
Coordinated Control of Discrete Event Systems
with Nonprefix-Closed Languages
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1. INTRODUCTION

A modular or a distributed discrete-event system is a
synchronous product of two or more modules or subsys-
tems. In supervisory control of a distributed discrete-event
system each module or subsystem has its own observation
channel and a supervisor. The local (also called modular
or decentralized) control synthesis then consists of syn-
thesizing local supervisors for each subsystem. The global
supervisor formally consists of the synchronous product of
local supervisors although this product is not computed in
practice.

Given a rational global specification language (i.e., a lan-
guage recognizable by a finite-state machine), the supre-
mal controllable sublanguage from which the optimal su-
pervisor is built can always be computed. Such a global
control synthesis of a distributed discrete-event system
consists in computing the global plant (a synchronous
product of local plants), and the control synthesis is then
carried out in the usual way. However, the global control
synthesis is not always possible because of state complexity
reasons. On the other hand, the purely local control syn-
thesis does not work in general. Therefore, Komenda and
van Schuppen (2008) have proposed a coordinated control
architecture as a trade-off between the purely local control
synthesis and the global control synthesis.

In this paper, the problem of the supervisory control syn-
thesis of modular or distributed discrete-event systems is
further discussed and investigated. The coordinated con-
trol architecture proposed by Komenda and van Schuppen
(2008) and further studied in Komenda et al. (2010a,b) in
the case of prefix-closed global specification languages is
generalized to the case of non-prefix-closed global specifi-
cation languages and, correspondingly, to the non-prefix-
closed plant languages. The solvability of the coordinated

supervisory control synthesis problem is characterized in
terms that are coordination-control counterparts of the
terms of controllable and closed sublanguages used in
supervisory control theory of monolithic discrete-event
systems.

This paper presents necessary and sufficient conditions
ensuring that a given global specification language is
exactly achievable in our coordination-control architecture
as the marked language of the closed-loop coordinated
system, and that its prefix closure is exactly achievable
as the prefix-closed language of the resulting coordinated
system. Whence the closed-loop coordinated system is
nonblocking. This means that under those conditions there
exists a supervisor for the coordinator and supervisors
for the local plants combined with the coordinator such
that the specification language is exactly achieved in a
nonblocking way.

The paper is organized as follows. First, Section 2 recalls
the basic framework of the theory of supervisory control for
discrete-event systems. Then, Section 3 presents the basic
concepts of the coordinated control architecture. Section 4
formulates the fundamental problem of the supervisory
control synthesis for distributed discrete-event systems us-
ing a coordinator. Section 5 provides an example. Finally,
Section 6 concludes the paper and discusses the future
work.

2. PRELIMINARIES

In this paper, the supervisory control framework intro-
duced by Ramadge and Wonham (1987) is used. In this
framework, discrete-event systems are modeled as gen-
erators that are deterministic finite-state machines with
partial transition functions, i.e., so called incomplete finite-
state machines.



Let E be a finite set (of events). Then, the set E∗ denotes
the free monoid generated by E, where the unit of E∗ (the
empty word) is denoted by ε. A language L over E is a
subset of E∗.

A generator G is a construct G = (Q,E, f, q0, Qm), where
Q is the finite set of states, E is the finite set of events,
f : Q×E → Q is the partial transition function, q0 ∈ Q is
the initial state, and Qm ⊆ Q is the set of marked states. In
the usual way, f can be extended to a function from Q×E∗
to Q. The language generated by G is defined as the set
L(G) = {s ∈ E∗ | f(q0, s) ∈ Q}, and the language marked
by G as the set Lm(G) = {s ∈ E∗ | f(q0, s) ∈ Qm}.
The prefix closure of a language L ⊆ E∗ is defined as the
set L = {w ∈ E∗ | ∃u ∈ E∗, wu ∈ L} of all prefixes of all
words from L. The language L is prefix-closed if L = L.

