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Abstract: In this paper, we study hierarchical supervisory control with partial observations.
In particular, we are interested in preservation of supremal normal and supremal controllable
and normal sublanguages from the abstracted system (high level) in the original (low level)
system. Sufficient conditions are formulated under which the supremal normal or the supremal
controllable and normal sublanguage computed at the high level (for the abstracted plant) is
implementable at the low level, i.e., in the original plant.
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1. INTRODUCTION

In the study of large and complex discrete event plants
there are two basic approaches to face the high (often
prohibitive) computational complexity of their supervisor
synthesis: decentralized control and hierarchical control.
The decentralized (or distributed) approach can be seen as
a horizontal abstraction, while the hierarchical approach
can be seen as a vertical abstraction. Often both these
perpendicular ways are combined in order to achieve a
higher computational saving in the supervisory control
synthesis, see Schmidt et al. (2008).

On one hand, there has been a considerable effort in apply-
ing the hierarchical control architecture to large discrete
event systems (DES) modeled by automata with com-
plete observations. Particularly, the sufficient conditions
under which the high level synthesis of a nonblocking and
optimal (the least restrictive) supervisor has a low level
implementation are well known. These are called observer
condition, and output control consistency (see Zhong and
Wonham (1990)) or local control consistency (see Schmidt
and Breindl (2008)). Mathematically, the key problem is
when the supremal normal or supremal controllable and
normal sublanguage of the high level specification com-
mutes with the inverse abstraction (typically abstraction
is given by a natural projection from all plant events, called
low level events, to projected (high level events) that are
used by the abstracted system).

On the other hand, however, there was almost no interest
in applying the hierarchical control approach to partially
observed automata, although it seems important to inves-
tigate the possibilities for the complexity reduction of the
supervisor synthesis procedure known to be exponential
for discrete event systems with partial observations. The
basic supervisory control theorem under partial observa-
tions (see Cassandras and Lafortune (2008)) states that
a specification language must be controllable, observable,
and Lm(G)-closed in order to achieve the given speci-

fication as the language of the closed-loop system in a
nonblocking manner, i.e., from all states reachable in the
resulting automaton a marked state can be reached.

In the hierarchical control architecture the synthesis is
done in the abstracted (high level) plant and the major
problem is how to ensure that the high level solution is
implementable at the low level, i.e., in the original plant.
Of course, it is only implementable if observability and
controllability are preserved in the original (low level)
plant. Moreover, in the case when the (high level safety)
specification language is not controllable or observable,
an approximation (from below when considering safety
specification) must be computed, i.e., a controllable and
observable sublanguage. However, it is known that observ-
ability unlike controllability is not preserved under unions.
Therefore, the supremal observable sublanguage does not
always exist, and there are only maximal observable sub-
languages, which are not unique in general. Fortunately,
normality coincides with observability in the case when
all controllable events are observable. This is a common
assumption, which ensures that optimal solutions exist.
It is therefore interesting to investigate when supremal
normal sublanguages of high level specifications commute
with the inverse projection (to high level events).

In this paper, the commutation, which is equivalent to the
preservation of supremal normal and supremal controllable
and normal sublanguages of the abstracted systems in the
original system, is investigated. A simple algebraic formula
for supremal normal and supremal controllable and normal
sublanguages given in Brandt et al. (1990) is used in our re-
sults that specify preliminary sufficient conditions for this
commutation in the case of prefix-closed specifications.
Using another approach, inspired by a similar result for
supremal controllable sublanguages from Feng (2007), our
first result is extended to the general case, where the spec-
ification need not be a prefix-closed language. Note that
our condition is also necessary in the sense that if it is not
satisfied, then we can find a low level plant language and



a high level specification language so that the supremal
(controllable and) normal sublanguage computed in the
abstracted (high level) system disagree with the supremal
(controllable and) normal sublanguage computed in the
original (low level) system, see Example 10.

