw3 ⇒(3b) w1Alw2Bp$Xw3 (31)
⇒(3c) w1Alw2Bp$w3 (32)
⇒(3a) w1X#A′w2Bp$w3 (33)
⇒(3c) w1#A′w2Bp$w3 , (34)

and the derivation continues as in (4).

7



AlBr

X#A′Br

X#A′Bp$X

#A′Bp$X

#A′Bp$

#pBp$

#p′Bp$ #p′y$ #Y xy$

Y xy$

Y xy

#Y xy

#A′Br

#pBr

#pBp$X

#p′Bp$X

#p′y$X

AlBp$X

AlBp$

X#A′Bp$

xy

3a
3b

3b3c

3c

3c

3d

3e

3f 3g

3h3i

3i

3j

3h

3a 3c

3a

3c

3b
3d

3b

3c

3e

3f

3c

3c

Figure 1: All possible applications of productions in a successful derivation simulating the production (A,B) → (x, y). Pro-
ductions that block the derivation are omitted. Nodes contain all symbols of the current sentential form that are not included
in N ∪ T ∪ {Cl : C ∈ N} ∪ {Cr : C ∈ N}.

8



This can be depicted graphically as shown in Figure 1. Note that (A,B)→ (x, y) does the same in G.
Next, assume that there are no symbols B, Br, and Bl in the sentential form and let w1Alw2 ∈ (N ∪

T ∪ {Cl : C ∈ N} ∪ {Cr : C ∈ N})∗. Then, the successful derivation is of the following form:

w1Alw2 ⇒(3a) w1X#A′w2 ⇒(3c) w1#A′w2

⇒(4a) w1#p′′w2 ⇒(4b) w1#p′′′w2

⇒(4c) w1#pivw2 ⇒(4d) w1#pvw2

⇒(4e) w1#Y xw2 .

The derivation then continues as in (20). The proof then follows by induction.

From the construction in the proof of Theorem 2, we have the following corollary.

Corollary 3. Every recursively enumerable language is generated by a restricted context-free rewriting sys-
tem G = (N,T, P, S, f), where A→ x ∈ P implies |x| ≤ 3.

6. Consequences

In this section, we present several consequences of the main result.
Recall that a random context grammar (with appearance checking) is a quadruple G = (N,T, P, S), where

N , T , and S are as in a context-free grammar, and P is a finite set of productions of the form (A→ x,Q,R),
where A → x is a context-free production and Q,R ⊆ N are permitting and forbidding sets, respectively.
For two strings u, v ∈ V ∗, where V = N ∪ T , and a production (A → x,Q,R) ∈ P , we define the relation
uAv ⇒ uxv provided that all symbols of Q appear in uAv, and no symbol of R appears in uAv. The
language generated by G is defined as L(G) = {w ∈ T ∗ : S ⇒∗ w}, where ⇒∗ is the reflexive and transitive
closure of the relation ⇒. The families of languages generated by random context grammars and λ-free
random context grammars are denoted as L (RC,CF, ac) and L (RC,CF− λ, ac), respectively.

It is well-known that L (RC,CF, ac) = L (RE) and L (RC,CF− λ, ac) ⊂ L (CS).
In addition, using the simulation of matrix grammars by random context grammars (see [1, Theo-

rem 1.2.3]), it follows from the results proved in [1] that for every recursively enumerable language L, there
exists a random context grammar G = (N,T, P, S) with L(G) = L such that all productions are of the form
(A→ x,Q,R) with A ∈ N , x ∈ V ∗, |x| ≤ 2, and R, Q are two disjoint subsets of N .

The following corollary of the main result gives a new normal form for random context grammars. Note
that Conditions (2) and (3) improve the previous normal form. On the other hand, however, Condition (1)
requires |x| ≤ 3, and it is an open problem whether we can also have |x| ≤ 2.

Corollary 4. For every recursively enumerable language L, there exists a random context grammar G =
(N,T, P, S) such that L = L(G) and each production (A → x,Q,R) ∈ P satisfies the following three
conditions:

1. |x| ≤ 3,
2. |Q ∪R| ≤ 1, and
3. if (A→ x,Q1, R1), (A→ y,Q2, R2) ∈ P , then Q1 = Q2 and R1 = R2.

