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Abstract. This paper discusses the state complexity of projected reg-
ular languages represented by incomplete deterministic finite automata.
It is shown that the known upper bound is reachable only by automata
with one unobservable transition, that is, a transition labeled with a
symbol removed by the projection. The present paper improves this up-
per bound by considering the structure of the automaton. It also proves
that the new bounds are tight, considers the case of finite languages, and
presents several open problems.

1 Introduction

Projections, also called natural projections since they can be seen as natural
transformations of category theory, or abstractions, play an important role in
many fields of computer science and engineering, such as verification, diagnoses,
and supervisory control [1, 16–18, 30]. Given a regular language L and a projec-
tion P , it is well-known that the minimal deterministic finite automaton (dfa)
accepting language P (L) can be of exponential size in comparison with the dfa
accepting language L. The known upper bound for projection is 3 ·2n−2−1 [29].
On the other hand, however, this result does not consider the structure of the au-
tomaton, which is of interest because, as shown in this paper, this upper bound
is reachable only for automata with one unobservable transition, that is, a tran-
sition that is labeled with a symbol removed by the projection. Note that several
unobservable transitions connecting the same two states in the same direction
(called unobservable multi-transitions) are considered as only one unobservable
transition, that is, we disregard unobservable multi-transitions.

In this paper, we improve the upper bound by considering the structure
of the automaton. Specifically, we study the state complexity with respect to
the structure of unobservable transitions. This parameter turns out to be more
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convenient than the number of unobservable transitions. We show that, given a
projection and a minimal incomplete dfa with n states, the minimal incomplete
dfa accepting the projected language has no more than 2n−1 + 2n−m − 1 states,
where m is the number of states incident with unobservable transitions. This
bound is reachable if the number of unobservable transitions is m− 1. However,
any additional unobservable transition can introduce a new unreachable subset,
which means that the bound is not tight if there are more thanm−1 unobservable
transitions. Therefore, we also discuss the case the automaton has at least m
unobservable transitions, and show that in this case the tight upper bound is
3 · 2n−3 + 2n−m − 1.

The paper also discusses the case of projected finite languages, and shows
that the upper bounds on the number of states correspond to the upper bounds
on the nfa to dfa conversion [26].

For several operations, op(·), such as the determinization of nfa’s, it has been
shown that for all integers n and α with f(n) ≤ α ≤ g(n), where f(n) and g(n)
are the tight lower and upper bounds for op(·), there exists a regular language L
represented by a minimal dfa of size n such that the minimal dfa for op(L) is of
size α. A number α for which no such language exists is called magic for n with
respect to op(·). For instance, there are no magic numbers for the determinization
of nfa’s with the input alphabet of cardinality at least three, where f(n) = n and
g(n) = 2n. During the last few years, this topic has widely been discussed in the
literature. The reader is referred to [6, 8, 10–13, 15, 28] for more information. Our
last theorem solves the magic number problem for projections using the result
on magic numbers for stars of regular languages [14].

We conclude the paper with a short overview of open problems concerning
projected regular languages.

2 Preliminaries and Definitions

We assume that the reader is familiar with automata theory, and for all unex-
plained notions, we refer the reader to [27, 31].

For an alphabet (finite nonempty set) Σ, denote by Σ∗ the set of all finite
strings over the alphabet Σ including the empty string ε. A language over Σ is
any subset of Σ∗. A language L is finite if L is a finite set.

LetΣo ⊆ Σ. A homomorphism P : Σ∗ → Σ∗o is called the (natural) projection
if it is defined so that P (a) = ε if a ∈ Σ \Σo, and P (a) = a if a ∈ Σo.

An (incomplete) dfa is a quintuple A = (Q,Σ, δ, s, F ), where Q is a finite
set of states, Σ is an input alphabet, δ : Q × Σ → Q is a (partial) transition
function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. In the
usual way, transition function δ can be extended to the domain Q × Σ∗. The
language accepted by A is defined as the set L(A) = {w ∈ Σ∗ | δ(s, w) ∈ F}. A
transition δ(p, a) = q is said to be unobservable with respect to P if a ∈ Σ \Σo,
that is, if P (a) = ε.