The organization of this paper is as described below. In
the next section preliminary fundamental results from
supervisory control theory are recalled. Then, Section 3
presents the hierarchical control with partial observations,
where the sufficient conditions for preservation of the
high level supremal normal sublanguages at the low level
are formulated in the case of prefix-closed languages.
In Section 4, the sufficient conditions under which the
supremal controllable and normal sublanguages of the high
level are preserved by the inverse abstraction, i.e., they
are implementable at the physical (low) level, are studied
in the case of prefix-closed languages, and Section 5 then
discusses the case of general (i.e., not necessarily prefix-
closed) specifications.

2. PRELIMINARIES AND DEFINITIONS

The reader interested in further concepts and results con-
cerning supervisory control is referred to Wonham (2009)
or Cassandras and Lafortune (2008) for more details.

For an event alphabet (finite nonempty set) A, A∗ denotes
the free monoid generated by A. For s1, s2 ∈ A∗, s1 ≤ s2
denotes that s1 is a prefix of s2, i.e., there exists s ∈ A∗
such that s2 = s1s. The empty string is denoted by λ. A
language L over the alphabet A is a subset L ⊆ A∗. The
prefix closure of L is defined as L = {s1 ∈ A∗ : s1 ≤ s for
some s ∈ L}. A language L is prefix-closed if L = L.

Let G = (S,A, f, s0, Qm) be a DES generator consisting
of a finite state set S, an event alphabet A, a (partial)
transition function f : S × A → S, the initial state
s0 ∈ S, and the set of marked states Qm ⊆ Q. The
standard notations for the prefix-closed language of G is
L(G) = {w ∈ A∗ : f(s0, w) ∈ Q}, and for the marked
language of G is Lm(G) = {w ∈ A∗ : f(s0, w) ∈ Qm}. The
DES is nonblocking if Lm(G) = L(G).

The natural projection P : A∗ → A∗0, where A0 ⊆ A, is a
homomorphism defined so that P (a) = λ, for a ∈ A−A0,
and P (a) = a, for a ∈ A0. The inverse image of P is
denoted by P−1 : A∗0 → 2A∗

.

In supervisory control theory with partial observations,
one has A = Ac ∪̇ Auc = Ao ∪̇ Auo, where ∪̇ denotes the
disjoint union, to distinguish the sets Ac of controllable
events and Auc of uncontrollable events, Ao of observable
events and Auo of unobservable events. In hierarchical
supervisory control, the abstracted (high level) plant is
often simply the plant projected to the subset of high
level events, denoted by Ahi. Thus, there is a similar
decomposition A = Ahi ∪̇ (A − Ahi), and the associated
projection (abstraction) is denoted by Q : A∗ → (Ahi)∗.

Let L be a prefix-closed language and K ⊆ L ⊆ A∗. K is
normal with respect to L and a natural projection P if,
for all s ∈ L, s ∈ K if and only if P (s) ∈ P (K), i.e.,

K = P−1(P (K)) ∩ L .

In addition, let N(K,L, P ) denote the set of all normal
sublanguages of K with respect to L and P . Furthermore,
K is controllable with respect to L and Auc if

KAuc ∩ L ⊆ K .

Let C(K,L) denote the set of all controllable sublanguages
of K with respect to L and Auc. Let CN(K,L, P ) denote
the set of all controllable and normal sublanguages of K
with respect to L, P , and Auc. Note that Auc is omitted
from this notation because it will be clear from the context.
In this paper, controllability is considered either at the low
level and then with respect to Auc, or at the high level and
then with respect to Auc ∩Ahi.

As it is known that a unique supremal normal (control-
lable) sublanguage exists, we can denote the supremal
languages of N(K,L, P ), C(K,L), and CN(K,L, P ) by
sup N(K,L, P ), sup C(K,L), and sup CN(K,L, P ), respec-
tively. Recall that there are algorithms for computation of
these supremal languages. The reader is referred to Cas-
sandras and Lafortune (2008); Komenda and van Schup-
pen (2005); Zad et al. (2005) for more details.

Let K ⊆ L = L ⊆ A∗, where A = Ac ∪̇Auc = Ao ∪̇Auo.
Let P : A∗ → A∗o be a natural projection. Then, K is
observable with respect to L, Ao, and Ac if, for all s ∈ K
and c ∈ Ac, sc ∈ L and sc /∈ K imply that

P−1(P (s)){c} ∩K = ∅ .
There is also an algorithm for computation of controllable
and observable sublanguages, see Takai and Ushio (2003).

