
Fundamenta Informaticae XXI (2001) 1001–1020 1001

IOS Press

Blackhole Pushdown Automata

Erzsébet Csuhaj-Varjú∗

Computer and Automation Research Institute, Hungarian Academy of Sciences

Kende u. 13–17, 1111 Budapest, Hungary

csuhaj@sztaki.hu

Tomáš Masopust†

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Institute of Mathematics, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic

masopust@ipm.cz

György Vaszil
Computer and Automation Research Institute, Hungarian Academy of Sciences

Kende u. 13–17, 1111 Budapest, Hungary

vaszil@sztaki.hu

Abstract. We introduce and investigate blackhole pushdown automata, variants of pushdown au-
tomata, where a string can always be pushed to the pushdown, but only a given depth of the push-
down content is remembered (the rest of the pushdown content is either canceled or becomes inac-
cessible). We also study blackhole variants of regulated pushdown automata, where the automaton in
some distinguished states checks the form of its pushdown content against a given control language.
We present characterizations of several language families in terms of these constructs.

Keywords: Pushdown automaton, regulation, computational power.

Address for correspondence: E. Csuhaj-Varjú, P.O. Box 63, 1518 Budapest, Hungary
∗Also affiliated with the Department of Algorithms and Their Applications, Faculty of Informatics, Eötvös Loránd University,
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
†Research supported by the GAČR grant no. P202/11/P028, and by the CAS, Inst. Research Plan no. AV0Z10190503.

1002 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

1. Introduction

The concept of a pushdown automaton is one of the basic notions of automata theory which has been
investigated for a long time. Recently, its regulated versions have obtained increased interest. One exam-
ple is a variant discussed in [3]. In this model the automaton is given a control language over the alphabet
of pushdown symbols, and an input string is accepted whenever the pushdown automaton accepts it by
a computation where the pushdown content of each step forms a string included in the given control
language. It was shown that if the control language is regular, then the computational power is the same
as that of ordinary pushdown automata. On the other hand, an example was presented demonstrating that
non-regular linear control languages increase the computational power of these automata; the question
concerning their computational power with non-regular linear control languages was examined in [5].

Studying nondeterminism in pushdown automata, the previous modification of these constructs has
been generalized, and the notion of a so-called R-PDA was introduced in [4]. Given a control language
R, an R-PDA is a pushdown automaton which makes a nondeterministic step whenever the pushdown
content is in R, and makes a deterministic step whenever the pushdown content is not in R. In [4], it
was shown that regular control languages do not change the computational power of these constructs,
that is, they are context-free. The statement that having non-regular linear control languages, R-PDA are
computationally complete computation devices was proved in [5].

While R-PDA check the form of their pushdown content in each computational step, the so-called
state-controlled R-PDA (R-sPDA), introduced and studied in [5], perform such a check only in some
distinguished, so-called checking states. As for R-PDA, if R is a regular language, the computational
power is that of PDA, while if R is non-regular linear, then these computational devices are as powerful
as Turing machines. In addition, two checks of the form of the pushdown content are sufficient to accept
any recursively enumerable language.

Continuing the previous research, in [1] the concept of a blackhole state-controlled R-PDA (black-
hole R-sPDA, for short) was introduced, where a symbol can always be pushed to the pushdown, but
only a given depth of the pushdown content is considered, the rest of the pushdown content is deleted.
Furthermore, in checking states, the automaton should check whether or not its pushdown content is an
element of the given control language R. The notion was motivated by an observation on the function-
ing of regulated pushdown automata, namely, that in many cases, some parts of the pushdown content
are needed or useful only during a limited period of the computation, but never later. Furthermore, the
question of the amount of required memory is the basic question in complexity theory.

In [1] the characterization of several language families accepted by blackholeR-sPDA was presented.
It was shown that any context-sensitive language can be accepted by a blackhole R-sPDA where the
control language is linear and the depth of the pushdown taken into consideration is a linear function of
the length of the input word. It was also proved that every context-free language can be accepted by a
blackhole R-sPDA with a regular control language and a linear depth function. However, there exists a
non-context-free language that can be accepted by a blackhole R-sPDA with a regular control language
and a sublogarithmic depth function.

In this paper, which is an extended revised version of [1], we make further steps. First, we introduce
the blackhole variant of the ordinary pushdown automata, called blackhole pushdown automata where at
any step of the computation only a given depth of the pushdown content is considered. This means that
the blackhole pushdown automaton can always push a string to its pushdown, but only the topmost f(n)
symbols, for some function f , (where n is the length of the input) are kept in their original form. We

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1003

define two working modes for these constructs: in the strong mode - analogously to the model in [1] - the
part of the pushdown content which is not considered anymore is deleted, while in the weak mode, this
useless string is replaced by a special symbol, #, which can never be read from the pushdown. Thus, the
difference between the work of blackhole pushdown automata working in the weak or in the strong mode
consists in the way they use the value f(n) of the depth function which is given to them as an “oracle”
from outside of the system. Using the weak working mode, a blackhole PDA can be considered as a
usual pushdown automaton which only operates on the topmost f(n) positions of the pushdown: if at
least one symbol is pushed to a position deeper than f(n), then the bottom of the pushdown, Z0, cannot
be reached anymore due to the appearance of symbol # and no transition with Z0 as the topmost symbol
in the pushdown can be performed during the following computational steps. Thus, in the weak mode,
the pushdown “overflow” is recorded, but as Z0 can never be reached, the pushdown store cannot be
emptied anymore, or in other words, its emptiness cannot be checked anymore. In the strong mode, the
length of the pushdown content is kept under a bound during the whole computation without recording
the (possible) overflow, but with the possibility of still emptying the pushdown until the bottom symbol
Z0 is reached. This opens several possibilities in the strong mode: For example, to check whether the
length of a sequence of letters is equal to f(n) − 1, the automaton might place two marker symbols to
the bottom, then push the sequence into the pushdown, and finally check if the second marker is the last
symbol preceding Z0 in the pushdown.

Continuing the research started in [1], we also study the weak working mode for R-sPDA as well;
the strong mode is the functioning mode used in that paper.

In this paper, we provide characterizations of language classes accepted by blackhole PDA and
R-sPDA in the strong and weak modes. We show that there exist non-context-free languages that can be
accepted by some blackhole PDA with a sublogarithmic depth function working in the strong mode and
in the weak mode as well. We also present hierarchies of language classes defined by blackhole PDA
which are based on a sublogarithmic hierarchy of depth functions. We prove that there exist context-free
languages which cannot be accepted by any blackhole PDA with a sublinear depth function and any
blackhole R-sPDA with a sublinear depth function and an arbitrary control language in either the strong
or the weak working modes. There exist, however, non-context-free languages which can be accepted
by blackhole PDA with a linear depth function and blackhole R-sPDA with a linear depth function and
a regular control language. We also study the power of blackhole R-sPDA with linear control languages.
We show that both in the strong and in the weak working modes these automata describe the family
of context-sensitive languages if the depth function is linear. We also discuss the case of deterministic
blackhole R-sPDA (where the underlying PDA is deterministic). Finally, we close the paper by conclu-
sions and open problems for future research.

2. Preliminaries

Throughout the paper, we assume the reader to be familiar with the basics of automata and formal
language theory; for further details we refer to [6, 7].

For a set A, |A| designates the cardinality of A. For an alphabet (a finite nonempty set) V , V ∗

denotes the set of all words over V ; the empty word is denoted by λ. We set V + = V ∗ − {λ}. For a
string w ∈ V ∗, the length of w is denoted by |w|, and the mirror image of w by wR. For a language

1004 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

L ⊆ V ∗, the mirror image of L is the language LR = {wR : w ∈ L}. The set of all natural numbers
(including zero) and the set of positive integers are denoted by N and N+, respectively.

A pushdown automaton (a PDA, for short) is a septupleM = (Q,Σ,Γ, δ, q0, Z0, F), where Q is a
finite set of states, Σ is the input alphabet, Γ is the pushdown alphabet, δ : Q× (Σ∪{λ})×Γ→ 2Q×Γ∗

is the transition function, q0 ∈ Q is the initial state, Z0 ∈ Γ is the initial pushdown symbol, and F ⊆ Q
is the set of accepting states.

