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1. INTRODUCTION

In this paper supervisory control synthesis of modular
discrete-event systems (DES) with a coordinator is investi-
gated. DES represented as finite-state machines have been
studied by P. J. Ramadge and W. M. Wonham (see e.g.
Ramadge and Wonham (1989)). Large DES are typically
formed as synchronous compositions of a large number of
local components (subsystems) that are themselves finite
state machines and run in parallel. Systems formed in this
way are often called modular DES.

The aim of supervisory control is to ensure the control
objectives of safety and of liveness to be satisfied by
the closed-loop system. Typically, it is a so-called safety
property, where the behavior (language) must be included
in a specified language called specification. Since only so-
called controllable specification languages can be achieved,
one of the key issues in supervisory control synthesis is the
computation of the supremal controllable sublanguage of
the given specification language, from which the supervisor
can be constructed.

The paper addresses control of distributed discrete-event
systems. A distributed system, also called a modular sys-
tem, consists of the interconnection of two or more sub-
systems. Then the global system refers to the parallel
composition of all subsystems. There are two or more
supervisors or controllers and the observable event sets of
these supervisors are such that neither is contained in the
other, the observations are thus completely incomparable.
A distributed system differs from a system with decentral-
ized control system in that the first is an interconnection
of two or more subsystems and the latter has only one
monolithic system. But both a distributed system and a
decentralized system deal with two or more supervisors.

Control synthesis of a distributed system is difficult be-
cause the partial observations of the different supervisors
differ. For technical or for economic reasons it is not
possible or not preferred to send the partial observations of
the different supervisors to one supervisor who then exerts
global control. The specification is often global because it
deals with the interactions of the subsystems.

In this paper the authors develop further the concept
of coordination control proposed in Komenda and van
Schuppen (2008), where a coordinator is applied for the
control of modular discrete-event systems. The coordina-
tor receives a part of events from the local subsystems and
its task is to satisfy the global part of the specification and
the nonblockingness. Hence, our coordinator can be seen
as a two-way communication channel, where some events
belonging to the coordinator event set are exchanged (com-
municated) between both subsystems. Coordination con-
trol may be seen as a reasonable trade-off between a purely
decentralized control synthesis, which is in some cases un-
realistic, and a global control synthesis, which is naturally
prohibitive for complexity reasons. Moreover, our condi-
tions obtained from the coordination control framework
are based rather on the specification itself. In this paper
we are only concerned with the safety issue. First, we pro-
pose a necessary and sufficient condition on a specification
language to be exactly achieved in our coordination control
architecture that consists of a coordinator, its supervisor,
and the local supervisors for the subsystems. We call this
condition conditional controllability, and it refines our con-
dition that was only a sufficient one and has been presented
in Komenda and van Schuppen (2008). It is shown that
the supremal conditionally controllable sublanguage of a
given specification always exists. In addition to the above
mentioned existential result, a procedure for computation



of the supremal conditionally controllable sublanguage is
proposed.

In the next section, decentralized supervisory control of
modular DES is recalled and our coordination control
approach is motivated. In Sections 2 and 3 we briefly recall
the coordination control framework and concepts and in
Section 4 our first result is presented: the equivalence con-
dition on a specification language to be exactly achieved
in our coordination control architecture. In Section 4 we
show that the supremal conditionally controllable sub-
language always exists and in Section 5 a procedure for
its computation is proposed. Finally, in Section 6, some
concluding remarks are given including a discussion on
future extensions of this work.

2. DECENTRALIZED AND COORDINATION
CONTROL OF MODULAR DES

In this section, the elements of supervisory control theory
(SCT) needed in the rest of this paper are recalled. We fol-
low the standard framework of SCT, see the lecture notes
Wonham (2009) or the book Cassandras and Lafortune
(2008). DES are modeled as deterministic generators that
are finite-state machines with partial transition functions.
A (deterministic) generator G over a finite event set E
is a structure G = (Q,E, f, q0, Qm), where Q is a finite
set of states, E is the finite event set, f : Q × E → Q
is the partial transition function, q0 ∈ Q is the initial
state, and Qm ⊆ Q is the subset of marked states. If
a transition labeled by a ∈ E is defined for a state
q ∈ Q, then this is denoted by f(q, a)! Recall that f can
be extended by induction to f : Q × E∗ → Q in the
usual way. The behaviors of DES generators are defined
in terms of languages. The language of G is defined as
L(G) = {s ∈ E∗ | f(q0, s)!}, and the marked language of
G is defined as Lm(G) = {s ∈ E∗ | f(q0, s) ∈ Qm}.
The natural projection P : E∗ → E∗0 , where E0 ⊆ E, is a
homomorphism defined so that P (a) = ε, for a ∈ E \ E0,
and P (a) = a, for a ∈ E0. The inverse image of P is
denoted by P−1 : E∗0 → 2E∗

.