In contrast to normal or controllable languages, no supre-
mal observable sublanguage exists. However, normality
implies observability as shown in Lin and Wonham (1988).

3. SUPREMAL NORMAL SUBLANGUAGES

This section presents sufficient conditions preserving the
high level supremal normal sublanguages at the low level
in the hierarchical control of discrete event systems with
partial observations in the case of prefix-closed specifica-
tions.

First, recall the formula for supremal normal sublanguages
of K = K ⊆ L = L ⊆ A∗ with respect to L and P shown
in Brandt et al. (1990).
Fact 1. For any two prefix-closed languages K ⊆ L ⊆ A∗

and a natural projection P : A∗ → A∗o,
sup N(K,L, P ) = K − P−1(P (L−K))A∗ .

The following notation is implicitly used in this paper.
Definition 2. Let

Q : A∗ → (Ahi)
∗

P : A∗ → A∗o
Qo : A∗o → (Ao ∩Ahi)∗ Phi : (Ahi)

∗ → A∗o
be natural projections such that the diagram in Fig. 1
commutes, i.e., Qo ◦ P = Phi ◦Q.

These properties hold for natural projections.
Lemma 3. Let R be a natural projection and A,B be two
languages. Then, R−1(A−B) = R−1(A)−R−1(B).
Lemma 4. Let M ⊆ B∗ ⊆ A∗ and R : A∗ → B∗ be a
natural projection. Then, M is prefix-closed if and only if
R−1(M) is prefix-closed.
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Fig. 1. Natural projections used in this paper.

The following theorem shows that the supremal normal
sublanguage of the low level can be computed at the
abstracted (high) level.

Theorem 5. Let K ⊆ (Ahi)∗ and L ⊆ A∗ be prefix-closed
languages. If Q−1(K) ⊆ L and Ao ⊆ Ahi, then

Q−1(sup N(K,Q(L), Phi)) = sup N(Q−1(K), L, P ) .

Proof. First, Ao ⊆ Ahi implies that Qo is an identity.
Then, by Fact 1, we have

Q−1(sup N(K,Q(L), Phi))

= Q−1(K − Phi−1
Phi(Q(L)−K)(Ahi)

∗
)

= Q−1(K)−Q−1Phi−1
Phi(Q(L)−K)Q−1((Ahi)

∗
)

= Q−1(K)−Q−1Phi−1
Phi(Q(L)−K)A∗ .

As P−1 = Q−1Phi−1 and Phi = PhiQQ−1 = PQ−1, we
also have

Q−1(K)−Q−1Phi−1
Phi(Q(L)−K)A∗

= Q−1(K)− P−1PQ−1(Q(L)−K)A∗

= Q−1(K)− P−1P (Q−1Q(L)−Q−1(K))A∗ .

Now, as L ⊆ Q−1Q(L),
P−1P (Q−1Q(L)−Q−1(K)) ⊇ P−1P (L−Q−1(K)) .

On the other hand, let u ∈ Q−1Q(L) − Q−1(K) be such
that u /∈ L. As Q(u) ∈ Q(L), there exists w ∈ L such that
Q(w) = Q(u) and w /∈ Q−1(K); otherwise, w ∈ Q−1(K)
implies that Q(u) = Q(w) ∈ K, hence u ∈ Q−1(K) which
is a contradiction. However, P−1P (u) = P−1PhiQ(u) =
P−1PhiQ(w) = P−1P (w). Therefore,

Q−1(K)− P−1P (Q−1Q(L)−Q−1(K))A∗

= Q−1(K)− P−1P (L−Q−1(K))A∗

= sup N(Q−1(K), L, P ) ,
which completes the proof. 2

The following result is an immediate consequence of the
previous theorem.
Corollary 6. Let K ⊆ (Ahi)∗ and L ⊆ A∗ be prefix-closed
languages. Let Q−1(K) ⊆ L and Ao ⊆ Ahi. If K is normal
with respect to Q(L) and Phi, then Q−1(K) is normal
with respect to L and P .