Note that according to the definition, the generated lan-
guage L(G) is always prefix-closed, while the marked lan-
guage Lm(G) is not in general.

Let E be an event set. A controlled generator is a structure
(G,Ec,Γ), where G is a generator over E, Ec ⊆ E is the
subset of controllable events, Eu = E \Ec is the subset of
uncontrollable events, and Γ = {γ ⊆ E | Eu ⊆ γ} is a set
of control patterns.

A supervisor for the controlled generator (G,Ec,Γ) is a
map S : L(G)→ Γ.

The closed-loop system associated with the controlled
generator (G,Ec,Γ) and the supervisor S is defined as the
minimal language L(S/G) which satisfies (i) ε ∈ L(S/G),
and (ii) s ∈ L(S/G), a ∈ S(s), sa ∈ L(G)⇒ sa ∈ L(S/G).
Furthermore, we define Lm(S/G) = L(S/G) ∩ Lm(G).

Note that the supervisor disables transitions in G, but it
never disables a transition with an uncontrollable event.

If the closed-loop system is nonblocking, i.e.,

Lm(S/G) = L(S/G) ,

then the supervisor S is called nonblocking.
Definition 1. Let L ⊆ E∗ be a prefix-closed language, and
let Eu ⊆ E be the set of uncontrollable events. A language
K ⊆ E∗ is controllable with respect to L and Eu if

KEu ∩ L ⊆ K .

Definition 2. Let G be a generator and ∅ 6= K ⊆ Lm(G)
be a language. Then, the language K is Lm(G)-closed if

K = K ∩ Lm(G) .

However, it is obvious that the inclusion K ⊆ K ∩Lm(G)
always holds.

Given a specification language K, a major control objec-
tive of supervisory control theory is to find a supervisor
S so that Lm(S/G) = K and L(S/G) = K. It is well
known that such a supervisor exists if and only if (1) K is
controllable with respect to L(G) and the set of uncontrol-
lable events, and (2) it is Lm(G)-closed. For uncontrollable
specifications, controllable sublanguages are considered.

In this paper, sup C(K,L,Eu) denotes the supremal con-
trollable sublanguage of the language K with respect to
the language L and the uncontrollable event set Eu. This

language always exists and equals the union of all control-
lable sublanguages of K, see Wonham (2009).

A natural projection P : E∗ → E∗0 , for any E0 ⊆ E, is a
homomorphism defined so that P (a) = ε, for a ∈ E \ E0,
and P (a) = a, for a ∈ E0. The inverse image of P is
denoted by P−1 : E∗0 → 2E∗

.

Given sets E1, E2, E3, E4 ⊆ E, we use the generic notation
P 1+2

3∩4 to denote the natural projection from E1 ∪ E2 to
E3 ∩ E4. Let Eu ⊆ E be the set of uncontrollable events,
then Ei,u = Eu ∩ Ei, i = 1, 2, 3, 4, denotes the sets of
locally uncontrollable events.

The synchronous product of two languages L1 ⊆ E∗1 and
L2 ⊆ E∗2 is defined by

L1‖L2 = P−1
1 (L1) ∩ P−1

2 (L2) ⊆ E∗ ,
where Pi : E∗ → E∗i , i = 1, 2, are natural projections. This
notion is also defined for generators, see Wonham (2009)
for more details. For generators G1 and G2, L(G1‖G2) =
L(G1)‖L(G2) and Lm(G1‖G2) = Lm(G1)‖Lm(G2).

Note that in the automata framework, the supervisor S
can be seen as a function from the set of states to Γ, which
allows a generator representation of the supervisor. Then,
the closed-loop system is a synchronous product of the
supervisor S and the plant G, i.e., L(S/G) = L(S)‖L(G),
because Γ can be interpreted as an active event set of a
given state of the supervisor.