A configuration ofM is a triplet (q, w, γ), where q ∈ Q is the current state, w ∈ Σ∗ is the unread
part of the input, and γ ∈ Γ∗ is the current content of the pushdown (the leftmost symbol of γ is the top
pushdown symbol). For p, q ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, γ, β ∈ Γ∗, Z ∈ Γ, and (p, β) ∈ δ(q, a, Z), we
say thatM makes a move from (q, aw, Zγ) to (p, w, βγ), written as (q, aw, Zγ) `M (p, w, βγ). For
the sake of simplicity, the initial pushdown symbol appears only at the bottom of the pushdown during
any computation, i.e., if (p, β) ∈ δ(q, a, Z), then either Z 6= Z0 and β does not contain Z0, or Z = Z0

and β = β′Z0, where β′ does not contain Z0. As usual, the reflexive and transitive closure of the relation
`M is denoted by `∗M (if no confusion arises, the subscriptMmay be omitted). The language accepted
byM is defined by L(M) = {w ∈ Σ∗ : (q0, w, Z0) `∗M (q, λ, γ) for some q ∈ F and γ ∈ Γ∗}.

A pushdown automaton M = (Q,Σ,Γ, δ, q0, Z0, F) is deterministic (a DPDA, for short) if the
following two conditions are satisfied: (1) |δ(q, a, Z)| ≤ 1, for all a ∈ Σ ∪ {λ}, q ∈ Q, and Z ∈ Γ, and
(2) for all q ∈ Q and Z ∈ Γ, if δ(q, λ, Z) 6= ∅, then δ(q, a, Z) = ∅, for all a ∈ Σ. That is,M is able
to make at most one move from any configuration. In this case, we write δ(q, a, Z) = (p, γ) instead of
δ(q, a, Z) = {(p, γ)}.

A context-free grammar is a quadruple G = (N,T, P, S), where N is the alphabet of nonterminals,
T is the alphabet of terminals, N ∩T = ∅, S ∈ N is the start symbol, and P is a finite set of productions
of the form u → v, where u ∈ N and v ∈ (N ∪ T)∗. For two strings x, y ∈ V ∗ and a production
u→ v ∈ P , define the relation xuy ⇒ xvy. The language generated by G (the language of G, for short)
is defined by L(G) = {w ∈ T ∗ : S ⇒∗ w}, where ⇒∗ is the reflexive and transitive closure of the
relation⇒. A language L is context-free if there exists a context-free grammar G such that L = L(G).

A language is context-free if and only if it can be accepted by a pushdown automaton. A context-free
language is called deterministic if it can be accepted by a deterministic pushdown automaton.

A context-free grammar G is said to be in Greibach normal form if all of its productions are of the
form u→ bv, where u ∈ N , b ∈ T , and v ∈ N∗. If λ ∈ L(G), then we also consider the rule S → λ.

A linear grammar is a context-free grammarG = (N,T, P, S), where all productions are of the form
u→ v, where u ∈ N and v ∈ T ∗∪ T ∗NT ∗, i.e., v is a string containing not more than one nonterminal.
A language L is linear if there exists a linear grammar G such that L = L(G).

A regular grammar is a context-free grammar G = (N,T, P, S), where all productions are of one
of the forms A → aB, A → a, A → λ, where A,B ∈ N and a ∈ T . A language L is regular if there
exists a regular grammar G such that L = L(G).

A linear bounded automaton (an LBA) is a construct K = (Q,Σ,Γ, δ, q0, qacc,B,C) where Q is a
finite set of states, Σ ⊆ Γ is the input alphabet, Γ is the tape alphabet, δ : Q × Γ → 2Q×Γ×{L,R} is the
transition function, q0 ∈ Q is the initial state, qacc is the accepting state, and B,C∈ Γ are the left and
right end markers, respectively. The transition function δ is defined in such a way that it never moves the
head to the left or to the right of the left and right end markers, respectively, neither replaces them with
another symbol.

A configuration of K is a string of the form w1qw2, where w1w2 represents the current content of
the tape, w1w2 ∈ {B}(Γ− {C,B})∗{C}, the reading head scans the leftmost symbol of w2 (or C if

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1005

w2 = λ), and q ∈ Q is the current state of the machine. Given an input string w0, the initial configuration
is q0Bw0C.

For technical reasons, δ can also be given in the following form: if (q, b, L) ∈ δ(p, a), then we write
xpa → qxb, for all x ∈ Γ, and if (q, b, R) ∈ δ(p, a), then we write pa → bq, i.e., the symbol read by
the head is the symbol to the right of the state. For a configuration w1xpaw2 and a rule xpa→ qxb, we
may write the computational step relation ` so that w1xpaw2 ` w1qxbw2. Analogously, for pa → qp,
we write w1xpaw2 ` w1xbqw2.

An accepting computation on the input string w0 is a sequence of computational steps u0 ` u1 `
· · · ` un, for some n ≥ 1, such that u0 is the initial configuration q0Bw0C, ui are configurations for all
i = 1, 2, . . . , n − 1, and un is a configuration of the form w1qaccw2. An input string w0 is accepted if
there is an accepting computation on w0.

A language is context-sensitive if and only if it is accepted by an LBA.
The classes of regular, linear, (deterministic) context-free, context-sensitive and recursively enumer-

able languages are denoted by REG, LIN, (D)CF, CS, and RE, respectively.

3. Basic Definitions and Properties

We first introduce the notion of a blackhole pushdown automaton and define its two functioning modes,
the weak and the strong working modes. Then, we recall the notion of a blackhole R-sPDA from [1],
and describe its strong and weak working modes. We note that the strong mode corresponds to the
functioning mode introduced in [1]. We close the section with some basic results concerning language
classes accepted by blackhole PDA and blackhole R-sPDA.

Definition 3.1. A pairM = (M′, f) is called a blackhole pushdown automaton (a blackhole PDA, for
short), ifM′ = (Q,Σ, Γ̄, δ, q0, Z0, F) is a pushdown automaton such that Γ̄ = Γ ∪ {#} where # /∈ Γ
and δ : Q× (Σ ∪ {λ})× Γ→ 2Q×Γ∗ . The function f : N→ N ∪ {∞} is called the depth function.

Notice that δ is defined in such a way that the symbol # cannot be read from the pushdown.
Before describing how a blackhole pushdown automaton M functions, we need two auxiliary no-

tions. We define the function trimn : Γ∗ → Γ∗ for n ∈ N ∪ {∞} by

trimn(αZ0) =

{
αZ0 if |α| ≤ n, or n =∞,
α1Z0 if α = α1α2 with |α1| = n, α2 ∈ Γ∗.

Let the function topn : Γ̄∗ → Γ̄∗ for n ∈ N ∪ {∞} be defined as follows:

topn(αZ0) =

{
αZ0 if α ∈ Γ∗ ∪ Γ∗{#}, |α| ≤ n, or n =∞
α1#Z0 if α = α1α2, α1 ∈ Γ∗, |α1| = n, α2 ∈ Γ+ ∪ Γ∗{#}.

A blackhole pushdown automatonM has two functioning modes, namely, the strong mode (or the
s-mode, for short) and the weak mode (or the w-mode, for short). LetM be a blackhole PDA, w0 ∈ Σ∗

be an input word, q, q′ ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, Z ∈ Γ, and γ ∈ Γ̄∗.
A move performed byM in the strong mode on configuration (q, aw, Zγ) is defined as follows:

(q, aw, Zγ) `sM (q′, w, trimf(|w0|)(γ
′γ))

1006 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

where (q′, γ′) ∈ δ(q, a, Z).
A move performed byM in the weak mode on the configuration (q, aw, Zγ) is defined as follows:

(q, aw, Zγ) `wM (q′, w, topf(|w0|)(γ
′γ))

where (q′, γ′) ∈ δ(q, a, Z).
The reflexive and transitive closure of `XM, X ∈ {w, s}, is denoted by `X∗M .
Blackhole pushdown automata can be equipped with further regulations. For example, they can be

given with distinguished checking and non-checking states and a control language.
A tripletM = (M′, Qc, R) is called a blackhole state-controlled R-PDA (a blackhole R-sPDA, for

short), ifM′ = (M′′, f) is a blackhole pushdown automaton, Qc ⊆ Q is a subset of states ofM′′ called
the set of checking states of M, and R ⊆ (Γ − {Z0})∗ is a control language, where Γ is the set of
pushdown symbols ofM′′.