On the other hand, the following example demonstrates
that the condition Ao ⊆ Ahi is (in some sense) necessary.
Example 7. Let A = {a, b, c}, where Ao = {a, c}, Auo =
{b}, and Ahi = {b, c}. Let
L = {abc} ∪ a∗ba∗ ∪ a∗ca∗ ∪ a∗ and K = {λ, b, c} .

Using Fact 1, we have

• Q−1(K) = a∗ba∗ ∪ a∗ca∗ ∪ a∗ ⊆ L,
• L−Q−1(K) = {abc}, and
• P−1P (abc) = P−1(ac) = b∗ab∗cb∗,

which implies c ∈ Q−1(K) − P−1P (L − Q−1(K))A∗, i.e.,
c ∈ sup N(Q−1(K), L, P ). On the other hand, however,

• Q(L)−K = {λ, b, c, bc} − {λ, b, c} = {bc},
• Phi(bc) = c, and Phi−1

(c) = b∗cb∗.

Thus, we have c /∈ Q−1(K − Phi−1
Phi(Q(L)−K)Ahi∗) =

Q−1({λ, b}) = a∗ ∪ a∗ba∗ = Q−1(sup N(K,Q(L), Phi)). 3

Theorem 5 and Example 7 imply the following result.
Corollary 8. The following equivalence holds.
Q−1(sup N(K,Q(L), Phi)) = sup N(Q−1(K), L, P ) (1)

for all prefix-closed languages K and L such that K ⊆
(Ahi)∗ and Q−1(K) ⊆ L ⊆ A∗ if and only if Ao ⊆ Ahi.

Remark that the necessity part of Corollary 8 only holds
in a restricted sense, i.e., there might exist languages K
and L such that K ⊆ (Ahi)∗, Q−1(K) ⊆ L ⊆ A∗, and
Ao 6⊆ Ahi satisfying equality (1). However, if the equality
holds for all such languages K and L, then necessarily
Ao ⊆ Ahi.

Note that we could study a condition called output normal
consistency as an analogy to output control consistency
discussed in Schmidt and Breindl (2008) or Feng (2007).

Definition 9. The natural projection Q : A∗ → (Ahi)∗ is
output normal consistent (ONC) for L ⊆ A∗ if for every
s ∈ L of the form

s = σ1 . . . σk or s = s′σ0σ1 . . . σk, k ≥ 1 ,
where s′ ∈ A∗, σ0, σk ∈ Ahi and σi ∈ A − Ahi, for i =
1, . . . , k−1, if σk ∈ Auo, then σi ∈ Auo, for i = 1, . . . , k−1.

However, if we assume that there exists a ∈ Ao−Ahi, then
if there also exists b ∈ Ahi ∩ Auo such that ubv ∈ K, for
some u, v ∈ (Ahi)∗, then uabv ∈ Q−1(K) ⊆ L. Thus, Q is
not ONC for L.

The assumption that ubv ∈ K can be justified so that
if no such string containing an unobservable high level
event b exists in K, i.e., all strings of K are composed
of observable events only, we have that Phi(K) = K
and, clearly, K is observable with respect to Q(L) and
Ahi. In this case, however, our approach using supremal
normal sublanguages is not needed because the high level
supervisor can be synthesized using K itself.

This observation motivates the weakening of our assump-
tion from Q−1(K) ⊆ L to K ⊆ Q(L). Nevertheless, the
following example shows that the assumption Ao ⊆ Ahi is
still required.
Example 10. Let A = {a, b, c}, where Ao = {a, c}, Auo =
{b}, and Ahi = {b, c}. Let
L = {λ, a, b, c, ba, bac} and K = {λ, b, c} ⊆ Q(L) .

Note that Ao 6⊆ Ahi. It is not hard to see that Q is ONC
for L because there are no low level observable symbols
preceding b, the only uncontrollable high level event, in any
word of L. Furthermore, using Fact 1, we get the following.