For a regular language L, we denote by ‖L‖ the smallest number of states in
any incomplete dfa accepting L.
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In comparison with complete dfa’s, each incomplete dfa represents two lan-
guages. The language accepted by the dfa as defined above, also called a marked
language, and the language of all strings that the dfa can read called a generated
language, that is, the strings for which the corresponding transitions are defined.
For complete dfa’s, the latter language is equal to Σ∗.

Considering complete automata, the corresponding upper bounds can be de-
rived from the results for incomplete automata by considering only those unob-
servable transitions that are not incident with the dead or sink state. For this
reason, we only discuss the case of incomplete dfa’s in this paper.

3 DFAs as Graphs

Here we concentrate our attention on the number of states potentially reachable
in the subset automaton constructed from a given dfa after applying a projection.
For simplification, we consider the important parts of automata as graphs.

A directed graph is a pair G = (V,E), where V is a finite set of nodes, and
E ⊆ V × V is a set of edges. An edge (u, v) ∈ E is called a loop if u = v.
Let u ∈ V be a node, then in-degree and out-degree of v are the sizes of sets
{u ∈ V | (u, v) ∈ E} and {w ∈ V | (v, w) ∈ E}, respectively. A node with
in-degree 0 and out-degree 1, or with in-degree 1 and out-degree 0 is called a
leaf. This definition requires that the node is incident to an edge. Thus, a node
incident to no edge is not considered to be a leaf.

A path is a sequence of nodes v0, v1, . . . , vk such that vi 6= vj if i 6= j, and
(vi, vi+1) is an edge in E for i = 0, 1, . . . , k−1. A non-oriented path is a sequence
v0, v1, . . . , vk such that vi 6= vj if i 6= j, and either (vi, vi+1) or (vi+1, vi) is an
edge in E for i = 0, 1, . . . , k−1. A graph G is connected if for all nodes u, v in V ,
there is a non-oriented path from u to v. For a node v in V , let G \ {v} denote
the graph constructed from G by removing node v and all edges incident to v.

A subset X of V is said to be bad in graph G = (V,E) if there exists an edge
(u, v) in E such that u ∈ X and v /∈ X. A set is said to be good if it is not bad;
thus a good subset of V is closed under outgoing transitions. Let b(G) denote
the number of bad subsets in G, and g(G) the number of good subsets in G. We
first study the number of bad subsets in a graph.

Lemma 1. Let m,n ≥ 2 and let G = (V,E) be a directed graph without loops
with n nodes. Let U = {u, v ∈ V | (u, v) ∈ E} and assume that U is of size m.
Then b(G) ≥ (2m−1 − 1) 2n−m.

Proof. Let G and U be as assumed in the theorem, and consider a special case
where the edges involved in nodes of U go only from m − 1 different nodes to
the last m-th node. This means that there exists a node v in V such that for
each node u in U \ {v}, the edge (u, v) is in E, while for each node z in V , the
edge (z, u) is not in E. Then there are 2m−1 − 1 nonempty subsets of U which
do not contain node v, and so are bad. This gives b(G) ≥ (2m−1 − 1) 2n−m.

Now, we will show the theorem to be true in general, and not just under the
assumption that the edges in U go only from m − 1 different nodes to the last
m-th node as was done in the paragraph above. The proof is by induction on m.
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If m = 2, then U involves either one or two edges. Note first that if X is
a bad subset in G, then X is bad after addition of any number of edges to G.
Thus, we can consider that there is only one edge because the other one cannot
decrease the number of bad subsets. Then, if we have one edge, say (a, b), we
can have a along with any combination of elements of V \ {a, b} in a bad subset,
and thus we have b(G) ≥ 2n−2 = (22−1 − 1) 2n−2. Assume that the statement
holds for all sets U of size less than m, and consider the case U is of size m.
There are two possibilities. Either the number of edges is strictly less than m, or
it is greater then or equal to m. In the former case, consider the number of edges
and denote it by t, and in the latter case, consider the subset of edges of size t
forming the minimal spanning tree (forest). Thus t < m and there is a leaf v in
U such that v is connected with a node u in U \ {v}. Then, either (i) all nodes
in U \ {v} are incident with some of the t edges, or (ii) node u was connected
only with v and now it is not incident with any other node in U \ {v}.