Blackhole state-controlled R-PDA automata work analogously to blackhole pushdown automata,
except that in the checking states the content of their pushdown up to the given depth is checked according
to their membership in the given control language R. In the strong mode, the whole pushdown content,
in the weak mode only a prefix of the pushdown content is checked for membership in R. This is in
accordance with the previous definitions: blackhole PDA cannot reach the bottom of the pushdown in
the weak mode, while blackhole R-sPDA cannot “see” the bottom of the pushdown in the weak mode.

LetM be a blackholeR-sPDA, w0 ∈ Σ∗ be an input word, q, q′ ∈ Q, a ∈ Σ ∪ {λ}, w ∈ Σ∗, Z ∈ Γ,
and γ ∈ Γ∗.

A move performed by M on its configuration (q, aw, Zγ) in the strong mode (in the s-mode, for
short) is defined as

(q, aw, Zγ) `sM (q′, w, trimf(|w0|)(γ
′γ))

where (q′, γ′) ∈ δ(q, a, Z), and either q ∈ Q−Qc, or q ∈ Qc and Zγ = γ′′Z0 with γ′′ ∈ R.
A move performed by M on its configuration (q, aw, Zγ) in the weak mode (in the w-mode, for

short) is defined as
(q, aw, Zγ) `wM (q′, w, topf(|w0|)(γ

′γ))

where (q′, γ′) ∈ δ(q, a, Z), and either q ∈ Q − Qc, or q ∈ Qc and Zγ = γ′′γ′′′Z0 with γ′′ ∈ R, and
γ′′′ ∈ Γ∗ ∪ Γ∗{#}.

Notice that during the computation, Z0 always remains in the pushdown both in the strong and in the
weak working modes and in the case of both blackhole PDA and blackhole R-sPDA.

Informally, a blackhole PDA (a blackhole state-controlled R-PDA) works in such a way that it can
always push a string to its pushdown (it may be the empty string), but only the topmost f(n) symbols
(where n is the length of the input) are kept in the pushdown in their original form. The word at the
bottom of the pushdown consisting of the symbols which, at least for one computational step during
the computation occupy a position greater than f(n), are either denoted by the single symbol # (when
the automaton works in the weak mode), or they are deleted (when the automaton works in the strong
mode). This is realized by the use of the top function which changes all the symbols which have occupied
a pushdown position greater than f(n) to a single # (in the case of weak mode), and by the use of the
trim function which deletes the letters which occupy position greater than f(n) (in the case of strong
mode).

As we mentioned in the Introduction, the difference between the work of blackhole pushdown au-
tomata working in the weak or in the strong mode, consists in the way they use the value f(n) of the

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1007

depth function. Using the weak working mode, a blackhole PDA can be considered as a usual pushdown
automaton which only operates on the topmost f(n) positions of the pushdown: if at least one symbol
is pushed to a position deeper than f(n), then the bottom of the pushdown, Z0, cannot be reached any-
more, due to the appearance of symbol #, thus, the automaton can never make sure that its pushdown
is emptied. Working in the strong mode, however, the automaton can check, for example, by emptying
its pushdown store, if a symbol pushed to the pushdown previously is still present or already erased by
the application of the blackhole principle. This also holds for the state controlled variants: in the strong
mode the whole pushdown content, in the weak mode only a prefix of the pushdown content is checked
for membership in the control language.

IfM′′ is a deterministic pushdown automaton, then we call any blackhole PDAM′ = (M′′, f) and
any blackhole R-sPDAM = (M′, Qc, R) deterministic.

Analogously to ordinary pushdown automata, the language accepted by a blackhole pushdown au-
tomaton (a blackhole state-controlled R-PDA)M in the X-mode, where X ∈ {w, s}, is defined by

LX(M) = {w ∈ Σ∗ : (q0, w, Z0)`X∗M (q, λ, γ) for some q ∈ F and γ ∈ (Γ ∪ {#})∗}.

Let LX(PDA,F) and LX(PDA,F , C), for X ∈ {s, w}, F being a class of functions with domain
N ∪ {∞}, and C being a class of control languages, denote the language classes which are accepted by
blackhole PDA or blackhole R-sPDA working in the strong or in the weak mode (for X = s or X = w,
respectively) with depth function from the class F (or unbounded depth, in case of F = ∞) and with
control language R from the language class C in case of blackhole R-sPDA. We replace PDA in the
above notation by DPDA if the blackhole PDA (or blackhole R-sPDA) is deterministic.

There are several properties of blackhole pushdown automata which can easily be seen by the defi-
nitions.

Proposition 3.1. LX(PDA,F) ⊆ LX(PDA,F , C) for X ∈ {w, s}, any class of depth functions F and
any nonempty class of control languages C.

To see this, consider for each blackhole PDAM, the blackhole R-sPDAM′ = (M, ∅, R) where R
is an arbitrary language from C.

We also immediately obtain the following statement by the definitions.

Proposition 3.2. Ls(PDA,∞, C) = Lw(PDA,∞, C) holds for any class of control languages C.

Now we show that blackhole PDA in the strong mode are at least as powerful as blackhole PDA
working in the weak mode.

Lemma 3.1. The following statements hold for arbitrary depth functions f : N→ N ∪ {∞}.

1. For any blackhole PDA M1 = (M′1, f), there is a blackhole PDA M2 = (M′2, f) such that
Lw(M1) = Ls(M2).

2. For any blackhole R-sPDA M1 = (M′1, Qc, R) with M′1 = (M′′1, f), there exists a blackhole
R-sPDA M2 = (M′2, Qc, R

′) with M′2 = (M′′2, f) such that Lw(M1) = Ls(M2) and R′ =
R · Γ∗, where Γ is the pushdown alphabet ofM2.

1008 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

Proof:
Consider the blackhole PDAM1 = (M′1, f),M′1 = (Q1,Σ,Γ1 ∪{#}, δ1, q0, Z0, F), which accepts in
the weak mode the language L, i.e., L = Lw(M1). We construct a blackhole PDAM2 = (M′2, f) such
that L = Ls(M2).

LetM′2 = (Q2,Σ,Γ2∪{#}, δ2, q
′
0, Z0, F) whereQ2 = Q1∪{q′0}, Γ2 = Γ1∪{[λ, Z ′0]}∪{[Z,Z ′0] :

Z ∈ Γ1 − {Z0} }, for a new symbol Z ′0, and δ2 is defined as follows. First, let

δ2(q′0, λ, Z0) = (q0, [λ, Z
′
0]Z0),

where q0 is the initial state ofM1. In this first move,M2 places the special symbol [λ, Z ′0] to the bottom
of the pushdown store, just above Z0. This special symbol is used byM2 in the same way as Z0 is used
byM1, that is, for all q ∈ Q1, a ∈ Σ ∪ {λ}, and for all (r, γ) ∈ δ1(q, a, Z0), let

(r, γ′) ∈ δ2(q, a, [λ, Z ′0]),

where γ′ = [λ, Z ′0] if γ = Z0, and γ′ = γ′′[Z,Z ′0] if γ = γ′′ZZ0 for some γ′′ and Z 6= λ. If a symbol
Z is pushed on the top of Z0 by M1, then these rules also replace [λ, Z ′0] by [Z,Z ′0], so the last two
symbols in the pushdown ofM1 are represented by a single symbol inM2.