• Q−1(K)∩L = a∗ba∗∪a∗ca∗∪a∗∩L = {λ, a, b, c, ba},
• L−Q−1(K) ∩ L = {bac}, and



• P−1P (bac) = P−1(ac) = b∗ab∗cb∗.

Thus, we have c ∈ Q−1(K)∩L−P−1P (L−Q−1(K))A∗ =
{λ, a, b, c, ba} = sup N(Q−1(K) ∩ L,L, P ). On the other
hand, however,

• Q(L)−K = {λ, b, c, bc} − {λ, b, c} = {bc},
• Phi(bc) = c, and Phi−1

(c) = b∗cb∗.

Thus, we obtain that c /∈ Q−1(sup N(K,Q(L), Phi))∩L =
Q−1(K − Phi−1

Phi(Q(L)−K)Ahi∗) ∩ L = Q−1({λ, b}) ∩
L = {λ, a, b, ba}. 3

Considering Ao ⊆ Ahi, the following result is an analogous
result to Theorem 5 above.
Theorem 11. For any two prefix-closed languages L ⊆ A∗

and K ⊆ Q(L). If Ao ⊆ Ahi, then

Q−1(sup N(K,Q(L), Phi)) ∩ L
= sup N(Q−1(K) ∩ L,L, P ) .

Proof. Again, by Fact 1, we have

Q−1(sup N(K,Q(L), Phi)) ∩ L
= Q−1(K − Phi−1

Phi(Q(L)−K)(Ahi)
∗
) ∩ L

=
(
Q−1K −Q−1Phi−1

Phi(Q(L)−K)Q−1Ahi∗) ∩ L
= Q−1(K) ∩ L−Q−1Phi−1

Phi(Q(L)−K)A∗ .
The last equality follows from the fact that (X − Y ) ∩
Z = X ∩ Z − Y . In addition, as P−1 = Q−1Phi−1 and
Phi = PhiQQ−1 = PQ−1, we also have

Q−1(K) ∩ L−Q−1Phi−1
Phi(Q(L)−K)A∗

= Q−1(K) ∩ L− P−1PQ−1(Q(L)−K)A∗

= Q−1(K) ∩ L− P−1P (Q−1Q(L)−Q−1(K))A∗ .
Analogously as above, we can prove that
P−1P (Q−1Q(L)−Q−1(K)) = P−1P (L−Q−1(K)) .

Therefore,

Q−1(K) ∩ L− P−1P (Q−1Q(L)−Q−1(K))A∗

= Q−1(K) ∩ L− P−1P (L−Q−1(K))A∗

= Q−1(K) ∩ L− P−1P (L−Q−1(K) ∩ L)A∗

= sup N(Q−1(K) ∩ L,L, P ) ,
which completes the proof. 2

From Theorem 11 and Example 10, we immediately have
the following consequence similar to Corollary 8.
Corollary 12. The following equivalence holds.

Q−1(sup N(K,Q(L), Phi)) ∩ L
= sup N(Q−1(K) ∩ L,L, P )

for all two prefix-closed languages L ⊆ A∗ and K ⊆ Q(L)
if and only if Ao ⊆ Ahi.

4. SUPREMAL CONTROLLABLE AND NORMAL
SUBLANGUAGES

In what follows, the result of the previous section is gener-
alized to the case where preservation of both controllability
and normality is considered in the supremal sublanguage
between the computations at high and low levels.

By Brandt et al. (1990), we have the following formula for
supremal controllable and normal sublanguages.
Fact 13. For any two prefix-closed languagesB ⊆M ⊆ A∗
and a natural projection R : A∗ → A∗o,

sup CN(B,M,R)
= M ∩R−1(sup C(R(sup N(B,M,R)), R(M))) .

Similarly as in Brandt et al. (1990) the set of uncontrol-
lable events is not listed to simplify the formulas. In fact,
sup CN(B,M,R) stands for the supremal controllable and
normal sublanguages of B with respect to M , a natural
projection R, and the uncontrollable event set Auc.

To prove the main result concerning prefix-closed lan-
guages, we need the following lemma.
Lemma 14. Let Q : A∗ → (Ahi)∗ be as defined above, and
let Y ⊆ A∗ and X ⊆ Q(Y ) be two languages. Then,

Q(Q−1(X) ∩ Y ) = X .