In case (i), the set U \ {v} is of size m− 1, and by the induction hypothesis,
there are at least 2m−2 − 1 bad subsets of U \ {v}. If (v, u) ∈ E, then for each
subset A of U \ {v} that is bad in U \ {v}, the sets A and A∪ {v} are bad in U ,
and {v} is a new bad set. This gives b(G) ≥ (2m−2 − 1 + 2m−2 − 1 + 1) 2n−m.
Similarly, if (u, v) ∈ E, then for each subset A of U \ {v} that is bad in U \ {v},
the sets A, A ∪ {v} are bad in U , and the set U \ {v} is a new bad set.

In case (ii), the set U \{u, v} is of size m−2, and so, there are at least 2m−3−1
bad subsets of U \ {u, v}. We now have m ≥ 4. The sets ∅ and U \ {u, v} are not
bad. Thus {v} or {u}, and U \ {u} or U \ {v}, depending on the direction of the
edge connecting u and v, are two new bad subsets. Moreover, all bad subsets of
U \{u, v} are also bad in U . If there is at least one more proper non-empty good
subset B of U \{u, v}, then B∪{u} or B∪{v} is the third new bad subset of U .
Summarized, this gives b(G) ≥ (22 (2m−3 − 1) + 3) 2n−m = (2m−1 − 1) 2n−m.
If there are only two good subsets of U \ {u, v}, namely ∅ and U \ {u, v}, then
the number of bad subsets of U \ {u, v} is 2m−2 − 2, which, since m ≥ 4, gives
b(G) ≥ 22(2m−2−2) 2n−m = (2m−1−1+2m−1−7) 2n−m ≥ (2m−1−1) 2n−m. ut

Consider the statement of Lemma 1. Then the number of all the subsets of
V \ U is 2n−m while the number of bad subsets of U is 2m−1 − 1. Moreover,
there is a graph G = (V,E) with U of size |E| − 1, for which the equality holds.
However, if m ≤ |E|, each additional transition can introduce a new bad subset.
This problem is discussed in the following result.

Lemma 2. Let m,n ≥ 2 and let G = (V,E) be a directed graph without loops
with n nodes. Let U = {u, v ∈ V | (u, v) ∈ E} and assume that |U | = m ≤ |E|.
Then b(G) ≥ (5 · 2m−3 − 1) 2n−m.

Proof. The proof is by induction on m. If m = 2, then the graph consists of two
nodes connected by two edges. This gives two bad subsets of U , which results in
b(G) = 2 · 2n−m ≥ 3/2 · 2n−m. Assume that the statement holds for all sets U of
cardinality less then m, and consider the case U is of cardinality m. Recall that
m ≤ |E|. Consider a subset of m edges forming a minimal spanning tree (forest).
Then there is a leaf v in U . If |U \ {v}| ≤ |E(G \ {v})| then by the induction
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hypothesis, the set U \ {v} has at least 5 · 2m−4 − 1 bad subsets. Otherwise, by
Lemma 1, the set U \ {v} has at least 2m−2 − 1 bad subsets.

In the former case, if (v, u) ∈ E, then for each bad subset A of U \{v}, the set
A∪{v} is a new bad subset of U and, in addition, {v} is a new bad subset of U .
If (u, v) ∈ E, then for each bad subset A of U \ {v}, the set A ∪ {v} is a new
bad subset of U and, in addition, the set U \ {v} is a new bad subset of set U .
Thus b(G) ≥ (5 · 2m−4 − 1 + 5 · 2m−4) 2n−m = (5 · 2m−3 − 1) 2n−m.

In the latter case, notice that there are at least two edges connecting v and
U \ {v} in G. We have three possibilities:

(i) Node v is connected with U \{v} by edges (v, u1) and (v, u2) with u1 6= u2.
Then the sets A∪{v}, A∪{v, u1}, and A∪{v, u2} are bad in U for every subset A
of U \ {v, u1, u2}. Hence we have at least 3 · 2m−3 new bad subsets in U .

(ii) Node v is connected with U \ {v} by edges (u1, v) and (u2, v). Then for
each subset A of U \ {u1, u2, v}, if A ∪ {u1} is bad in U \ {v}, then A ∪ {v, u1}
is bad in U , otherwise A ∪ {u1} is bad in U ; if A ∪ {u2} is bad in U \ {v}, then
A ∪ {v, u2} is bad in U , otherwise A ∪ {u2} is bad in U ; if A ∪ {u1, u2} is bad
in U \ {v}, then A ∪ {u1, u2, v} is bad in U , otherwise A ∪ {u1, u2} is bad in U .
Summarized, there are 3 · 2m−3 new bad subsets in U .