Given event sets Ei, Ej , and Ek, we use in this paper
the notation P i+j

k to denote the natural projection from
Ei ∪ Ej to Ek, and P i

j∩k to denote the natural projection
from Ei to Ej ∩ Ek.

Below, modular DES are considered. First, we recall that
the synchronous product (also called the parallel compo-
sition) of languages L1 ⊆ E∗1 and L2 ⊆ E∗2 is defined by

L1‖L2 = P−1
1 (L1) ∩ P−1

2 (L2) ⊆ E∗ ,
where Pi : E∗ → E∗i , for i = 1, 2, are natural projections
to the local event sets. The synchronous product can
also be defined for DES generators, the reader is referred
to Cassandras and Lafortune (2008) for more details. In
this case, it is well known that for two generators G1

and G2, L(G1‖G2) = L(G1)‖L(G2) and Lm(G1‖G2) =
Lm(G1)‖Lm(G2).

A controlled generator (controlled DES, CDES) is a struc-
ture (G,Ec,Γ), where G is a generator, Ec ⊆ E is the
subset of controllable events, Eu = E \Ec is the subset of
uncontrollable events, and Γ = {γ ⊆ E | Eu ⊆ γ} is called

the set of control patterns. A control supervisor for the con-
trolled generator (G,Ec,Γ) is a map S : L(G) → Γ. The
closed-loop system associated with a controlled generator
(G,Eu,Γ) and a supervisor S is defined as the smallest
language L(S/G) ⊆ E∗ which satisfies

(1) ε ∈ L(S/G),
(2) if s ∈ L(S/G), sa ∈ L(G), and a ∈ S(s), then also

sa ∈ L(S/G).

Let us note that in the automata framework where the
supervisor S is also represented by a DES generator,
the closed-loop system can be recast as a synchronous
product of the supervisor S and the plant G because
it follows from the form of the control patterns that
the supervisor never disables uncontrollable events, i.e.,
all uncontrollable transitions are always enabled. This
is known as admissibility of a supervisor. Hence, for an
admissible supervisor S that controls the plant G, one can
write L(S/G) = L(S)‖L(G).

We recall here that only controllable languages can be
achieved by a supervisory controller as a closed-loop be-
havior, see Ramadge and Wonham (1989).

The prefix closure L of a language L is the set of all prefixes
of all its words. A language L ⊆ E∗ is said to be prefix-
closed if L = L.
Definition 1. Let L be a prefix-closed language over an
event set E with the uncontrollable event set Eu ⊆ E.
A (specification) language K ⊆ E∗ is controllable with
respect to L and Eu if

KEu ∩ L ⊆ K .

Given a prefix-closed specification language K ⊆ E∗,
the goal of SCT is to find a supervisor S such that
L(S/G) = K. It is known that such a supervisor exists if
and only if K is controllable. Thus, for the specifications
that are not controllable, controllable sublanguages of K
are considered. The notation sup C(K,L,Eu) is chosen for
the supremal controllable sublanguage of K with respect
to L and Eu. This language always exists and equals
to the union of all controllable sublanguages of K, see
e.g Cassandras and Lafortune (2008).

A modular DES is simply a synchronous product of two
or more generators. Decentralized control synthesis of a
modular DES is a procedure, where the control synthesis
is carried out for each module or local subsystem. The
global supervisor then formally consists of the synchronous
product of the local supervisors though that product is not
computed in practice. In terms of behaviors, the optimal
global control synthesis is represented by the closed-loop
language

sup C(K,L,Eu) = sup C(‖ni=1Ki, ‖ni=1Li, Eu) .