3. CONCEPTS

This section presents the basic concepts of coordinated
supervisory control for discrete-event systems.
Definition 3. Consider generators G1, G2, Gk. We call the
generators G1 and G2 conditionally independent given Gk

if
Er(G1‖G2) ∩ Er(G1) ∩ Er(G2) ⊆ Er(Gk) ,

where Er(G) is the set of all reachable events in G, i.e.,
there is no simultaneous move in both G1 and G2 without
the coordinator Gk being also involved.

Note that Er(G1‖G2) says that we restrict shared events
of G1 and G2 to those events that are really generated in
L(G1‖G2).

The definition can naturally be extended to three or more
generators, or to languages.
Definition 4. A language K is called conditionally decom-
posable with respect to event sets E1, E2, Ek if

K = P1+k(K)‖P2+k(K)‖Pk(K) (1)
and

K = P1+k(K)‖P2+k(K)‖Pk(K) . (2)

Languages L1 and L2 are synchronously nonconflicting if
L1‖L2 = L1‖L2 .

Note that (2) of Definition 4 implies that the projected lan-
guages P1+k(K), P2+k(K), and Pk(K) are synchronously
nonconflicting. In addition, if K satisfies (1), then K is
conditionally decomposable if and only if the languages
P1+k(K), P2+k(K), and Pk(K) are synchronously noncon-
flicting.

The following example justifies this definition by showing
that none of these two properties are related.



Example 5. Let E1 = {a1, b1, a, b}, E2 = {a2, b2, a, b},
Ek = {a, b}, and K = {a1a2a, a2a1a, b1b2b, b2b1b}. Then,
P1+k(K) = {a1a, b1b}, P2+k(K) = {a2a, b2b}, Pk(K) =
{a, b}, and K = P1+k(K)‖P2+k(K)‖Pk(K). Notice that
a1b2 /∈ K, whereas a1b2 ∈ P1+k(K)‖P2+k(K)‖Pk(K).

Conversely, consider L = {ε, ab, ba, abc, bac} ⊆ {a, b, c}∗
with event sets E1 = {a, c}, E2 = {b, c}, Ek = {c}. Then,
L = P1+k(L)‖P2+k(L)‖Pk(L) = P1+k(L)‖P2+k(L)‖Pk(L),
and it is obvious that L 6= L. /

Note also that prefix-closed languages are nonconflicting.
Lemma 6. Let L1 and L2 be two prefix-closed languages.
Then, they are nonconflicting.

Proof. Let L1 and L2 be prefix-closed languages. As
the synchronous product of two prefix-closed languages is
prefix-closed, we have that L1‖L2 = L1‖L2 = L1‖L2. 2

4. CONTROL SYNTHESIS

In this section, we first formulate the coordinated control
synthesis problem and then present necessary and suffi-
cient conditions under which the problem can be solved.
Problem 7. Consider generatorsG1,G2,Gk over event sets
E1, E2, Ek, respectively, and let K ⊆ Lm(G1‖G2‖Gk) be
a specification language. Assume that

(1) the coordinator Gk makes the generators G1 and G2

conditionally independent, and
(2) the specification language K is conditionally decom-

posable with respect to E1, E2, Ek.

Note that Condition (2) implies that K ⊆ Lm(G1‖G2‖Gk)
holds true if and only if P1+k(K) ⊆ Lm(G1‖Gk) and
P2+k(K) ⊆ Lm(G2‖Gk). Thus, the inclusion can be
checked without computing the whole system G1‖G2.

The coordinator supervisor Sk takes care of Pk(K), i.e.,

L(Sk/Gk) ⊆ Pk(K) and Lm(Sk/Gk) ⊆ Pk(K) .
Similarly, local supervisors Si take care of Pi+k(K), i =
1, 2, i.e.,

L(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K) and
Lm(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K).