For all q ∈ Q1, a ∈ Σ ∪ {λ}, Z ∈ Γ1 − {Z0}, and (r, γ) ∈ δ1(q, a, Z), let

(r, γ′) ∈ δ2(q, a, [Z,Z ′0])

with γ′ = γ′′[Z ′, Z ′0] if γ = γ′′Z ′, Z ′ ∈ Γ1, or γ′ = [λ, Z0] if γ = λ. These rules are necessary to make
M2 work with [Z,Z ′0] in the same way asM1 works with Z.

Finally, for all q ∈ Q1, a ∈ Σ ∪ {λ}, Z ∈ Γ1 − {Z0}, let

δ2(q, a, Z) = δ1(q, a, Z),

that is, those transition rules ofM2 which do not use the special symbols are the same as the transitions
ofM1.

Consider a computation of the blackhole PDAM1 on an input word w. The machineM2 is con-
structed in such a way that the symbol # appears in the pushdown ofM1 if and only if the symbol of the
form [Z,Z ′0] for some Z ∈ Γ1−{Z0} disappears from the bottom of the pushdown ofM2 while reading
the same input. This means that we have two cases. If Z0 is reachable in the pushdown ofM1 (there is
no # above it), then [Z,Z ′0] is present in the pushdown ofM2, and all transitions ofM1 reading Z0 can
be simulated byM2 reading [λ, Z ′0]. If Z0 becomes unreachable during the computation ofM1 (there
is a # symbol appearing above it), then the symbol of the form [Z,Z ′0] disappears from the pushdown
ofM2, and the rest of the content of the two pushdowns are the same. InM1, there is no transition for
reading #, inM2 there is no transition for reading Z0, so the weak and strong computations of the two
machines coincide.

Moreover, any check of the pushdown content of M1 in the weak mode for membership in the
control language R gives the same result as the check byM2 in the strong mode for membership in the
control language R · Γ∗2. ut

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1009

4. Blackhole PDA and Blackhole State-Controlled R-PDA with Regular
Control Languages

If the depth of the pushdown of a blackhole pushdown automaton M′ is bounded by a constant, i.e.,
f(n) = k, for some k ∈ N and for all n ∈ N, then both in the strong mode and in the weak mode the
accepted language is regular. To see this, notice that a pushdown with depth bounded by a constant, say
k, can only store a finite number of different strings, namely, m = 1 +

∑k
j=1 |Γ|j words for Γ being the

pushdown alphabet. Therefore, if Q is the set of states of the underlying pushdown automatonM, we
can construct a finite automaton with the set of states Q×m which can keep track of the content of the
pushdown, and thus simulate the functioning ofM′ in the strong mode. The same argumentation holds
for the weak working mode as well.

For the case of blackhole R-sPDA, increasing the complexity of the control language R, we do not
obtain larger accepting power, because R can only have a finite subset of the set of all strings of length
at most k, so we can construct a finite automaton simulating the given blackhole R-sPDA working in the
given mode. Thus, we have the following statement.

Proposition 4.1. LX(PDA, O(1)) = LX(PDA, O(1), C) = REG for X ∈ {w, s} and any class of
control languages C.

Now we consider the case when we increase the available space, but remain below the logarithmic
depth, that is, we have a depth function f(n) ∈ o(log n). According to [8, Theorem 5.2.1], the so-called
strongly space-bounded one-way Turing machines accept only regular languages when sublogarithmic
space is used (in the terminology of [8], a Turing machine is strongly f(n) space bounded if there is no
accessible configuration which uses more than f(n) space). This theorem, however, is not applicable
to the case of blackhole pushdown automata since the value of the depth function is known to these
automata without using any of their computational resources. This observation is demonstrated by the
following statement.

Theorem 4.1. There exists a language L ∈ Lw(PDA, o(log n)) ∩ Ls(PDA, o(log n)) such that L 6∈ CF.

Proof:
Let us consider the non-context-free language L = {aibj : j < blog log(i + j)c, i, j ≥ 1}. Since
Lw(PDA, o(log n)) ⊆ Ls(PDA, o(log n)), it is sufficient to show that L can be accepted by a blackhole
PDA working in the weak mode. To this aim, let us construct M = (M′, f) with the sublogarithmic
depth function f(n) = blog log nc.

LetM′ = ({q0, q1, q2, q3}, {a, b}, {a, b, Z0} ∪ {#}, δ, q0, Z0, {q3}) be a PDA with

δ(q0, a, Z) = (q0, aZ), Z ∈ {a, Z0}, δ(q2, λ, b) = (q2, λ),

δ(q0, b, a) = (q1, ba), δ(q2, λ, a) = (q3, a).

δ(q1, b, b) = {(q1, bb), (q2, bb)},

Processing a given input word w of length n, the automaton first reads and pushes the whole word
into the pushdown. Notice that M can enter the final state q3 if and only if w ∈ {a}+{b}+ and the
number of b’s is less than blog lognc. If this is the case, then at least one symbol a must be present in
the pushdown. This is checked by popping the pushdown content and entering the final state q3 after at
least one a is read from the pushdown. ut

1010 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

Using similar ideas as those in the proof of Theorem 4.1, we can, in some sense, compute a whole
class of functions using blackhole PDA working in the strong mode.

Theorem 4.2. Let g : N+ → N+ be a function such that 0 < g(n) < n, for all n ∈ N+. If L =
{w ∈ {a, b}+ : w = aibj , i, j ≥ 1, j = g(|w|)}, then L = Ls(M, f) for some blackhole PDAM with
f(n) = g(n) + 1.

Proof:
Consider the blackhole PDA M = (M′, f) with depth function f(n) = g(n) + 1 where M =
(Q, {a, b}, {a, b, Z0} ∪ {#}, δ, q0, Z0, {q4}) with Q = {q0, q1, q2, q3, q4}, and

δ(q0, a, Z) = (q0, aZ), Z ∈ {a, Z0}, δ(q2, λ, b) = (q2, λ),

δ(q0, b, a) = (q1, ba), δ(q2, λ, a) = (q3, λ),

δ(q1, b, b) = {(q1, bb), (q2, bb)}, δ(q3, λ, Z0) = (q4, Z0).

First, note that if the input is not of the form aibj , i, j ≥ 1, then the automaton cannot reach state q2,
thus neither state q4, which is the sole accepting state.

Assume that the input is of the form w = aibj , where i, j ≥ 1. After reading and pushing the whole
word into the pushdown, the automaton is in state q2, and there is a single a as the last symbol on the
bottom above the initial pushdown symbol Z0 if and only if the relationship of the length of the sequence
of b’s and the length of the whole word w is correct, that is, if and only if j = g(|w|) = g(j + i). This
is checked so that the automaton pops all symbols and enters the final state q4 if only one a is present
and there is no other symbol between the last b and Z0. Since no other way of functioning is possible,
Ls(M) = L holds. ut

Now we show that there is a hierarchy of languages characterized by blackhole PDA which is based
on a sublogarithmic hierarchy of depth functions. In the following we use the notation log(k) n, for some
k, n ≥ 1, to denote the composition of the logarithmic function, that is, log(k+1) n = log log(k) n where
log(1) n = log n.

Theorem 4.3. For any k ≥ 1, there is a language Lk such that Lk ∈ Lw(PDA, O(log(k) n)) ∩ Ls(PDA,
O(log(k) n)), but Lk 6∈ Lw(PDA, O(log(k+1) n)) ∪ Ls(PDA, O(log(k+1) n)).

Proof:
Consider the language Lk = {w = $i−1u$uR : u ∈ {a, b}+, and |u| ≤ blog(k)(|w|)c − 1}, i ≥ 2,
that is, the length of the subwords $u of the words of Lk are shorter or equal to the kth logarithm of the
length of the whole words. First we construct, for each k ≥ 1, a blackhole PDAMk = (M′k, f) with
the depth function f(n) = blog(k) nc accepting Lk in the weak mode.

Since Lw(PDA, O(log(k) n)) ⊆ Ls(PDA, O(log(k) n)) (see Lemma 3.1), it is sufficient to show that
Lk ∈ Lw(PDA, O(log(k) n)) ∩ Ls(PDA, O(log(k) n)).