Proof. Let x ∈ Q(Q−1(X) ∩ Y ), then there exists y ∈
Q−1(X) ∩ Y such that Q(y) = x. As y ∈ Q−1(X), we
have that x = Q(y) ∈ X. On the other hand, let x ∈ X.
As X ⊆ Q(Y ), there exists y ∈ Y such that Q(y) = x.
Thus, we have that y ∈ Q−1(X) ∩ Y , which implies that
x ∈ Q(Q−1(X) ∩ Y ). 2

Now, we can prove the following theorem, which says that
the supremal controllable and normal sublanguage of a
prefix-closed language of the low level can be computed at
the high level.
Theorem 15. For any two prefix-closed languages L ⊆ A∗

and K ⊆ Q(L). If Ao ⊆ Ahi, then

Q−1(sup CN(K,Q(L), Phi)) ∩ L
= sup CN(Q−1(K) ∩ L,L, P ) .

Proof. First we make clear that the controllability of the
sublanguage on the left hand side is meant with respect to
uncontrollable event set Phi(Auc) = Ahi ∩ Auc, while the
controllability of the sublanguage on the right hand side
is meant with respect to Auc. As Ao ⊆ Ahi, we have that
P = PhiQ.

Now, note that by Theorem 11, we have

Q−1(sup N(K,Q(L), Phi)) ∩ L
= sup N(Q−1(K) ∩ L,L, P ) .

As sup N(K,Q(L), Phi) ⊆ K ⊆ Q(L), we obtain using
Lemma 14 that

Q(sup N(Q−1(K) ∩ L,L, P ))

= Q(Q−1(sup N(K,Q(L), Phi)) ∩ L)

= sup N(K,Q(L), Phi) .

By Fact 13, we have

Q−1(sup CN(K,Q(L), Phi)) ∩ L
= L ∩Q−1Q(L)∩
Phi−1

sup C(Phisup N(K,Q(L), Phi), PhiQ(L)) .

Note that the controllability is with respect to Auc∩Ahi∩
Ao = Phi(Q(Auc)) = P (Auc). Therefore,



= Q−1Q(L) ∩ L∩
Q−1Phi−1

sup C(Phisup N(K,Q(L), Phi), P (L))

= L ∩ P−1sup C(Phisup N(K,Q(L), Phi), P (L))

= L ∩ P−1sup C(PhiQ sup N(Q−1(K) ∩ L,L, P ), P (L))
= L ∩ P−1sup C(P sup N(Q−1(K) ∩ L,L, P ), P (L))
= sup CN(Q−1(K) ∩ L,L, P ) ,

which proves the theorem. 2

Note that we do not have to limit ourselves to the situation
where K ⊆ Q(L). Assume that a given specification
language K ′ is such that K ′ 6⊆ Q(L). Then, however, it
is of interest to consider only the corresponding part of
the specification, i.e., the sublanguage K := K ′ ∩ Q(L).
As it holds that K ⊆ Q(L) and we have that Q−1(K) ∩
L = Q−1(K ′ ∩ Q(L)) ∩ L = Q−1(K ′) ∩ Q−1Q(L) ∩
L = Q−1(K ′)∩L, the previous theorem gives the following
consequence.
Corollary 16. For any prefix-closed languagesK ′ ⊆ (Ahi)∗

and L ⊆ A∗. If Ao ⊆ Ahi, then

Q−1(sup CN(K ′ ∩Q(L), Q(L), Phi)) ∩ L
= sup CN(Q−1(K ′) ∩ L,L, P ) .

5. NON-PREFIX-CLOSED SPECIFICATIONS

Since the formulas for supremal normal and supremal
controllable and normal sublanguages from Brandt et al.
(1990) are applicable only to prefix-closed languages, to
show analogous results for non-prefix-closed specifications
we extend the result for supremal controllable sublan-
guages shown in Feng (2007).

We recall the notions of output control consistency and
observer property of abstractions (natural projections).