The aim is to determine supervisors S1, S2, Sk for the
respective generators so that the closed-loop system with
the coordinator satisfies

L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)])
‖ L(Sk/Gk) = K (3)

and

Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)])
‖ Lm(Sk/Gk) = K . (4)

�

Note that if there exist such supervisors S1, S2, Sk, then
their synchronous product is a nonblocking supervisor of
the global plant.
Lemma 8. Consider the setting of Problem 7. If there exist
supervisors S1, S2, Sk, then S1‖S2‖Sk is a nonblocking
supervisor of the global plant.

Proof. Let S1, S2, Sk be such supervisors. Then K can
be written as
Lm((S1/[G1‖(Sk/Gk)])‖(S2/[G2‖(Sk/Gk)])‖(Sk/Gk))

= Lm(S1‖G1‖Sk‖Gk‖S2‖G2‖Sk‖Gk‖Sk‖Gk)

= Lm(S1‖S2‖Sk‖G1‖G2‖Gk)

= Lm([S1‖S2‖Sk]/[G1‖G2‖Gk]) .
As the formula from (3) can be reformulated in the same
way, we obtain that

Lm([S1‖S2‖Sk]/[G1‖G2‖Gk])
= L([S1‖S2‖Sk]/[G1‖G2‖Gk]) .

2

4.1 Conditional controllability

Conditional controllability is introduced by Komenda and
van Schuppen (2008) and later studied by Komenda et al.
(2010a,b) for prefix-closed global specification languages.
In this paper, we discuss the generalization of this ap-
proach to the case of non-prefix-closed languages.
Definition 9. Consider the setting of Problem 7. Call the
specification language K ⊆ E∗ conditionally controllable
for generators (G1, G2, Gk) and sets (E1+k,u, E2+k,u, Ek,u)
of uncontrollable events if

(1) the language Pk(K) ⊆ E∗k is controllable with respect
to L(Gk) and Ek,u;

(2) the language P1+k(K) ⊆ (E1 ∪ Ek)∗ is controllable
with respect to L(G1)‖Pk(K)‖P 2+k

k (L(G2)‖Pk(K))
and E1+k,u = Eu ∩ (E1 ∪ Ek);

(3) the language P2+k(K) ⊆ (E2 ∪ Ek)∗ is controllable
with respect to L(G2)‖Pk(K)‖P 1+k

k (L(G1)‖Pk(K))
and E2+k,u.

Now, we demonstrate that every conditionally-controllable
and conditionally-decomposable language is also control-
lable.
Proposition 10. For i = 1, 2, k, let Gi be generators
over Ei, G = G1‖G2‖Gk and E = E1 ∪ E2 ∪
Ek. Let K ⊆ Lm(G) be a conditionally-decomposable
and conditionally-controllable language for the generators
(G1, G2, Gk) and sets (E1+k,u, E2+k,u, Ek,u) of uncontrol-
lable events. Then, the language K is controllable with
respect to L(G) and Eu.

To prove this proposition, the following auxiliary results
are required. The first lemma is Proposition 4.6 in Feng
(2007).
Lemma 11. (Controllability of the synchronous product).
For i = 1, 2, let Li ⊆ E∗i be prefix-closed languages and
Ki ⊆ Li be controllable with respect to Li and Ei,u,
E = E1 ∪ E2. If K1 and K2 are synchronously noncon-
flicting, then K1‖K2 is controllable with respect to L1‖L2

and Eu.
Lemma 12. (Transitivity of controllability). Let K ⊆ L ⊆
M be languages over an event set E such that K is
controllable with respect to L and Eu, and L is controllable
with respect to M and Eu. Then, K is controllable with
respect to M and Eu.

Proof. By assumptions, KEu∩L ⊆ K and LEu∩M ⊆ L,
and we want to show that KEu ∩M ⊆ K. Let s ∈ K,



a ∈ Eu, and sa ∈ M . Then, K ⊆ L implies that s ∈ L,
and controllability of L implies that sa ∈ L. However,
sa ∈ L and controllability of K imply that sa ∈ K. The
proof is complete. 2

Lemma 13. Let L ⊆ E∗ be a language and Pk : E∗ → E∗k
with Ek ⊆ E be a natural projection. Then, L‖Pk(L) = L.