LetM′k = ({q0, q1, q2, q3}, {a, b, $}, {a, b, $, Z0} ∪ {#}, δ, q0, Z0, {q3}) be a PDA with

δ(q0, $, Z) = (q0, $Z), Z ∈ {$, Z0}, δ(q1, x, Z) = (q1, xZ), x, Z ∈ {a, b},
δ(q0, x, $) = (q1, x$), x ∈ {a, b}, δ(q2, x, x) = (q2, λ), x ∈ {a, b},
δ(q1, $, Z) = (q2, Z), Z ∈ {a, b}, δ(q2, λ, $) = (q3, $).

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1011

Processing an input word w of length n, Mk pushes the first group of $’s and the subword u ∈
{a, b}+ into the pushdown, and reads the last $. The pushdown store contains the word ūR$l, where
ū is a suffix of u and l ≥ 0, followed possibly by a symbol #, and then Z0. If |$u| ≤ blog(k)(|w|)c
where |w| = i+ 2 · |u|, then there is at least one copy of $ which is not deleted from the pushdown, i.e.,
ūR$l = uR$m, for m ≥ 1. Then, the equality of the rest of the input with uR is checked by reading
and popping the pushdown in each step. If the read and popped symbols match and at least one $ is
found at the bottom of the pushdown, the automaton enters the final state q3. On the other hand, if
|$u| > blog(k)(|w|)c, then the pushdown store contains no $ because, due to the depth function, there is
not enough space. Hence, the automaton never reaches state q3.

To prove the rest of the statement, it is sufficient (by Lemma 3.1) to show that Lk cannot be accepted
by a blackhole PDA working in the strong mode with depth function f in O(log(k+1) n). Let us consider
words $i−1u$uR ∈ Lk where |u| = blog(k)(|w|)c − 1, |w| = i + 2 · |u|. There are 2|u| = 2blog(k)(|w|)c

different strings of this length, but the blackhole PDA has only c ·2blog(k+1)(|w|)c different configurations,
for some constant c. Therefore, if we take $i−1u$uR ∈ Lk, then there must be a word $i−1v$vR ∈ Lk

with |u| = |v|, but u 6= v, such that upon reading the last $, the automaton is in the same configuration
for both of these input words. This means that processing the word $i−1u$vR 6∈ Lk, the automaton also
enters the final state, which is a contradiction. ut

So far we have examined systems with sublogarithmic depth functions. Now we move on studying
the cases when the depth function is linear.

Theorem 4.4. CF ⊂ LX(PDA, O(n)) ⊆ LX(PDA, O(n), REG), X ∈ {w, s}.

Proof:
It is clear by Proposition 3.1 that LX(PDA, O(n)) ⊆ LX(PDA, O(n), REG), for any X ∈ {w, s}.
Moreover, CF ⊆ LX(PDA, O(n)), for X ∈ {w, s}, since for any context-free language L, there is a
context-free grammar in Greibach normal form generating L. As every grammar in the Greibach normal
form contains no erasing productions and the right-hand side of all of its rules starts with a terminal
symbol, using the standard technique for the construction of a pushdown automaton based on context-
free grammars, we obtain that there is a pushdown automatonM accepting L requiring not more than
linear pushdown depth.

In addition, Lw(PDA, O(n)) ⊆ Ls(PDA, O(n)), that is, Lw(PDA, O(n)) ∩ Ls(PDA, O(n)) =
Lw(PDA,O(n)) by Lemma 3.1. Thus, we only need to show that CF⊂ Lw(PDA,O(n)). To see this, let
us consider the non-context-free language L = {aibjcj : i > j ≥ 1} and the depth function f(n) = dn3 e.
LetM = (M′, f) whereM′ = ({q0, q1, q2, q3}, {a, b, c}, {a, b, c, Z0} ∪ {#}, δ, q0, Z0, {q3}) with

δ(q0, a, Z) = (q0, aZ), Z ∈ {a, Z0}, δ(q1, c, b) = (q2, λ),

δ(q0, b, a) = (q1, ba), δ(q2, c, b) = (q2, λ),

δ(q1, b, b) = (q1, bb), δ(q2, λ, a) = (q3, a).

LetM work in the weak mode. First, it reads and pushes a’s and then reads and pushes b’s to the
pushdown. Then, in state q2, it reads c’s and pops b’s and checks if the number of b’s is equal to the
number of c’s in the input word. M accepts the input if, in addition, there is still at least one a in the
pushdown, because this means that i > j, thus, L = Lw(M) and the statement is proved. ut

1012 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

Recall, that there exist context-free languages which cannot be accepted by a one-way Turing ma-
chine in less than linear space, see [2, Theorem 11.4]. It is not obvious, however, that there also exist
context-free languages which cannot be accepted by any sublinear depth blackhole PDA or R-sPDA, be-
cause these machines do not need to use their computational resources to obtain the values of the depth
functions, which might increase their accepting power (as in the case of sublogarithmic depth blackhole
PDA versus sublogarithmic space Turing machines, see Theorem 4.1).

Proposition 4.2. There exists a language L ∈ CF such that L 6∈ LX(PDA, o(n), C) for X ∈ {w, s} and
for any class of control languages C.

Proof:
This can be seen similarly to the proof of [2, Theorem 11.4]. Consider the context-free language L =
{wcwR : w ∈ {a, b}+}. If L is accepted by a blackholeR-sPDAM in any of the weak or strong modes,
then after reading the prefix wc of a word wcwR,M has to be able to reach 2l different configurations,
for l = |w|. However, if Q is the set of states and Γ is the pushdown alphabet, then the number of
different configurations is |Q| · |Γ|f(2l+1) which is less than 2l for a sufficiently large l. ut

Thus, linear pushdown depth is not only sufficient, but also necessary to accept all context-free
languages.

5. Linear Depth Functions, Linear Control Languages

In this section we study the power of blackhole R-sPDA with linear control languages and linear depth
functions.

If the depth of the pushdown is not bounded, i.e., f(n) =∞, then blackhole R-sPDA coincide with
state-controlledR-PDA which accept any recursively enumerable language with linear control languages
and not more than two checks of the pushdown content [5]. Since, by definition, Ls(PDA,∞, LIN) =
Lw(PDA,∞, LIN) holds, the following statement immediately follows.

Proposition 5.1. LX(PDA,∞, LIN) = RE, for X ∈ {w, s}.

Now we consider blackhole R-sPDA with linear control languages and with linear depth functions.
We show that both in the strong and in the weak working modes these automata describe the family of
context-sensitive languages.

To illustrate our proof technique, we first present an example language which can be accepted by a
blackhole R-sPDA working in the strong or in the weak mode.

Example 5.1. Let L = {ww : w ∈ {a, b}+}. We construct a blackhole R-sPDA M with a linear
control language R and with a linear depth function f . First we show thatM accepts L working in the
strong mode.

Let us define M = (M′, Qc, R) such that M′ is a blackhole PDA with M′ = (M′′, f) and
M′′ = ({q0, q1, qc, q2, q3, qf}, {a, b}, {a, b, Z0, $} ∪ {#}, δ, q0, Z0, {qf}) where Qc = {qc} is the set of

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1013

checking states, R = {w$wR : w ∈ {a, b}+}, and f(n) = n + 1 is the (linear) depth function. The
transition function δ is defined as follows. For x, y ∈ {a, b},

δ(q0, x, Z0) = (q0, xZ0), δ(q1, λ, $) = (q1, x$), δ(qc, λ, x) = (q2, x), δ(q3, λ, x) = (q3, λ),

δ(q0, x, y) = (q0, xy), δ(q1, λ, y) = (q1, xy), δ(q2, x, x) = (q2, λ), δ(q3, λ, Z0) = (qf , Z0).