Given a rational global specification languageK ⊆ E∗, one
can theoretically always compute its supremal controllable
sublanguage from which the optimal (least restrictive)
supervisor can be built. Such a global control synthesis
of a modular DES consists simply in computing the global
plant and then the control synthesis is carried out as de-
scribed above. However, the computational complexity of
the global controller is for most practical control problems
so high that other approaches have to be developed.



Decentralized control synthesis means that the specifica-
tion language K is replaced by Ki = K ∩ P−1

i (Li), and
the synthesis is done similarly as for the local specifi-
cations or using the notion of partial controllability, see
Gaudin and Marchand (2004). Note the difference with
decentralized control of monolithic plants as studied in
Yoo and Lafortune (2002), where there are several control
agents having different observations, but the system has
no modular structure consisting of subsystems running in
parallel.

However, the purely decentralized control synthesis is not
always possible as the sufficient conditions under which
it can be used are quite restrictive. Therefore, we have
proposed coordination control in Komenda and van Schup-
pen (2008) as a trade-off between a purely decentralized
control synthesis, which is in some cases unrealistic, and a
global control synthesis, which is naturally prohibitive for
complexity reasons.

3. CONCEPTS

Coordination control for DES is inspired by the concept
of conditional independence of the theory of probability
and of stochastic processes. Recall from Komenda and van
Schuppen (2008) that conditional independence is roughly
captured by the event set condition, when every joint
action (move) of local subsystems must be accompanied
by a coordinator action.

In this paper, after the architecture of our coordination
scheme is recalled, a new necessary and sufficient condition
on a specification language to be exactly achieved in this
architecture is presented.

In the coordination scheme, first a supervisor Sk for the
coordinator is synthesized that takes care of the part
Pk(K) of the specification language K. Then supervisors
Si, i = 1, 2, are synthesized so that the remaining parts of
the specification, i.e., Pi+k(K), are met by the new plant
languages Gi‖(Sk/Gk).
Definition 2. Consider three generators G1, G2, and Gk.
We call G1 and G2 conditionally independent generators
given Gk if in the global system there is no common
transition of both G1 and G2 without the coordinator Gk

being also involved. This condition can be written as
Er(G1‖G2) ∩ Er(G1) ∩ Er(G2) ⊆ Er(Gk) ,

where Er(G) denotes the set of all reachable symbols in
G, see also Komenda and van Schuppen (2008).

The concept is easily extended to the case of three or
more generators. The corresponding concept in terms of
languages follows.
Definition 3. Consider event sets E1, E2, Ek, and lan-
guages L1 ⊆ E∗1 , L2 ⊆ E∗2 , and Lk ⊆ E∗k . The languages
L1 and L2 are said to be conditionally independent given
Lk if

Er(L1‖L2) ∩ E1 ∩ E2 ⊆ Ek ,

where Er(L) denotes the set of all symbols occurring in
words of L.
Definition 4. The language K is called conditionally de-
composable with respect to the event sets (E1, E2, Ek) if

K = P1+k(K)‖P2+k(K)‖Pk(K).

4. CONTROL SYNTHESIS OF CONDITIONALLY
CONTROLLABLE LANGUAGES

Problem 5. Consider generators G1, G2, Gk with event
sets E1, E2, Ek, respectively, and a prefix-closed speci-
fication language

K ⊆ L(G1‖G2‖Gk) .
It is assumed that K is prefix-closed because we only focus
on the controllability issues in this paper, while nonblock-
ing issues will be addressed in a future work. Assume
that the coordinator Gk makes the two generators G1 and
G2 conditionally independent, and that the specification
language K is conditionally decomposable with respect to
the event sets (E1, E2, Ek).

The overall control task is divided into local subtasks and
the coordinator subtask, cf. Komenda and van Schuppen
(2008). The coordinator takes care of its “part” of the
specification, namely Pk(K). Otherwise stated, Sk must
be such that

L(Sk/Gk) ⊆ Pk(K) .

Similarly, supervisors S1 and S2 take care of their corre-
sponding “parts” of the specification, namely Pi+k(K), for
i = 1, 2. Otherwise stated, Si is such that for i = 1, 2,

L(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K) ,

Determine supervisors S1, S2, and Sk for the respective
generators so that the closed-loop system with the coordi-
nator is such that
L(S1/[G1‖(Sk/Gk)])‖L(S2/[G2‖(Sk/Gk)])‖L(Sk/Gk)

= K .