(iii) Node v is connected with U \ {v} by edges (u1, v) and (v, u2). Then the
sets A∪{v} and A∪{u1, v} are bad in U for each subset A of U \ {u1, u2, v}. In
addition, if A ∪ {u1, u2} is bad in U \ {v}, then the set A ∪ {u1, u2, v} is a new
bad subset of U . Otherwise, the set A∪{u1, u2} is a new bad subset of U . Thus
there are at least 3 · 2m−3 new bad subsets of U .

This gives b(G) ≥ (2m−2 − 1 + 3 · 2m−3) 2n−m = (5 · 2m−3 − 1) 2n−m. ut

4 State Complexity of Projected Regular Languages

Recall that it is shown in [29] that the worst-case tight upper bound on projected
regular languages is 2n−1 + 2n−2 − 1, where n is the number of states of the
minimal incomplete dfa recognizing the given language.

Theorem 1 ([29]). Let n ≥ 2 and L be a regular language over Σ with ‖L‖ =
n. Let Σo ⊆ Σ and P be the projection of Σ∗ onto Σ∗o . The tight upper bound on
the size of the minimal incomplete dfa for projected language P (L) is 3 ·2n−2−1.

In what follows, we improve the upper bound by taking into account the
structure of nonloop unobservable transitions. More specifically, we consider the
number of states that are incident with nonloop unobservable transitions. Note
that it follows from the results that the previous bound is reachable only by
dfa’s with one unobservable transition, up to unobservable multi-transitions.

Theorem 2. Let m,n ≥ 2, Σo ⊆ Σ, and P be the projection of Σ∗ onto Σ∗o .
Let L be a regular language over alphabet Σ with ‖L‖ = n, and (Q,Σ, δ, s, F ) be
the minimal incomplete dfa recognizing language L, in which

|{p, q ∈ Q | p 6= q and q ∈ δ(p,Σ \Σo)}| = m.

Then ‖P (L)‖ ≤ 2n−1 + 2n−m − 1.
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Proof. Consider the minimal incomplete dfa (Q,Σ, δ, s, F ) accepting L, and con-
struct a directed graph G = (Q,E) without loops so that E contains an edge
(p, q) in Q × Q if and only if p 6= q and there is a transition δ(p, a) = q for
some unobservable symbol a in Σ \ Σo. Construct an nfa for language P (L)
from dfa A by replacing all the unobservable transitions with ε-transitions.
Observe that each subset of Q that contains p, but not q, is not reachable
in the corresponding subset automaton because every string leading the nfa
to state p also leads the automaton to state q. This means that no subset of
Q that is bad in graph G is reachable. By Lemma 1, for the number g(G)
of good subsets (that is, subsets closed under outgoing transitions) we have
g(G) = 2n − b(G) ≤ 2n − (2m−1 − 1) 2n−m = 2n−1 + 2n−m. Good subsets of Q
in graph G correspond to potentially reachable states in the subset automaton.
This number is decreased by one because the empty set (the dead state) is po-
tentially reachable but it is not present in the minimal incomplete dfa. ut

Notice that Theorem 1 is a consequence of Theorem 2 since ‖P (L)‖ is max-
imal if m = 2. The next result shows that the bound 2n−1 + 2n−m − 1 is tight.

Theorem 3. Let m,n ≥ 2 and P be the projection of {a, b, c}∗ onto {a, b}∗.
There exists a regular language L over {a, b, c} with ‖L‖ = n, such that the
minimal incomplete dfa accepting L has m− 1 unobservable nonloop transitions
connecting m states, and ‖P (L)‖ = 2n−1 + 2n−m − 1.

Proof. Let L be the language over {a, b, c} accepted by the incomplete dfa shown
in Fig. 1. After applying the projection onto {a, b} and removing ε-transitions,
we get the n-state nfa shown in Fig. 2. The nfa accepts the string bn only from
state n − 1, and the string aibn only from state n − 1 − i (0 ≤ i ≤ n − 1).
It follows that the states in the corresponding subset automaton are pairwise
distinguishable. To prove the theorem, we only need to show that the subset
automaton has 2n−1 + 2n−m − 1 reachable non-empty states.