δ(q0, λ, y) = (q1, $y), δ(q1, λ, x) = (qc, x), δ(q2, λ, $) = (q3, λ),

The automaton works as follows. Let us consider an input string w′. Then M, assuming that the
input is of the form w′ = ww, reads and copies symbols of the input string to the pushdown and guesses
when the prefix w has been copied, i.e., when the pushdown content is wR read from top to down. Until
this point the automaton remains in state q0. Then, without reading any symbol, it pushes $ to the top of
the pushdown, changes from state q0 to state q1, and pushes some nondeterministically chosen symbols
to the pushdown without reading any symbol from the input. After that phase, M enters state qc and
checks whether the pushdown content is of the form w$wR (without Z0 at the bottom), i.e., whether or
not the pushdown content belongs to R. If this is the case, then |w$wR| = n + 1, i.e., the condition
given by f also holds, and the automaton enters state q2 and compares the string w from the pushdown
top against the rest of the input. It enters the final state qf if and only if the input is of the form ww. It is
easy to see thatM accepts exactly the words of L.

The language L can also be accepted by M working in the weak mode because any word from
Ls(M) can be accepted byM in the weak mode. Furthermore, no more words are in Lw(M) since if
the symbol # appears in the pushdown, then M cannot enter the final state because Z0 cannot be the
topmost symbol anymore. This means that all the words accepted byM working in the weak mode are
exactly the words of L.

Now we state the following theorem.

Theorem 5.1. Lw(PDA, O(n), LIN) = Ls(PDA, O(n), LIN) = CS.

Proof:
Let L ⊆ Σ∗ be a context-sensitive language. Then, there exists a linear bounded automaton K =
(QK,Σ,ΓK, δK, q0, qacc,B,C) which accepts L. Denote the set of transition rules of K by P . We first
present a blackhole R-sPDA M = (M′, Qc, R) with a linear control language R and a linear depth
function f such that L = Ls(M) holds.

The basic idea of the proof is that the blackhole R-sPDAM with input alphabet Σ and alphabet of
pushdown symbols Γ̄ = Γ ∪ {#}, where Γ = ΓK ∪ QK ∪ {$,B,C} and $ is a new symbol, simulates
K by reproducing configurations of K in its pushdown and simulating the transitions of K by rewriting
these configurations.

We first present the control language R. Let R = L1 ∪ L2 ∪ L3, where

L1 = {wRw′$: w′ `K w}Γ∗,
L2 = {$$wwR : w ∈ (Γ− {$})∗}Γ∗, and

L3 = {$$$wR$w′$: w′ `K w,w = w1qaccw2}Γ∗.

Each Li, i = 1, 2, 3, serves for checking the correctness of the different phases of the simulation.
Since L1, L2, and L3 are linear languages, soR is linear as well. It is easy to see that L1 can be generated

1014 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

by the linear grammar G1 = ({S, S′, S′′},Γ, P1, S), where

P1 = {S → Sx : x ∈ Γ} ∪ {S → $S′$} ∪ {S′ → xS′x : x ∈ Γ− {$} −QK}
∪ {S′ → βRS′′α : α→ β ∈ P} ∪ {S′′ → xS′′x : x ∈ Γ− {$} −QK} ∪ {S′′ → $}.

Similarly, L2 can be generated by the linear grammar G2 = ({S, S′},Γ, P2, S), where

P2 = {S → Sx : x ∈ Γ} ∪ {S → $$S′$} ∪ {S′ → xS′x : x ∈ Γ− {$}} ∪ {S′ → $}.

Finally, the linear grammar G3 = ({S, S′, S′′},Γ, P3, S) with

P3 = {S → Sx : x ∈ Γ} ∪ {S → $$$S′$} ∪ {S′ → xS′x : x ∈ Γ− {$} −QK}
∪ {S′ → βRS′′α : α→ β ∈ P, α = α1qaccα2} ∪ {S′′ → xS′′x : x ∈ Γ− {$} −QK} ∪ {S′′ → $}

generates L3.
Now we present the other components ofM. Let Q = {q0, q1,1, q1,2, q1,3, qc,1, qc,2, qc,3, qf} ∪ {qi :

1 ≤ i ≤ 8}, where qf is the sole accepting state, and Qc = {qc,1, qc,2, qc,3}. In the following we define
the transition function δ. To help the reader understand the construction, we list the transitions in separate
groups, according to the phases of the simulation, and explain their work.

The simulation of the start of a computation in K is realized by the application of the following
transitions. For x, y ∈ Σ,

δ(q0, λ, Z0) = (q1,Cq0$Z0), δ(q2, λ, $) = (q3,C$), δ(q4, λ, $) = (qc,2, $),

δ(q1, x,C) = (q1, xC), δ(q3, λ,C) = (q3, xC), δ(qc,2, λ, $) = (q5, λ).

δ(q1, x, y) = (q1, xy), δ(q3, λ, y) = (q3, xy),

δ(q1, λ, y) = (q2, $By), δ(q3, λ, y) = (q4, $$q0By),

First,M pushes the string Cq0$ into the pushdown, enters state q1, and then it reads the input and
meanwhile pushes the symbols of the input word to the pushdown. During this phase,M is in state q1.
Then, without reading any letter from the input, it adds the string $B on the top of the pushdown and
enters state q2. The obtained word is of the form $BwRCq0$Z0. After that, M pushes one symbol
C into the pushdown and enters state q3. Then, still in state q3, it pushes nondeterministically chosen
letters into the pushdown and then the string $$q0 B, and enters state q4. Then, without reading any
symbol and entering state qc,2, it checks whether the resulting pushdown content is a string of the form
$$q0BwC$BwRCq0$Z0, see the language L2. Note that by definition, the bottom symbol Z0 is ignored
in the checking. If this is the case, then the simulation of a computation in K may start; the machine
enters state q5 and removes one $ from the top of the pushdown.

Next, a sequence of transitions in M follows which simulates a computation in K. The following
transitions ofM are for simulating a move in K. For x, y ∈ Γ− {$},

δ(q5, λ, $) = (q6, $), δ(qc,1, λ, $) = (q7, $), δ(q8, λ, y) = (qc,3, $$$y),

δ(q6, λ, $) = (q6, x$), δ(q7, λ, $) = (q8, y$), δ(qc,3, λ, $) = (qf , $),

δ(q6, λ, y) = (q6, xy), δ(q8, λ, y) = (q8, xy), δ(qc,2, λ, $) = (q5, λ).

δ(q6, λ, y) = (qc,1, $y), δ(q8, λ, y) = (qc,2, $$y),

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1015

We explain how a configuration change is simulated. Assume that K performs a move w′ `K w.
Then, M simulates this step as follows. Suppose thatM is in state q5 and its pushdown content is of
the form $w′$γZ0, for some γ ∈ Γ∗. Then, M enters state q6 and without reading any input symbol
it nondeterministically pushes symbols to the pushdown. At some point, M enters checking state qc,1
in which it verifies that the pushdown content is a string from L1, i.e., whether the obtained pushdown
content is of the form wRw′$γ′Z0, where w is a successor configuration of w′ in K, for some γ′ ∈ Γ∗

such that γ′ is a prefix of γ. If this is the case, it enters state q7, that is, the above step of K has been
simulated on the pushdown in a correct manner; otherwise,M is not able to continue the computation.
It remains to reverse wR on the top of the pushdown. This is done in a similar way. First,M enters state
q8 and then it pushes nondeterministically chosen letters from Γ − {$} to the pushdown. After a while,
it enters the checking state qc,2 and it verifies whether or not the resulting pushdown content is a string
from L2. If this is the case, then the pushdown content is $$wwRγ′′Z0, for some γ′′ ∈ Γ∗, and the
simulation of the above move of K is finished;M enters state q5 and the simulation of a move of K may
start again. If the pushdown content is not in L2, then the computation aborts.