Proof. By definition, L‖Pk(L) = L∩P−1
k Pk(L) = L. 2

Proof of Proposition 10. Since the languages Pk(K),
P1+k(K), P2+k(K) are controllable with respect to L(Gk)
and Ek,u, L(G1)‖Pk(K)‖P 2+k

k (L(G2)‖Pk(K)) and E1+k,u,
and L(G2)‖Pk(K)‖P 1+k

k (L(G1)‖Pk(K)) and E2+k,u, re-
spectively, and by the remark following Definition 4 they
are synchronously nonconflicting, Lemma 11 implies that
K = Pk(K)‖P1+k(K)‖P2+k(K) is controllable with re-
spect to the synchronous product

L(Gk) ‖ L(G1)‖Pk(K)‖P 2+k
k (L(G2)‖Pk(K))

‖ L(G2)‖Pk(K)‖P 1+k
k (L(G1)‖Pk(K))

= L(Gk)‖L(G1)‖L(G2)‖Pk(K) = L(G)‖Pk(K)
and Eu, where the equality is by commutativity of the
synchronous product and Lemma 13.

As Pk(K) is controllable with respect to L(Gk) and Ek,u

by Definition 9, so is Pk(K). Thus, L(G)‖Pk(K) is con-
trollable with respect to L(G)‖L(Gk) = L(G) because
the languages L(G) and Pk(K) are synchronously non-
conflicting (they are prefix-closed). By Lemma 12 and
K ⊆ L(G)‖Pk(K) ⊆ L(G), K is controllable with respect
to L(G) and Eu. 2

On the other hand, an example showing that the opposite
inclusion does not hold can be found. It means that if K
is controllable with respect to L(G) and Eu, then it is not
necessarily conditionally controllable. This holds true even
if K is conditionally decomposable (see Komenda et al.
(2010b)).

4.2 Conditionally-closed languages

Analogously to the notion of Lm(G)-closed languages, we
define the notion of conditionally-closed languages.
Definition 14. Consider the setting of Problem 7. Call the
specification language ∅ 6= K ⊆ E∗ conditionally closed
for generators (G1, G2, Gk) if

(1) the language Pk(K) ⊆ E∗k is Lm(Gk)-closed;
(2) the language P1+k(K) ⊆ (E1 ∪ Ek)∗ is(

Lm(G1)‖Pk(K)
)
‖P 2+k

k (Lm(G2)‖Pk(K))-closed;
(3) the language P2+k(K) ⊆ (E2 ∪ Ek)∗ is(

Lm(G2)‖Pk(K)
)
‖P 1+k

k (Lm(G1)‖Pk(K))-closed.

Note that if K is conditionally closed and condition-
ally controllable, there exists a supervisor Sk such that
L(Sk/Gk) = Pk(K) and Lm(Sk/Gk) = Pk(K), which
is according to the basic theorem of supervisory control
applied to Pk(K) and Sk, cf. items (1) of Definitions 9
and 14.

As noted in (Cassandras and Lafortune, 2008, page 164),
we can assume that the specification K ⊆ Lm(G) ⊆ E∗

is Lm(G)-closed. Then, so is the supremal controllable

sublanguage sup C(K,L(G), Eu). We show that it does not
imply that Pk(K) is Lm(Gk)-closed, for G = G1‖G2‖Gk

such that Gk makes G1 and G2 conditionally independent.
Example 15. Let E = E1 ∪ E2 = {a1, a} ∪ {a2, a}, and
Ek = {a}. Define the language K = {a1a2a, a2a1a}. Then,
P1+k(K) = {a1a}, P2+k(K) = {a2a}, Pk(K) = {a}, and it
is not hard to verify that K = P1+k(K)‖P2+k(K)‖Pk(K).
Define the generators G1, G2, and Gk so that Lm(G1) =
P1+k(K), Lm(G2) = P2+k(K), and Lm(Gk) = Pk(K) =
{ε, a}. Then, Lm(G) = K and K is Lm(G)-closed. How-
ever, Pk(K) ⊂ Pk(K) is not Lm(Gk)-closed. /