We first prove by induction that every subset of {0, 1, . . . , n− 1} containing
state 0 is reachable. The initial state {0} goes to state {n−m} by an−m, then
by a string in b∗ to states {0, i} with n−m+ 1 ≤ i ≤ n−2. State {0, n−2} goes
to state {0, 1, n− 1} by a, and then by a string in b∗ to states {0, i, n− 1} with
1 ≤ i ≤ n−2. State {0, n−2, n−1} goes to {0, n−1} by b, and then to {0, 1} by a.
By a string in b∗, state {0, 1} goes to states {0, i} with 1 ≤ i ≤ n−m. Thus each

Fig. 1. The minimal incomplete dfa for a language L with ‖P (L)‖ = 2n−1 + 2n−m− 1.
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Fig. 2. An nfa accepting the projection of the language from Fig. 1.

subset of size 2 containing state 0 is reachable. Now let X = {0, i1, i2, . . . , it} be
a set of size t + 1, where 2 ≤ t ≤ n − 1 and 1 ≤ i1 < i2 < · · · < it ≤ n − 1.
Consider two cases:

(i) it = n−1. Then X is reached from {0, i2− i1, . . . , it−1− i1, n−2} by abi1−1,
and the latter set of size t is reachable by the induction hypothesis.

(ii) it < n− 1. Then X is reached from {0, i2 − i1, . . . , it − i1, n− 1} by abi1−1,
and the latter set of size t+ 1 contains state n− 1, and is reachable by (i).

This proves reachability of all subsets containing state 0. Next, if {i1, i2, . . . , it}
is a non-empty subset of the set {1, 2, . . . , n−m}, then it is reached from the set
{0, i2−i1, i3−i1, . . . , it−i1} containing state 0 by ai1 . This gives 2n−1+2n−m−1
reachable non-empty states, and completes our proof. ut

In the theorems above, the number of unobservable transitions is considered
to be less than the size of the set {p, q ∈ Q | p 6= q and q ∈ δ(p,Σ\Σo)}. However,
an additional unobservable transition may introduce a new unreachable subset.
The following example shows that if the size of this set is less than or equal to the
number of unobservable nonloop transitions, then the upper bound is not tight.
The precise upper bound for this case is open.

Example 1. Let m,n ≥ 2. Consider a minimal incomplete dfa (Q,Σ, δ, s, F ) of n
states. Let the incomplete automaton have at least m unobservable transitions.
Let U = {p, q ∈ Q | p 6= q and q ∈ δ(p,Σ \ Σo)} and assume that |U | = m.
Construct a directed graph G = (Q,E) without loops so that the set E contains
an edge (p, q) in Q×Q if and only if p 6= q and there is a transition δ(p, a) = q
for some unobservable symbol a in Σ \Σo.

In the case of m = 2, there must be a cycle of length two in G. In this case,
however, we have g(G) = 2n − 2 · 2n−2 = 2n−1.

In the case of m = 3, there are three possibilities: (i) if U contains a cycle of
length three, then there are at least 6 subsets that are bad for U because all but
the empty set and the whole set U are bad; (ii) if U contains a cycle with one
transition reversed, then there are at least 4 bad subsets of U ; (iii) if U contains
a cycle of length two and an edge to (or from) the third node, then there are at
least 5 bad subsets of U . In all three cases, we get g(G) ≤ 2n − 4 · 2n−3 = 2n−1.

Since only non-empty good subsets for G can be reached in the incomplete
dfa for the projected language, we get the bound 2n−1− 1 on the size of this dfa
in both cases. This is strictly less than 2n−1 +2n−m−1 given by Theorem 2. ut
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Finally, the situation is significantly different for projections of regular lan-
guages with one-letter co-domains.

Theorem 4. Let a be a symbol in an alphabet Σ and P be the projection of
strings in Σ∗ to strings in a∗. Let L be a regular language over Σ with ‖L‖ = n.
Then ‖P (L)‖ ≤ e(1+o(1))

√
n ln n.

Proof. Replace all the transitions unobservable for projection P in the minimal
incomplete dfa recognizing language L with ε-transitions to get an n-state unary
nfa for language P (L). This unary nfa can be simulated by a dfa with no more
than e(1+o(1))

√
n ln n states [2, 6, 20], and the upper bound follows. ut

The following theorem discusses a special case that gives an idea how to treat
the cases with more and more unobservable transitions.