To complete the proof, we show how acceptance in K is simulated in M. Suppose that M is in
state qc,2, up to this point a computation in K is correctly simulated, and the content of the pushdown
ofM is of the form $w′$γZ0. We guess that K enters the accepting state by the next move w′ `K w.
Then, M simulates this move as above, but instead of performing transition δ(q8, λ, y) = (qc,2, $$y),
for y ∈ Γ − {$}, it performs transition δ(q8, λ, y) = (qc,3, $$$y), y ∈ Γ − {$}, i.e., it pushes the
string $$$ to the pushdown and enters the checking state qc,3. Thus, the obtained word is of the form
$$$wR$w′$γ′Z0. If the move in K leads to acceptance, then wR contains qacc, therefore $$$wR$w′$γ′

has to be an element of L3. Thus,M checks whether or not $$$wR$w′$γ′ ∈ R holds, and if this is the
case, then enters its final state qf ; otherwise, the computation aborts.

As w is at most of the same length as the input, and we need five $ signs, four end markers, and
two state symbols to represent the configurations in the pushdown, the depth function can be chosen as
f(n) = 2n+ 11.

By the above explanations, the reader may see that Ls(M) = L holds. Note that the above proof
works for L ∈ Σ+. If λ ∈ L, then we add the transition δ(q0, λ, Z0) = (qf , Z0).

The same proof holds for the case of weak mode as well, i.e., Lw(M) = L. This follows from the
property thatM never removes any symbol from the pushdown. Thus, any accepting computation ofM
performed in the strong mode is also an accepting computation in the weak mode, and no other accepting
computation is possible in the weak mode.

On the other hand, consider a blackhole R-sPDAM = (M′, Qc, R, f) where R is a linear control
language and f is a linear depth function. To see that the language LX(M), X ∈ {s, w}, is context-
sensitive, note that M uses only linear space. Thus, as membership in a linear language can also be
checked using linear space by a Turing machine, there is a linear bounded automatonKX which simulates
M working in the X-mode, where X ∈ {s, w}. ut

6. Deterministic Variants

By examining the proof of Theorem 5.1, we can observe that R is linear, deterministic context-free. If
the core pushdown automaton of the blackhole R-sPDA is also deterministic, then L is deterministic
context-sensitive (in the sense that it can be accepted by a deterministic linear bounded automaton). On

1016 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

the other hand, if the LBA is deterministic, then R is linear, deterministic context-free. However, the
core PDA is nondeterministic in that construction. Thus, as a corollary of Theorem 5.1, we obtain the
following statement.

Proposition 6.1. For any deterministic context-sensitive language L, there is a blackhole R-sPDA M
with a linear and deterministic context-free control language, and with a linear depth function such that
L = LX(M), X ∈ {w, s}.

We now consider the case of deterministic blackhole R-sPDA, that is, the case when the core PDA
of the blackhole automaton is deterministic.

Theorem 6.1. DCF ⊂ LX(DPDA, ω(n), LIN) ⊆ LX(DPDA, O(n), LIN), for X ∈ {w, s}.

Proof:
Consider a blackhole state-controlled deterministic PDAM′1 = ((M1, f), Qc, R), for f ∈ ω(n). It is
known [2, Lemma 12.1] that for every DPDAM1, there is an equivalent DPDAM2 such thatM2 neither
loops infinitely nor its pushdown content grows infinitely while reading no input. Thus, there exists a
constant k such that M2 increases its pushdown height of not more than k symbols while reading no
input. In addition, let r denote the maximum of the length of strings thatM2 can push to the pushdown
in one step reading the input, i.e., reading the input, the automaton cannot increase the pushdown height
of more than r − 1 symbols in one step. Considering an input of length n,M2 can increase the height
of its pushdown of not more than g(n) = n · (r − 1) + (n+ 1) · k symbols, which is linear with respect
to the input length.

Thus, as the automataM1 andM2 are equivalent, i.e., accept the same language, and going through
a loop containing a checking state is possible only if the pushdown content forms a string belonging to
R, the automata M′1 = ((M1, f), Qc, R) and M′2 = ((M2, g), Qc, R) are equivalent as well. As a
consequence, we obtain that for every blackhole R-sDPDAM with a linear control language, there is a
blackhole R-sDPDAM′ whose depth function is linear and LX(M) = LX(M′), X ∈ {w, s}, holds.
Hence, we have DCF ⊆ LX(DPDA, ω(n), LIN) ⊆ LX(DPDA, O(n), LIN), for X ∈ {w, s}.

To prove the strictness of the first inclusion, consider the language {anbncn : n ≥ 1} which can be
accepted by a blackhole DPDA with a depth function f ∈ ω(n).

Construct an R-sDPDA M = (M′, Qc, R) such that M′ = (M′′, f) is a blackhole PDA with
M′′ = ({q0, q1, q2, q3}, {a, b, c}, {a, b, $, Z0} ∪ {#}, δ, q0, Z0, {q3}), Qc = {q1} is the set of checking
states, and R = {bn−1an$: n ≥ 1}. Let δ be defined as follows. For x, Z ∈ {a, b},

δ(q0, x, Z0) = (q0, x$Z0), δ(q0, c, b) = (q1, λ), δ(q2, c, b) = (q2, λ),

δ(q0, x, Z) = (q0, xZ), δ(q1, c, b) = (q2, λ), δ(q2, λ, a) = (q3, a).

Processing the input, M pushes into the pushdown a symbol $ and then all a’s and b’s that are
read. When reading the first c, it removes one b from the pushdown and checks whether the pushdown
content is of the form bn−1an$Z0, for some n ≥ 1. (The control language R is linear, even deterministic
context-free.) If this is the case, then the automaton continues processing the input word with comparing
the number of c’s to the number of b’s stored in the pushdown.M enters the final state q3 if the number of
c’s is equal to the number of b’s, i.e., after reading the whole input, only letters a remain in the pushdown.
Thus,M accepts any word in the language {anbncn : n ≥ 1}, and due to the transitions given above it
accepts no other words. ut

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1017

For blackhole DPDA without control languages, we can prove the following statement.

Theorem 6.2. DCF = LX(DPDA, ω(n)) ⊂ LX(DPDA, O(n)), for X ∈ {w, s}.

Proof:
The fact that DCF⊆ LX(DPDA, ω(n)), X ∈ {w, s}, can be seen as follows. First, for any deterministic
context-free language L we can take a DPDA M accepting L such that M only uses a portion of the
pushdown having a length which is a linear function of the length of the input. Thus,M also accepts L
with any depth function f ∈ ω(n) ⊆ Ω(n). On the other hand, for any blackhole DPDAM′, there is an
equivalent blackhole DPDAM that never uses more than linear space (see the first part of the proof of
Theorem 6.1), i.e., any word w ∈ L(M) of length n can be accepted with pushdown height not greater
than f(n), where f is a linear function, and thus the blackhole principle is not applied.

The strictness of the inclusion follows from the proof of Theorem 4.4 since the PDA constructed
there to accept the non-context-free language L = {aibjcj : i > j ≥ 1} is deterministic. ut

We know that any PDA can be considered as a blackhole automaton where the depth of the pushdown
is unbounded, i.e., the depth function f is defined as f(n) =∞, for all n ∈ N. As it is known that every
state-controlled R-PDA with a regular control language can effectively be transformed to an equivalent
pushdown automaton (see, for example, [4]), we have LX(PDA,∞) = LX(PDA,∞, REG) = CF, for
X ∈ {w, s}.

In the case of DPDA, we have an analogous statement also for depth functions which are not un-
bounded, but have a “big enough” bound, that is, for f ∈ ω(n).

Theorem 6.3. DCF = LX(DPDA, ω(n)) = LX(DPDA, ω(n), REG), for X ∈ {w, s}.

Proof:
The first equality is from Theorem 6.2. The second equality can be seen by a construction similar to
the one found in [4] for showing that every state-controlled R-PDA with a regular control language can
effectively be transformed to an equivalent pushdown automaton. The idea is to take the deterministic fi-
nite automaton accepting the control language, and record the sequence of states that it would go through
when reading the word which forms the pushdown content together with the pushdown symbols.

Let M1 = (M′1, Qc, R) such that R ∈ REG, and M′1 = (M′′1, f) be a blackhole DPDA with
f ∈ ω(n) andM′′1 = (Q,Σ,Γ1 ∪ {#}, δ1, qI , Z0, F) such that it never uses more than linear space (see
the first part of the proof of Theorem 6.1). Let M = (QM ,Γ1, q0, δM , FM) be a deterministic finite
automaton that accepts the mirror image of the language R, that is, L(M) = RR. Now we construct a
blackhole PDAM2 = (M′2, f) such that Ls(M2) = Ls(M1).