The solution of Problem 5 requires the definition of the
concept of conditional controllability which will be proven
to be the characterization of the solution of that problem.

Let Eu ⊆ E be the set of uncontrollable events and denote
by Ei,u = Eu∩Ei, for i = 1, 2, k, the corresponding sets of
locally uncontrollable events. Moreover, let Ei+j = Ei∪Ej ,
for i, j ∈ {1, 2, k}. Then Ei+j,u = Ei+j ∩ Eu.
Definition 6. Consider the setting of Problem 5. Call the
specification language K ⊆ E∗ conditionally controllable
for generators (G1, G2, Gk) and for the (uncontrollable)
event subsets (E1+k,u, E2+k,u, Ek,u) if

(i) The language Pk(K) ⊆ E∗k is controllable with re-
spect to Gk and Ek,u; equivalently,

Pk(K)Ek,u ∩ L(Gk) ⊆ Pk(K) .
Then there is a nonblocking supervisor Sk for Gk such
that L(Sk/Gk) = Pk(K). The supervisor Sk is used
in the remaining part of the definition.

(ii.a) The language P1+k(K) ⊆ (E1 ∪ Ek)∗ is controllable
with respect to L(G1‖(Sk/Gk))‖P 2+k

k L(G2‖(Sk/Gk))
and E1+k,u = Eu ∩ (E1 ∪ Ek); equivalently,

P1+k(K)E1+k,u ∩
L(G1‖(Sk/Gk)) ∩ (P 1+k

k )−1P 2+k
k L(G2‖(Sk/Gk))

⊆ P1+k(K) .
(ii.b) The language P2+k(K) ⊆ (E2 ∪ Ek)∗ is controllable

with respect to L(G2‖(Sk/Gk))‖P 1+k
k L(G1‖(Sk/Gk))

and E2+k,u = Eu ∩ (E2 ∪ Ek); equivalently,



P2+k(K)E2+k,u ∩
L(G2‖(Sk/Gk)) ∩ (P 2+k

k )−1P 1+k
k L(G1‖(Sk/Gk))

⊆ P2+k(K) .

The interpretation of the term after the intersection in
(ii.a) is that the effect of Subsystem 2 in combination with
the controlled coordinator system G2‖(Sk/Gk) is taken
into account when checking conditional controllability.

The conditions of Definition 6 can be checked by classical
algorithms with low (polynomial) computational complex-
ity for verification of the controllability as is directly clear
from the definition. However, natural projections are in-
volved. Still, if the corresponding satisfy observer property
Wong and Wonham (1996), discussed and used further in
the paper, then projected languages do not have larger
representations than the original languages.

The computational complexity of checking conditional
controllability is much less than that of controllability of
the global system L(G1)‖L(G2)‖L(Gk). This is because
instead of checking the controllability with the global
specification and the global system, we check it only on
the corresponding projections to Ek ∪ E1 and Ek ∪ E2.
The projections are smaller when they satisfy the observer
property.

The following result from Wonham (2009) is useful.
Lemma 7. (Wonham (2009)). Let Pk : E∗ → E∗k be a
natural projection, and let L1 ⊆ E∗1 and L2 ⊆ E∗2 be
local languages over E1 ⊆ E and E2 ⊆ E, respectively,
such that Ek ⊇ E1 ∩ E2. Then

Pk(L1‖L2) = Pk(L1)‖Pk(L2) .

The following theorem presents the necessary and suffi-
cient condition on a specification language to be exactly
achieved in our coordination control architecture.
Theorem 8. Consider the setting of Problem 5 of control
for safety. There are supervisors (S1, S2, Sk) such that

L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)])
‖ L(Sk/Gk)) = K

(1)

iff the specification K is conditionally controllable with re-
spect to (G1, G2, Gk) and (E1+k,u, E2+k,u, Ek,u) of locally
uncontrollable events.

The interest in Theorem 8 is in the computational saving
of the computation of the supervisor, the distributed way
of constructing successively the supervisors Sk, S1, and S2

is much less complex than the construction of the global
supervisor for the system G1‖G2‖Gk.