Theorem 5. Let m,n ≥ 2 and Σo ⊆ Σ. Let P be the projection of strings in Σ∗

to strings in Σ∗o . Let L be a regular language over alphabet Σ with ‖L‖ = n, and
(Q,Σ, δ, s, F ) be the minimal incomplete dfa recognizing language L, in which
|{p, q ∈ Q | p 6= q and q ∈ δ(p,Σ \ Σo)}| = m. If at least m transitions in the
dfa are unobservable for the projection, then ‖P (L)‖ ≤ 2n−2 + 2n−3 + 2n−m− 1.

Proof. Consider the minimal incomplete dfa (Q,Σ, δ, s, F ) for L, and construct
a directed graph G = (Q,E) without loops so that E contains an arc (p, q) if
and only if p 6= q and there is a transition δ(p, a) = q for some unobservable
symbol a in Σ \Σo. Construct an nfa for language P (L) from the dfa for L by
replacing all the unobservable transitions with ε-transitions. Then every subset
that is reachable in the corresponding subset automaton must be good for G.
By Lemma 2, we have g(G) ≤ 2n − (5 · 2m−3 − 1) 2n−m = 2n−2 + 2n−3 + 2n−m.
This number is decreased by one because of the empty set (the dead state). ut

The next result proves the tightness of the bound 2n−2 + 2n−3 + 2n−m − 1
in the case of a four-letter domain alphabet.

Theorem 6. Let n ≥ 2 and P be the projection of {a, b, c, d}∗ onto {a, b, c}∗.
There exists a regular language L over {a, b, c, d} with ‖L‖ = n such that the
minimal incomplete dfa accepting L has m unobservable nonloop transitions on
no more than m states, and ‖P (L)‖ = 2n−2 + 2n−3 + 2n−m − 1.

Proof. Consider the language L over the alphabet {a, b, c, d} accepted by the
incomplete n-state dfa shown in Fig. 3. Construct an nfa for language P (L)
from the dfa for L by replacing all the unobservable transitions with ε-transitions.
After removing the ε-transitions, we get the n-state nfa for P (L) shown in Fig. 4.

Notice that this nfa accepts string an−i with 2 ≤ i ≤ n only from state i, and
string can−2 only from state 1. It follows that all the states in the corresponding
subset automaton are pairwise distinguishable. Thus it is enough to show that
the subset automaton has 2n−2 + 2n−3 + 2n−m reachable states including the
empty set.
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Fig. 3. The incomplete dfa over {a, b, c, d} with m unobservable transitions on m states
meeting the bound 2n−2 + 2n−3 + 2n−m − 1 on the projection onto {a, b, c}.

Fig. 4. The nfa for the projection of the language from Fig. 3.

State {1} is the start state of the subset automaton. Each set {1, i1, i2, . . . , it}
of size t + 1, where 3 ≤ i1 < i2 < · · · < it ≤ n and 1 ≤ t ≤ n − 1, is reached
from the set {1, i2 − (i1 − 3), . . . , it − (i1 − 3)} of size t by string cbai1−3. Thus,
by induction, each state {1}∪X with X ⊆ {3, 4, . . . , n} is reachable. Next, such
a state {1} ∪ X goes to state {1, 2, 3} ∪ X by c. Finally, if X is a subset of
{m+ 1,m+ 2, . . . , n}, then state {1} ∪X goes to state X by b. This proves the
reachability of the desired number of states, and concludes our proof. ut

5 State Complexity of Projected Finite Languages

In this section, we consider the state complexity of projected finite languages.
First, let us consider the case of projections with co-domains of size one.

Proposition 1. Let a be a symbol in an alphabet Σ and let P be the projection
of Σ∗ onto a∗. If L is a finite regular language over Σ, then ‖P (L)‖ ≤ ‖L‖.