Let the set of pushdown symbols be Γ2 = {[r, Z, s] : Z ∈ Γ1, r, s ∈ QM , δM (s, Z) = r}, and let
M′2 = (Q,Σ,Γ2 ∪ {#}, δ2, qI , [qI , Z0, qI], F). The transition function δ2 is defined as follows. For all
(q′, γ) ∈ δ1(q, a, Z), q, q′ ∈ Q, q 6∈ Qc, a ∈ Σ ∪ {λ}, Z ∈ Γ1, and γ ∈ Γ∗1 we have

(q′, γ′) ∈ δ2(q, a, Z ′)

where, if γ = Z1Z2 . . . Zt and Z ′ = [r, Z, s] ∈ Γ2, then γ′ = [s1, Z1, s2][s2, Z2, s3] . . . [st, Zt, s]. If
(q′, γ) ∈ δ1(q, a, Z) and q ∈ Qc, then we define δ2(q, a, Z ′) as above, but only for Z ′ = [r, Z, s] where
r ∈ FM .

1018 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

The blackhole PDA M2 works by simulating the transitions of M1, and maintaining not only the
same pushdown content, but also the sequence of states that the finite automaton M traverses starting
from the bottom of the pushdown and moving up to the top symbol. If the top symbol of the pushdown is
[r, Z, s] for some r, s ∈ QM and Z ∈ Γ1, then M is in state r when reading the pushdown content from
the bottom up. Therefore, by defining the transitions ofM2 in such a way that from checking states it
can only continue working in the case when the top pushdown symbol is of the form [r, Z, s] for some
accepting state r ∈ FM ,M2 is able to simulate the checking functionality ofM1.

Finally, in the case of the weak mode, we add sets of states to the pushdown symbols instead of only
states to encode all possible computations starting from any pushdown symbol of the original automaton.
Thus, the initial pushdown symbol is of the form [{qI}, Z0, {qI}] and Γ2 = {[X,Z, Y] : Z ∈ Γ1, X, Y ⊆
QM , δM (X,Z) = Y }. The transition function δ2 is then defined so that for all (q′, γ) ∈ δ1(q, a, Z),
q, q′ ∈ Q, q 6∈ Qc, a ∈ Σ ∪ {λ}, Z ∈ Γ1, and γ ∈ Γ∗1, we have

(q′, γ′) ∈ δ2(q, a, Z ′)

where, if γ = Z1Z2 . . . Zt and Z ′ = [X,Z, Y] ∈ Γ2, then γ′ = [Y1, Z1, Y2][Y2, Z2, Y3] . . . [Yt, Zt, Y],
while if q ∈ Qc, then we define δ2(q, a, Z ′) as above, but only for such Z ′ = [X,Z, Y] whereX∩FM 6=
∅. ut

By Theorem 5.1, languages accepted by blackhole DPDA are context-sensitive. The following ex-
ample demonstrates that deterministic blackhole R-sPDA can accept complicated languages even with
regular control language if the depth function is linear.

Example 6.1. Let Lk = {(wc)k : w ∈ {a, b}+} for k ≥ 1. Then, for every k ≥ 1, there is a blackhole
R-sDPDAMk with a linear depth function f and a regular control languageR which in the strong mode
accepts Lk. Note that for all k ≥ 2, Lk are not context-free.

Let f(n) = bnk c + 1. We constructMk which works as follows. First,Mk copies the prefix wc of
the input to the pushdown. Then, it reads the next symbol, pushes it to the pushdown, and checks whether
the first and the last symbols are the same, i.e., the pushdown contains a string from the regular control
language R = { x{a, b, c}∗x : x ∈ {a, b, c} }. According to f , only wcx, for some x ∈ {a, b, c}, can
be stored in the pushdown. For instance, if w = ab, then the pushdown content is cbaZ0. Reading the
next input symbol, x, and pushing it to the pushdown, xcbaZ0 is stored. The computation continues if
and only if x = a. Then, another symbol, say y, is read and pushed to the pushdown, i.e., the pushdown
contains yxcbZ0. This implies y = b. It means that if the next c is read and pushed to the pushdown,
then the string stored in the pushdown will be cbacZ0. The cycle is repeated until the whole input is read.
As k is a constant, the number of c’s can be counted using the internal states ofMk. It is easy to see that
Mk accepts all words of Lk but no other words.

Note that the power of Mk is provided by the depth function which is known to the automaton
without using any of its computational resources. This is in accordance with the fact that, by Proposi-
tion 6.3, there is no blackhole R-sPDA with a regular control language and an unbounded depth function
accepting Lk, for k ≥ 2.

E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata 1019

7. Conclusions and Open Problems

In this paper, we introduced and examined blackhole pushdown automata where a symbol can always
be pushed to the pushdown, but only a given depth of the pushdown content is considered; the rest of
the pushdown content is lost: it is either deleted or replaced by a dedicated symbol #. In the first case
the blackhole PDA works in the strong mode, while in the latter case it works in the weak mode. We
also studied the corresponding variant of regulated pushdown automata, the so-called blackhole state-
controlled R-PDA, which is a blackhole pushdown automaton that in some special states checks the
form of its pushdown content according to the membership to a given control language R. We provided
the characterization of several language families in terms of these constructs. Among other things, we
proved that blackhole state-controlled R-PDA with linear control languages and linear depth functions
characterize the context-sensitive language class in any of the working modes.

There have remained several open problems to study. In [5], state-controlled R-PDA with linear
control languages were shown to be able to accept any recursively enumerable language checking the
pushdown only twice during any computation. Obviously, the same number of checks is needed to obtain
this accepting power in the case of blackholeR-sPDA with linear control languages and unbounded depth
functions as well. However, it is an open question whether or not for any natural number k, there exists
a language that cannot be accepted by a blackhole R-sPDA with a linear control language and a linear
depth function checking the pushdown content less than k times.

We have shown that deterministic context-sensitive languages can be accepted by blackholeR-sPDA
with linear and deterministic context-free control languages and with a linear depth function. A chal-
lenging question is to relate the well-known LBA problem to blackhole R-sPDA.

Acknowledgments

The authors gratefully acknowledge the very useful suggestions and comments of the anonymous refer-
ees.

References
[1] Csuhaj-Varjú, E., Masopust, T., Vaszil, G.: Blackhole state controlled regulated pushdown automata, Pro-

ceedings of the Second Workshop on Non-Classical Models of Automata and Applications (NCMA 2010)
(H. Bordihn, R. Freund, T. Hinze, M. Holzer, M. Kutrib, F. Otto, Eds.), band 263 of books@ocg.at, Austrian
Computer Society, 2010.

[2] Hopcroft, J., Ullman, J.: Formal Languages and Their Relation to Automata, Addison-Wesley, Reading,
Massachusetts, 1969.

[3] Křivka, Z.: Rewriting Systems with Restricted Configurations, Ph.D. Thesis, Faculty of Information Technol-
ogy, Brno University of Technology, Brno, 2008.

[4] Kutrib, M., Malcher, A., Werlein, L.: Regulated nondeterminism in pushdown automata, Theoretical Com-
puter Science, 410(37), 2009, 3447–3460.

[5] Masopust, T.: Regulated Nondeterminism in Pushdown Automata: The Non-Regular Case, Fundamenta
Informaticae, 104(1-2), 2010, 111–124.

[6] Salomaa, A.: Formal Languages, Academic Press, New York, 1973.

1020 E. Csuhaj-Varjú, T. Masopust, Gy. Vaszil / Blackhole Pushdown Automata

[7] Salomaa, A.: Computation and Automata, Cambridge University Press, Cambridge, 1985.

[8] Szepietowski, A.: Turing Machines with Sublogarithmic Space, vol. 843 of Lecture Notes in Computer Sci-
ence, Springer, Berlin, 1994.