This example demonstrates the pathological case, where
(Lm(Gk) \ Pk(K)) ∩ Pk(K) 6= ∅, as shown below.
Proposition 16. Let Gi be generators over Ei, i = 1, 2, k,
and let G = G1‖G2‖Gk. Let K ⊆ Lm(G) be a lan-
guage that is conditionally decomposable and condition-
ally closed for (G1, G2, Gk). Then, the language K is
Lm(G)-closed if and only if

P−1
k

(
[Lm(Gk) \ Pk(K)] ∩ Pk(K)

)
∩

(
K‖Lm(G)

)
= ∅ .

(5)

Proof. (⇒) Assume that K = K ∩ Lm(G). As K ∩
Lm(G) = K‖Lm(G), s ∈ K‖Lm(G) implies that Pk(s) ∈
Pk(K). Thus, Pk(s) /∈ Lm(Gk) \ Pk(K). The implication
holds.

(⇐) To prove the opposite implication, assume that (5)
holds, and that there exists a string s ∈ K ∩ Lm(G)
such that s /∈ K. Then, Pk(s) ∈ Pk(K) ∩ Lm(Gk).
As the language K is conditionally decomposable and
conditionally closed,
K = Pk(K)‖P1+k(K)‖P2+k(K)

= Pk(K) ∩ Lm(Gk)

‖P1+k(K) ∩ Lm(G1)‖Pk(K)‖P 2+k
k (Lm(G2)‖Pk(K))

‖P2+k(K) ∩ Lm(G2)‖Pk(K)‖P 1+k
k (Lm(G1)‖Pk(K)),

by conditional closedness,

= Pk(K)‖Lm(Gk)

‖P1+k(K)‖Lm(G1)‖Pk(K)‖P 2+k
k (Lm(G2)‖Pk(K))

‖P2+k(K)‖Lm(G2)‖Pk(K)‖P 1+k
k (Lm(G1)‖Pk(K)),

by definition of synch. product,

= Pk(K)‖Lm(Gk)

‖P1+k(K)‖Lm(G1)‖Pk(K)

‖P2+k(K)‖Lm(G2)‖Pk(K), by Lemma 13,

= Pk(K)‖P1+k(K)‖P2+k(K)‖Pk(K)
‖Lm(Gk)‖Lm(G1)‖Lm(G2), by associativity,

= K‖Lm(G)‖Pk(K) = K ∩ Lm(G) ∩ P−1
k Pk(K),

by conditional decomposability.

As s ∈ K ∩ Lm(G), it is that s /∈ P−1
k Pk(K). This means

that Pk(s) /∈ Pk(K), which is a contradiction with (5). 2

The following corollary is an immediate consequence of the
previous result.
Corollary 17. LetGi be generators over Ei, i = 1, 2, k, and
let G = G1‖G2‖Gk. Let K ⊆ Lm(G) be a language that
is conditionally decomposable and conditionally closed for



(G1, G2, Gk). If Pk(K) is prefix-closed, then K is Lm(G)-
closed.

4.3 Control synthesis of conditionally-controllable and
conditionally-closed languages

The following theorem presents the necessary and suffi-
cient condition on a specification language to be exactly
achievable in the coordinated control architecture.
Theorem 18. Consider the setting of Problem 7. There
exist supervisors S1, S2, Sk such that

L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)])
‖ L(Sk/Gk) = K

and
Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)])

‖ Lm(Sk/Gk) = K

(6)

if and only if the specification language K is

(1) conditionally controllable with respect to generators
(G1, G2, Gk) and sets (E1+k,u, E2+k,u, Ek,u) of uncon-
trollable events, and

(2) conditionally closed with respect to (G1, G2, Gk).