Proof. Consider the minimal complete dfa with n states accepting language L.
Since L is finite, there must exist a string that leads the dfa to the dead state.
Hence the minimal incomplete dfa accepting L has n−1 states. After replacing all
the unobservable transitions with ε-transitions and eliminating ε-transitions, the
resulting nfa with n− 1 states accepts finite language P (L). Therefore, this nfa
can be simulated by an n-state complete dfa [26]. Again, some string must lead
this complete dfa to the dead state, which implies that the minimal incomplete
dfa accepting P (L) has at most n− 1 states. Thus ‖P (L)‖ ≤ ‖L‖. ut

The following theorem deals with finite languages and binary co-domain al-
phabets.
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Theorem 7. Let a and b be symbols in an alphabet Σ and P be the projection
of Σ∗ onto {a, b}∗. Let L be a finite language over Σ with ‖L‖ = n. Then

‖P (L)‖ ≤
{

2 · 2bn/2c − 2 if n is even,
3 · 2bn/2c − 2 if n is odd.

In addition, the bound is tight in the case of a ternary domain alphabet.

Proof. We first prove the upper bound. Consider an incomplete dfa accepting
language L, and construct an n-state nfa for P (L) by replacing all the unobserv-
able transitions with ε-transitions, and eliminating the ε-transitions. The n-state
nfa for finite language P (L) can be simulated by a complete dfa of 2n/2+1 − 1
states if n is even, or of 3 · 2bn/2c − 1 states if n is odd [26]. Since some string
must lead this complete dfa to the dead state, this state is removed from the
minimal incomplete dfa representation of P (L).

For tightness, consider the ternary finite regular language recognized by the
incomplete dfa shown in Fig. 5, where k = dn/2e − 1. The application of the
projection P results in the language

P (L) =
dn/2e−1⋃

i=0

(a+ b)ia(a+ b)bn/2c−1

that can be written as P (L) = {uav ∈ {a, b}∗ | |uav| < n and |v| = bn/2c − 1}.
However, the minimal complete dfa accepting P (L) has 2n/2+1 − 1 states if n is
even, or 3 · 2bn/2c − 1 states if n is odd, as shown in [26]. Since P (L) is finite,
the minimal incomplete dfa for P (L) has one less state than the complete dfa.
Hence the bounds are tight. ut

In the next theorem, we consider the case of projections of finite languages
with co-domains of size k with k ≥ 2. In comparison with the previous result,
where the sizes of the domain and co-domain differ by one, note that the size of
the domain of the projection is required to be of linear size with respect to the
number of states. It remains open if it can be limited by a constant.

Fig. 5. The minimal incomplete dfa over {a, b, c} accepting a finite language meeting
the upper bound on the projection onto {a, b}; k = dn/2e − 1.
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Theorem 8. Let k, n ≥ 2. There exist alphabets Σ and Σo with Σo ⊆ Σ and
|Σo| = k, and a finite language L over Σ with ‖L‖ = n such that

‖P (L)‖ = (kbn/(log k+1)c+1 − 1)/(k − 1)− 1 ,

where P is the projection of strings in Σ∗ onto strings in Σ∗o . In addition, the
upper bound is (kd(n/(log k+1)e+1 − 1)/(k − 1)− 1.

Proof. The upper bound follows from [26, Theorem 5] in a similar way as shown
in the proof of Theorem 7. To prove the lower bound, let t = dlog ke and let
m = bn/(t+ 1)c. Let Σo = {0, 1, . . . , k − 1}, let Σ = {a1, a2, . . . , an−m−1} ∪Σo,
and let P be the projection of Σ∗ onto Σ∗o .

Set Si = {j ∈ Σo | j mod 2i ≥ 2i−1} for i = 1, 2, . . . , t. Notice that a symbol j
is in Si if and only if the i-th digit from the end in the binary notation of j is 1.

Now let L′ be the language over Σo consisting of all strings of length n−1 that
have a symbol from Si in position im from the end (i = 1, 2, . . . , t). Language L′

is accepted by an n-state incomplete dfa A′ over Σo with states 0, 1, . . . , n − 1,
of which 0 is the initial state, and n− 1 is the sole final state.

Construct an incomplete dfa A over Σ from dfa A′ by adding an unobservable
transition on a` from the initial state 0 to state ` for ` = 1, 2, . . . , n−m−1. Let L
be the language over Σ recognized by A. The projected language P (L) consists
of all suffixes of length at least m of strings in L′. As shown in [25, 26], every
incomplete dfa for P (L) needs at least (kbn/(log k+1)c+1 − 1)/(k − 1) states. ut

Our last result shows that the size of the minimal dfa for a projected language
may reach an arbitrary value from 1 up to the upper bound 2n−1 + 2n−2 − 1.
Hence there are no magic numbers for projections of regular languages.