Note that it is required that L(Sk/Gk) ⊆ Pk(K). It follows
from an example (see below) in our personal correspon-
dence with Klaus Schmidt (U. Erlangen) that necessity in
Theorem 8 cannot hold without this assumption. Similarly,
L(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K), for i = 1, 2, is required.
Otherwise stated, we are looking for necessary conditions
on global specifications for having the maximal permis-
sivity of the language resulting by the application of our
control scheme only in the (reasonable) case where safety
can be achieved by the supervisors Sk, S1, and S2. We
have proven that in such a case conditional controllability
is necessary for the optimality (maximal permissivity). It
is clear from the proof that for the sufficiency part we

need not assume the inclusions above (cf. Komenda and
van Schuppen (2008)).
Example 9. (Schmidt (2008)). Consider the following DES
generators G1 = ({1, 2, 3, 4}, {a, d, e, ϕ}, f1, 1, {1}), where
the set of controllable events is {a, ϕ}, and f1 is defined
as in Fig. 1, G2 = ({1, 2, 3}, {b, ϕ, f}, f2, 1, {1}), where
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Fig. 1. The DES generator for G1.

the set of controllable events is {b, ϕ}, and f2 is defined
as in Fig. 2, and Gk = ({1, 2, 3}, {a, b, ϕ}, fk, 1, {1}),
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b ϕ

f

ϕ

Fig. 2. The DES generator for G2.

where the set of controllable events is {b, ϕ}, and fk

is defined as in Fig. 3. Assume that the specification
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b a

ϕ

Fig. 3. The DES generator for Gk.

language K is described by the DES generator D =
({1, 2, 3, 4, 5, 6, 7}, {a, b, d, f, ϕ}, δ, 1, {1}), where δ(1, a) =
2, δ(2, b) = 7, δ(7, ϕ) = 6, δ(6, d) = 3, δ(6, f) = 5,
δ(3, a) = 4, δ(3, f) = 1, δ(4, f) = 2, and δ(5, d) = 1.

It can be verified that Gk makes G1 and G2 conditionally
independent and that the specification K is conditionally
decomposable. In addition, Pk(K) is not controllable with
respect to L(Gk), see Fig. 4 and 5. Analogously, it can be
verified that P2+k(K) is not controllable with respect to
L(G2‖Gk)‖P 1+k

k L(G1‖Gk), and that P1+k(K) is control-
lable with respect to L(G1‖Gk) and thus also with respect
to L(G1‖Gk)‖P 2+k

k L(G2‖Gk). However, it can be verified

1start 2 3
a b

ϕ

Fig. 4. The DES generator for Pk(K).

that K is controllable with respect to L(G1‖G2‖Gk) and
a supervisory control to enforce K can be implemented by
choosing the following supervisors.
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Fig. 5. The DES generator for L(Gk).

• Sk(s) = Ek = {a, b, ϕ} for all s ∈ L(Gk), i.e., Sk

enables all events; Nevertheless, note that it is not
satisfied that L(Sk/Gk) ⊆ Pk(K).

• S2(s) = E2 ∪ Ek = {a, b, ϕ, f} for all s ∈ L(G2), i.e.,
S2 enables all events;

• S1 is such that L(S1/[G1‖Gk]) = P1+k(K).

Then
L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)])

‖ L(Sk/Gk)) = K .

The problem is that coordinator Gk does not satisfy the
assumption stated in Problem 5: There does not exist a
supervisor Sk such that L(Sk/Gk) ⊆ Pk(K) is nonempty.
Note that in this example another coordinator can be
chosen so that the setting of Problem 5 is matched, namely
there exist a supervisor Sk with L(Sk/Gk) ⊆ Pk(K)
nonempty. It is sufficient to remove the selfloops in states
2 and 3 in Fig. 5.

In practice it is more interesting to know when safety (i.e.,
inclusion) holds when applying the overall control scheme
combining a coordinator with local supervisors. Similarly
as in the monolithic case it may happen that the maximal
acceptable behavior given by the specification language K
is not achievable using our coordination control scheme. It
follows from Theorem 8 that in our case such a situation
occurs whenever K is not conditionally controllable. A
natural question is to find the best approximation from
below: a conditionally controllable sublanguage. It turns
out the following result holds true.
Theorem 10. The supremal conditionally controllable sub-
language of a given language K always exists and is equal
to the union of all conditionally controllable sublanguages
of K.