Definition 17. The natural projection Q : A∗ → (Ahi)∗ is
output control consistent (OCC) for L ⊆ A∗ if for every
s ∈ L of the form

s = σ1 . . . σk or s = s′σ0σ1 . . . σk, k ≥ 1 ,
where s′ ∈ A∗, σ0, σk ∈ Ahi and σi ∈ A − Ahi, for i =
1, . . . , k−1, if σk ∈ Auc, then σi ∈ Auc, for i = 1, . . . , k−1.

Wong and Wonham (1996) defined the notion of observer
which we use in this section.
Definition 18. The natural projection Q : A∗ → (Ahi)∗ is
an L-observer for L ⊆ A∗ if, for all t ∈ Q(L) and s ∈ L,
Q(s) ≤ t implies that there exists u ∈ A∗ such that su ∈ L
and Q(su) = t.

First we recall Theorem 4.2 from Feng (2007) concerning
the case of supremal controllable sublanguages.
Theorem 19. Let G be a plant over A, where L = L(G)
and Lm = Lm(G) are nonblocking plant languages, i.e.,
L = Lm. Let Q : A∗ → (Ahi)∗ be an Lm-observer and
OCC for L. Then, for any specification K ⊆ (Ahi)∗,

Q−1(sup C(K ∩Q(Lm), Q(L))) ∩ Lm

= sup C(Q−1(K) ∩ Lm, L) .

Now, we can prove the following theorem.

Theorem 20. Let G be a plant over A, where L = L(G)
and Lm = Lm(G) are nonblocking plant languages. Let
Q : A∗ → (Ahi)∗ be an Lm-observer and OCC for L. For
any specification K ⊆ (Ahi)∗, if A0 ⊆ Ahi, then

Q−1(sup CN(K ∩Q(Lm), Q(L), Phi)) ∩ Lm

= sup CN(Q−1(K) ∩ Lm, L, P ) .

Proof. Let us denote N = sup CN(Q−1(K) ∩ Lm, L, P )
and Nhi = sup CN(K ∩Q(Lm), Q(L), Phi).

We first prove that N ⊆ Q−1(Nhi) ∩ Lm, i.e., we need
to show that Q(N) ⊆ Nhi and N ⊆ Lm. However, as
N ⊆ Q−1(K) ∩ Lm, the latter inclusion is immediate.
In order to show that Q(N) ⊆ Nhi, we prove (i) that
Q(N) ⊆ K ∩ Q(Lm), (ii) that Q(N) is controllable with
respect to Q(L) and Auc ∩ Ahi, and (iii) that Q(N) is
normal with respect to Q(L) and Phi.

To show (i), note that from N ⊆ Q−1(K) ∩ Lm we
immediately have that Q(N) ⊆ Q(Q−1(K) ∩ Lm) ⊆ K ∩
Q(Lm). Item (ii) is proven in Theorem 4.2 in Feng (2007),
more precisely it is shown in Lemma 4.3 therein. Note that
in this part of the proof, the observer and OCC properties
are used in Lemma 4.3 of Feng (2007). Finally, to show
(iii), we know that N is normal with respect to L and P ,
i.e., N = P−1P (N) ∩ L. Applying Q on this equation
we obtain Q(N) = Q(P−1P (N) ∩ L) = Q(P (N)‖L),
where the last equality is by definition of the synchronous
product (see Cassandras and Lafortune (2008)). Using
Proposition 4.3 in Feng (2007) along with the assumption
that Ao ⊆ Ahi means that projection below distributes
with the synchronous product. Moreover, since Ao ⊆ Ahi,
Qo is an identity in the commutative diagram of Fig. 1,
i.e., P = Phi ◦Q. Hence, we have that

Q(N) = Q(P (N)‖L) = QoP (N)‖Q(L) = P (N)‖Q(L)

= (Phi)−1P (N) ∩Q(L)

= (Phi)−1PhiQ(N) ∩Q(L) ,

where the equalities are in turn by the previous equation,
Proposition 4.3 in Feng (2007), Qo is an identity, definition
of the synchronous product, and P = Phi ◦Q. Thus, Q(N)
is normal with respect to Q(L) and Phi.