Theorem 9. Let n ≥ 2 and 1 ≤ α ≤ 2n−1 + 2n−2 − 1. There exist an alphabet
Σ, a projection P of strings in (Σ ∪ {#})∗ onto strings in Σ∗ with # /∈ Σ, and
a regular language L over Σ ∪ {#} with ‖L‖ = n such that ‖P (L)‖ = α.

Proof. If 1 ≤ α ≤ n − 2, then take the minimal incomplete dfa of Fig. 6 with
Σ = {a}. The projected language is {ai | i ≥ α − 1}, for which the minimal
incomplete dfa has α states.

If α = n − 1, then take the incomplete dfa of Fig. 7 with Σ = {a}. The
projected language is (an−1)∗, for which the minimal incomplete dfa has n − 1
states.

Fig. 6. The incomplete n-state dfa A over {a,#} with ‖P (L(A))‖ = α; 1 ≤ α ≤ n− 2.
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Fig. 7. The incomplete n-state dfa A over {a,#} with ‖P (L(A))‖ = n− 1.

Now let n ≤ α ≤ 2n−1 + 2n−2 − 1. Then n + 1 ≤ α + 1 ≤ 3
4 · 2

n, and so
α + 1 can be expressed as α + 1 = n − k + 3

4 · 2
k + m, where 2 6 k 6 n and

0 6 m 6 2k−1 +2k−2−2. It is shown in [14, Lemma 9 and Lemma 10] that there
exists a minimal n-state dfa Mn,k,m over an alphabet Σ with states 1, 2, . . . , n,
of which 1 is the initial state, and k is the sole final state (and no state is dead)
such that the minimal dfa for the star of language L(Mn,k,m) has α+ 1 states.

Let us modify the dfa Mn,k,m by adding an unobservable transition by sym-
bol # from the final state k to the initial state 1. Then in the subset automaton
for the projected language, all the states that were reachable in the subset au-
tomaton for star will be again reachable, except for the initial state {q0} that
was added in the construction of an nfa for star in [14] . All the reachable states
will be pairwise distinguishable. Therefore, the minimal incomplete dfa for the
projected language has exactly α states. ut

6 Conclusion

The dfa accepting a projected language is obtained from the dfa accepting an
input language by replacing unobservable transitions with ε-transitions and by
applying the subset construction to the resulting nfa. The minimal dfa for the
projected language, however, may be of exponential size in comparison with the
input automaton [9, 19, 21, 22]. This observation gives rise to a challenging open
problem. How to characterize classes of dfa’s, for which the minimal dfa for the
projections is of a linear (polynomial, logarithmic) size?

Problem 1. Let P be a projection, and let Af
P denote the class of all minimal

dfa’s such that A ∈ Af
P if and only if the minimal dfa accepting P (L(A)) has no

more than f(n) states, where f is a (recursive) upper bound state-space function.
Given a projection P and a function f , characterize the class Af

P .

It follows from the results of this paper that the class Af
P does not include

all minimal acyclic dfa’s for any reasonable upper bound f (such as linear or
polynomial). Note that there exists a property called an observer property [29]
ensuring that the minimal automaton for the projected language has no more
states than the minimal automaton for the input language, see also [23]. This
property is well known and widely used in supervisory control of hierarchical
and distributed discrete-event systems, and, as mentioned in [24], also in com-
positional verification [5] and modular synthesis [3, 7]. If the projection does not
satisfies the property, the co-domain of the projection can be extended so that it
satisfies it. However, the computation of such a minimal extension is NP-hard.
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Nevertheless, there exists a polynomial-time algorithm that finds an acceptable
extension [4]. A different approach with further references can be found in [24].
Although we know that the result is of polynomial size, the problem is how to
compute it in polynomial time. Consider the determinization procedure of an
nfa. This procedure can produce an exponential number of states where most
of the states are equivalent. In [29], a polynomial-time algorithm running in
O(n7m2), where n is the number of states and m is the cardinality of the co-
domain of the projection satisfying the observer property, has been proposed.
However, the precise time complexity of this problem is open.

Problem 2. How to compute the minimal dfa accepting the projected language
when the projection satisfies the observer property?
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