Proof. For each production A → x of the restricted context-free rewriting system, we introduce the
production (A→ x,Q,R) so that Q = {X : (+, X) ∈ f(A)} and R = {X : (−, X) ∈ f(A)}. The statement
of the corollary then follows immediately from the definition and Theorem 2.

In addition, this corollary also demonstrates that many variants of random context grammars, such as
semi-conditional grammars (see [7]), simple semi-conditional grammars (see [6]) or conditional context-free
rewriting systems (see [5]) are computationally complete if λ-productions are allowed. This normal form
holds for them as well.

9



A matrix grammar (with appearance checking) is a quintuple G = (N,T,M, S, F ), where N , T , and S
are as in a context-free grammar, M is a finite set of finite sequences of the form [r1, r2, . . . , rn], n ≥ 1,
where ri is a context-free production, for all i = 1, 2, . . . , n, and F is a finite set of context-free productions.
For two strings u, v ∈ V ∗, where V = N ∪T , and a matrix [r1, r2, . . . , rn] ∈M , we define the relation u⇒ v
provided that there are sentential forms x0, x1, . . . , xn ∈ V ∗ such that u = x0, v = xn, and either xi−1 ⇒ xi

by ri, or ri is not applicable to xi−1, ri ∈ F and xi = xi−1. The language generated by G is defined as
L(G) = {w ∈ T ∗ : S ⇒∗ w}, where⇒∗ is the reflexive and transitive closure of the relation⇒. The families
of languages generated by matrix grammars and λ-free matrix grammars are denoted as L (M,CF, ac) and
L (M,CF− λ, ac), respectively.

It is also well-known that L (M,CF, ac) = L (RE) and that L (M,CF− λ, ac) = L (RC,CF− λ, ac).
The following normal form for matrix grammars is shown in [1, Lemmas 1.2.3 and 1.3.1]. For every

recursively enumerable language L, there exists a matrix grammar G = (N ∪ {Z}, T,M, S, F ), for some
Z /∈ N ∪ T , such that L(G) = L, all matrices are of the form [A→ x], [A→ x,X → Y ] or [A→ x,X → λ]
with A,X, Y ∈ N , x ∈ V ∗, |x| ≤ 2, and F consists only of productions of the form A→ Z, for A ∈ N .

Using the standard simulation of random context grammars by matrix grammars (see [1, Theorem 1.2.3]),
the following normal form for matrix grammars is an immediate consequence of the previous corollary.

Corollary 5. For every recursively enumerable language L, there exists a matrix grammar G = (N ∪
{Z}, T,M, S, F ), for some Z /∈ N ∪ T , such that L = L(G), Z is replaced only with itself and each matrix
is of one of the following two forms:

1. [A→ A,B → x], where A,B ∈ N and |x| ≤ 3, or
2. [A→ Z,B → x], where A,B ∈ N , |x| ≤ 3, and A→ Z ∈ F .

In addition, if [A→ X,B → x] ∈ M and [A→ Y,B → y] ∈ M are two matrices of G, then X,Y ∈ {A,Z}
and X = Y .

Again, we do not know whether the corollary also holds in case |x| ≤ 2.

7. Conclusion

In this paper, we studied restricted context-free rewriting systems with λ-productions. In formal language
theory, however, the λ-free case is of a great interest as well. Nevertheless, the generative power of λ-free
restricted context-free rewriting systems is an open problem. Note that the proof of Theorem 2 cannot be
trivially modified because it uses several arbitrary symbols that have to be introduced and removed many
times during the derivation process. On the other hand, it is well-known (see [1, 13]) that L (uSC−λ, ac) =
L (X,CF − λ, ac), where X ∈ {RC,M}. Obviously and by the fact that context-free languages are closed
under homomorphism,

L (CF) ⊂ L (rRS,CF − λ) ⊆ L (uSC,CF − λ, ac) .
Therefore, proving that λ-free restricted context-free rewriting systems are equivalent to λ-free unordered
scattered context grammars could introduce analogous normal forms for λ-free variants of random context
and matrix grammars. On the other hand, proving that the inclusion is proper would give a better char-
acterization of the family of languages having the property that every recursively enumerable language is a
homomorphic image of a language from that family. As far as the author knows, there is no other language
family characterized by context-free grammars with a regulating mechanism, properly included in the family
generated by λ-free random context (matrix) grammars, having this property.