Proof. Similarly as for ordinary controllability it can be
shown that conditionally controllability is preserved by
language unions.

5. SUPREMAL CONDITIONALLY CONTROLLABLE
SUBLANGUAGES

In what follows, we present a procedure for computation
of the supremal conditionally controllable sublanguage.

Given generators G1, G2, and Gk, we denote Li = L(Gi),
for i = 1, 2, k. Let sup CC(K,L, (E1+k,u, E2+k,u, Ek,u)) de-
note the supremal conditionally controllable sublanguage
of K with respect to L = L(G1‖G2‖Gk) and the sets of
uncontrollable events (E1+k,u, E2+k,u, Ek,u).

Our approach is based on concepts from hierarchical super-
visory control, which is natural, because our coordination
control can be seen as a combination of decentralized and
hierarchical supervisory control.

The following conditions of Wong and Wonham (1996)
also discussed in Feng (2007) are required in the main
result of this section. These conditions originate from
the hierarchical supervisory control Wong and Wonham
(1996). It should not be surprising that they play a role in
our study, because coordination control can be seen as a
particular instance of hierarchical control.
Definition 11. The natural projection Pk : E∗ → E∗k ,
where Ek ⊆ E, is an L-observer for L ⊆ E∗ if, for all
t ∈ P (L) and s ∈ L, P (s) ≤ t implies that there exists
u ∈ E∗ such that su ∈ L and P (su) = t.
Definition 12. The natural projection Pk : E∗ → E∗k ,
where Ek ⊆ E, is output control consistent (OCC) for
L ⊆ E∗ if for every s ∈ L of the form

s = σ1 . . . σ` or s = s′σ0σ1 . . . σ`, ` ≥ 1 ,
where s′ ∈ E∗, σ0, σ` ∈ Ek and σi ∈ E \ Ek, for i =
1, 2, . . . , `−1, if σ` ∈ Eu, then σi ∈ Eu, for i = 1, . . . , `−1.

Now, we can now present the main result of this section,
which gives a construction procedure for computation of
the supremal conditionally controllable sublanguage.
Theorem 13. Let K and L be two prefix-closed languages
over an event set E, and let the specification language K
be conditionally decomposable. Define

sup Ck = sup C(Pk(K)‖Pk(L1‖L2)‖Lk, Lk, Ek,u) ,
sup C1+k = sup C(P1+k(K)‖L1, L1‖sup Ck, E1+k,u) ,
sup C2+k = sup C(P2+k(K)‖L2, L2‖sup Ck, E2+k,u) .

Let the projection P i+k
k be an (P i+k

i )−1(Li)-observer and
OCC for the language (P i+k

i )−1(Li), for i = 1, 2. Then

sup Ck‖sup C1+k‖sup C2+k

= sup CC(K ∩ L,L, (E1+k,u, E2+k,u, Ek,u)) .

Note that if we know that the specification language K is
included in the global language L, the computation can be
simplified as shown in the following corollary.
Corollary 14. Let K ⊆ L be two prefix-closed languages
over an event set E, and let K be conditionally decompos-
able. Define

sup Ck = sup C(Pk(K), Lk, Ek,u) ,
sup C1+k = sup C(P1+k(K), L1‖sup Ck, E1+k,u) ,
sup C2+k = sup C(P2+k(K), L2‖sup Ck, E2+k,u) .

Let P i+k
k be an (P i+k

i )−1(Li)-observer and OCC for
(P i+k

i )−1(Li), for i = 1, 2. Then

sup Ck‖sup C1+k‖sup C2+k

= sup CC(K,L, (E1+k,u, E2+k,u, Ek,u)) .

Proof. If K ⊆ L, then
Pk(K) ⊆ Pk(L) = Pk(L1‖L2‖Lk)

= Pk(L1‖L2)‖Lk, by Lemma 7 .