In order to prove the other inclusion, Q−1(Nhi) ∩ Lm ⊆
N , we show (1) that Q−1(Nhi) ∩ Lm ⊆ Q−1(K) ∩ Lm,
which immediately follows from the following: Q−1(Nhi)∩
Lm ⊆ Q−1(K ∩ Q(Lm)) ∩ Lm = Q−1(K) ∩ Q−1Q(Lm) ∩
Lm = Q−1(K) ∩ Lm; and (2) that (i) Q−1(Nhi) ∩ Lm is
controllable with respect to L and Auc, and (ii)Q−1(Nhi)∩
Lm is normal with respect to L and P . Again, (i) has been
proven in Theorem 4.2 in Feng (2007). In fact, the proof of
controllability of Q−1(Nhi)∩Lm is based on two auxiliary
results: first it is shown that Q−1(Nhi) and Lm are non-
conflicting, i.e., Q−1(Nhi) ∩ Lm = Q−1(Nhi) ∩ L, and
then Proposition 4.6 of Feng (2007) gives (i). The equality
Q−1(Nhi) ∩ Lm = Q−1(Nhi)∩L that we need below in the
proof of (ii) is actually shown using Theorem 4.1 therein
that uses the assumption that Q is Lm-observer. Now, to
prove (ii), we know that Nhi = (Phi)−1Phi(Nhi) ∩ Q(L).
Then,



Q−1(Nhi) ∩ L = Q−1((Phi)−1Phi(Nhi) ∩Q(L)) ∩ L
= Q−1(Phi)−1Phi(Nhi) ∩Q−1Q(L) ∩ L
= Q−1(Phi)−1Phi(Nhi) ∩ L
= P−1Phi(Nhi) ∩ L
= P−1PQ−1(Nhi) ∩ L .

Then, as Q−1(Nhi) ∩ Lm = Q−1(Nhi) ∩ L,

P−1P (Q−1(Nhi) ∩ Lm) ∩ L
= P−1P (Q−1(Nhi) ∩ L) ∩ L
⊆ P−1PQ−1(Nhi) ∩ P−1P (L) ∩ L
= P−1PQ−1(Nhi) ∩ L
= Q−1(Nhi) ∩ L = Q−1(Nhi) ∩ Lm ,

where the last two equalities follow from the previous
equations. Since the opposite inclusion of normality holds
always true, this means that Q−1(Nhi)∩Lm is normal with
respect to L and P , which was to be shown. 2

In the previous proof, the OCC property has been required
only to show the controllability of the language and it plays
no role for normality. On the other hand, however, the
property of Q being an Lm-observer has been required also
to show normality. Thus, we have the following corollary
concerning supremal normal sublanguages.
Corollary 21. Let G be a plant over A, where L = L(G)
and Lm = Lm(G) are nonblocking plant languages. Let
Q : A∗ → (Ahi)∗ be an Lm-observer. For any specification
K ⊆ (Ahi)∗, if A0 ⊆ Ahi, then

Q−1(sup N(K ∩Q(Lm), Q(L), Phi)) ∩ Lm

= sup N(Q−1(K) ∩ Lm, L, P ) .

6. CONCLUSION

In this paper, hierarchical supervisory control of partially
observed discrete event systems has been studied. First,
the sufficient conditions for preservations of high level
supremal normal sublanguages at the low level have been
formulated. Then, sufficient conditions for preservations of
high level supremal controllable and normal sublanguages
at the low level have been proposed, which ensure that the
optimal high level supervisor with partial observations is
implementable in the original plant (low level).

Among the problems opened for a future investigation we
mention that it is important to combine both hierarchical
and decentralized approaches in the settings of partially
observed distributed plants in order to achieve a higher
degree of computational savings in synthesizing supervi-
sory controllers for large systems.

In this paper, we have also considered only natural projec-
tions. However, in the future investigation, we will address
general reporter maps instead.

Finally, the assumption that Ao ⊆ Ahi is very restrictive.
Thus, it is of interest to find some less restrictive sufficient
conditions. We would like to address this issue in a future
work.
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