Some examples demonstrating the generative power of λ-free restricted context-free rewriting systems
are presented above, cf. Examples 1 and 2 in Section 4. Can those languages be generated by λ-free
restricted context-free rewriting systems with all symbols coupled only with + (only with −)? And can
the set of all prime numbers be generated by such a system (with nonterminals coupled with both + and
−)? Note also that it is known that the language families generated by (λ-free) restricted context-free
rewriting systems with nonterminals coupled only with + (only with −, respectively) are weaker than the
general case. Specifically, they are included in the language families generated by random context grammars

10



L (RE) = L (rRS,CF) = L (RC,CF, ac)

L (REC)

L (RC,CF)

L (rRS,CF,+)

L (fRC,CF)

L (rRS,CF,−)

L (CS)

L (RC,CF− λ, ac)

L (rRS,CF− λ)L (fRC,CF− λ)

L (rRS,CF− λ,−)

L (RC,CF− λ)

L (rRS,CF− λ,+)

Figure 2: A hierarchy of language families. If two families are connected by a line (an arrow), then the upper family includes
(includes properly) the lower family. If two families are not connected, then they are not necessary incomparable. L (rRS,X, y),
X ∈ {CF,CF− λ}, y ∈ {+,−}, denotes the language family generated by (λ-free) restricted context-free rewriting systems,
where all nonterminals are coupled with y. L (RC,X)

`
L (fRC,X)

´
, X ∈ {CF,CF− λ}, denotes the language family generated

by (λ-free) random context grammars
`
by (λ-free) forbidding grammars, respectively

´
.

without appearance checking (also called permitting grammars) and forbidding random context grammars,
respectively, which are known to be properly included in the family of recursive languages or in the family
of random context (matrix) languages if λ-productions are or are not allowed, respectively (see [8–10] and
Figure 2 for an overview of the language hierarchy).

Finally, note that it is an interesting mathematically challenging question to ask what is the generative
power of restricted context-free rewriting systems with the function being injective.

Acknowledgements
The author gratefully acknowledges very useful suggestions and comments of the anonymous referee

improving this paper. This work was supported by the Czech Ministry of Education under the Research
Plan No. MSM 0021630528.

References

[1] J. Dassow, G. Păun, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, 1989.
[2] H. Fernau, R. Freund, M. Oswald, K. Reinhardt, Refining the nonterminal complexity of graph-controlled, programmed,

and matrix grammars, Journal of Automata, Languages and Combinatorics 12 (1–2) (2007) 117–138.
[3] T. Masopust, Formal models: Regulation and reduction, Ph.D. thesis, Brno University of Technology, Brno (2007).
[4] T. Masopust, A note on the generative power of some simple variants of context-free grammars regulated by context

conditions, in: A. H. Dediu, A. M. Ionescu, C. Mart́ın-Vide (Eds.), LATA 2009 proceedings, Vol. 5457 of Lecture Notes
in Computer Science, Springer-Verlag, 2009, pp. 554–565.

[5] T. Masopust, A. Meduna, On context-free rewriting with a simple restriction and its computational completeness, RAIRO
– Theoretical Informatics and Applications 43 (2) (2009) 365–378.

[6] A. Meduna, A. Gopalaratnam, On semi-conditional grammars with productions having either forbidding or permitting
conditions, Acta Cybernetica 11 (4) (1994) 307–324.

[7] G. Păun, A variant of random context grammars: Semi-conditional grammars, Theoretical Computer Science 41 (1985)
1–17.

11



[8] H. Bordihn, H. Fernau, Accepting grammars and systems, Tech. Rep. 22/94, Universität Karlsruhe, Fakultät für Informatik
(1994).
URL http://citeseer.ist.psu.edu/article/bordihn95accepting.html

[9] S. Ewert, A. P. J. van der Walt, A pumping lemma for random permitting context languages, Theoretical Computer
Science 270 (1–2) (2002) 959–967.

[10] A. P. J. van der Walt, S. Ewert, A shrinking lemma for random forbidding context languages, Theoretical Computer
Science 237 (1-2) (2000) 149–158.

[11] A. Salomaa, Formal languages, Academic Press, New York, 1973.
[12] J. E. Hopcroft, J. O. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.
[13] O. Mayer, Some restrictive devices for context-free grammars, Information and Control 20 (1972) 69–92.
[14] S. Greibach, J. Hopcroft, Scattered context grammars, Journal of Computer and System Sciences 3 (1969) 233–247.

12