From L1‖L2‖Lk = P−1
1 (L1)∩P−1

2 (L2)∩P−1
k (Lk), we also

have
Pi+k(K) ⊆ Pi+k(P−1

i (Li))

= (P i+k
i )−1(Li) ,

for i = 1, 2. Since Pk(K) ⊆ Pk(L1‖L2)‖Lk and Pi+k(K) ⊆
(P i+k

i )−1(Li), i = 1, 2, the proof follows from the previous
theorem. 2



In addition to a procedure for computation of sup CC in a
distributed way, another consequence of theorem above is
interesting. Namely, under the conditions of Theorem 13
sup CC is conditionally decomposable, cf. Lemma 15.
Lemma 15. A language M ⊆ E∗ is conditionally decom-
posable with respect to the event sets (E1, E2, Ek) iff there
exist languages Mi ⊆ E∗i , i = 1, 2, k, such that

M = M1‖M2‖Mk.

Proof. Conditionally decomposability of M means M =
P1(M)‖P2(M)‖Pk(M). Let Mi = Pi(M), i = 1, 2, k. Then
the necessity is proven. To prove sufficiency, assume there
are languages Mi ⊆ E∗i , i = 1, 2, k, such that M =
M1‖M2‖Mk. Obviously, Pi(M) ⊆ Mi, i = 1, 2, k, which
implies Pk(M)‖P1(M)‖P2(M) ⊆M . As M ⊆ P−1

i Pi(M),
i = 1, 2, k, and by the definition of synchronous product
we also obtain M ⊆ Pk(M)‖P1(M)‖P2(M). 2

Even more, this implies that the supremal conditionally
controllable sublanguage is controllable with respect to
the global plant as we show below, and, consequently,
the supremal conditionally controllable sublanguage is
included in the global supremal controllable sublanguage.
This is not a surprise, because the language synthesized
using our coordination architecture is more restrictive than
the language synthesized using (monolithic) supervisory
control of global plant.
Theorem 16. In the setting of Theorem 13 above we have

sup CC(K,L, (E1+k,u, E2+k,u, Ek,u))
⊆ sup C(K,L,Eu).

Proof. It is sufficient to show that
sup CC := sup CC(K,L, (E1+k,u, E2+k,u, Ek,u))

is controllable with respect to L = L1‖L2‖Lk and Eu. No-
tice that there exist sup Ck ⊆ E∗k , sup C1+k ⊆ E∗1+k, and
sup C2+k ⊆ E∗2+k as defined in Theorem 13 (respectively
in Corollary 14) so that

sup CC = sup Ck‖sup C1+k‖sup C2+k .

In addition, we know that

• sup Ck is controllable with respect to Lk and Ek,u,
• sup C1+k is controllable wrt. L1‖sup Ck and E1+k,u,
• sup C2+k is controllable wrt. L2‖sup Ck and E2+k,u .

By Proposition 4.6 in Feng (2007) (since all the languages
under consideration are prefix-closed)

sup CC = sup Ck‖sup C1+k‖sup C2+k

is controllable with respect to
Lk‖L1‖sup Ck‖L2‖sup Ck = L‖sup Ck

and Eu. Analogously, we can obtain that L‖sup Ck is
controllable with respect to L‖Lk = L and Eu.

Finally, by transitivity of controllability for prefix-closed
languages we obtain that sup CC is controllable with
respect to L and Eu, which was to be shown. 2

6. CONCLUSION

Supervisory control of modular DES with global specifica-
tions has been considered. A coordination control frame-
work has been adopted where, unlike the purely decentral-
ized setting, a global layer with a coordinator acting on a

subset of the global event set has been added. Two main
results have been presented: A necessary and sufficient
condition on a specification to be exactly achieved in
our coordination control architecture, called conditional
controllability, has been proposed, and it has been shown
how the supremal conditionally controllable sublanguage
can be synthesized.

In this paper we have been interested only in the optimal-
ity of our control scheme, but blocking that is inherent to
modular and, more generally, to our coordinated control
synthesis has not been considered. It was then sufficient to
choose a suitable coordinator event set and the coordinator
itself need not impose any restriction on the behavior be-
cause its supervisor can take care of a required restriction
of the plant projected to the coordinator events.

In a future paper it is our plan to address the blocking
issue by considering a suitable coordinator and combine it
with the three supervisors so that both blocking and max-
imal permissiveness are handled within our coordination
scheme.

Thus, more work on coordination control dealing with
global specification languages is needed. In particular,
the synthesis of coordinators for nonblockingness is to
be developed and the approach should be extended to
partially observed modular plants and to classes of timed
automata.
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