The interest in Theorem 18 is in the computational saving
of the nonblocking supervisor. The distributed way of
constructing supervisors Sk, S1, S2 is less complex than
the construction of the global supervisor for the global
plant G1‖G2‖Gk.

Note that the following conditions L(Sk/Gk) ⊆ Pk(K) and
Lm(Sk/Gk) ⊆ Pk(K) are required in Problem 7. Similarly,
the conditions L(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K) and their
marked variants Lm(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K), for
i = 1, 2, are required in Problem 7. Otherwise stated, we
look for necessary conditions on global specification lan-
guages to have the maximal permissivity of the language
resulting in our control scheme only in the reasonable case
where safety can be achieved by the supervisors Sk, S1,
and S2. We have proven that in such a case the properties
of conditionally-controllable and conditionally-closed lan-
guages are necessary for the optimality. On the other hand,
it has been proven in Komenda and van Schuppen (2008)
that for the sufficiency we need not assume the inclusions
above.

In practice, however, it is more interesting to know when
safety holds when applying the control scheme combin-
ing a coordinator with local supervisors. Similarly as in
the monolithic case it may happen that the maximal
acceptable behavior given by the specification language K
is not achievable using the coordination control scheme.
It follows from Theorem 18 that such a situation oc-
curs whenever the specification language K is either not
conditionally controllable or not conditionally closed. In
such a situation, a natural approach is to find the best
approximation from below, i.e., to compute the supremal
conditionally-controllable and conditionally-closed sublan-
guage if it exists. The reader is referred to the conclusion
of this paper for more discussion concerning this problem.

5. EXAMPLE

In this section, we demonstrate the previous result in
a simple example. Consider the following generators

1 2 7 6 5

3

4
a b ϕ

d
f

a
f

fd

Fig. 1. The generator D.

given over the event sets E1 = {a, d, e, ϕ} and E2 =
{b, f, ϕ}, respectively, where the set of controllable events
is Ec = {e, b, ϕ}. The generator G1 is defined as G1 =
({1, 2, 3, 4}, {a, d, e, ϕ}, f1, 1, {1}) with the transition func-
tion f1 defined as in Fig. 2(a), and the generator G2

as G2 = ({1, 2, 3}, {b, ϕ, f}, f2, 1, {1}) with the transition
function f2 defined as in Fig. 2(b). Assume that the speci-
fication language K is described by the following generator
D = ({1, 2, 3, 4, 5, 6, 7}, {a, b, d, f, ϕ}, δ, 1, {1}), where the
transition function δ is defined as in Fig. 1.

Now, we briefly discuss one possible way how to find
a coordinator so that the following two properties are
satisfied: (i) Gk makes the two generators G1 and G2 con-
ditionally independent, and (ii) the specification language
K is conditionally decomposable with respect to the given
event sets. We first need to find the coordinator alphabet
Ek. By Definition 3, Ek must contain all shared events, i.e.,
Ek contains ϕ. This ensures that Condition (i) is satisfied.
To satisfy Condition (ii), we need to extend the alphabet
Ek. An efficient algorithm for finding such an extension is
a part of our current research. However, it can be verified
that for the choice Ek = {a, b, e, ϕ}, the condition is sat-
isfied. Then, the coordinator Gk is chosen as a projection
Pk(G1)‖Pk(G2), i.e., Gk = ({1, 2, 3}, {a, b, e, ϕ}, fk, 1, {1})
with the transition function fk defined as in Fig. 2(c).

In addition, the reader can verify that the projected lan-
guages Pk(K), P1+k(K), P2+k(K) are controllable with re-
spect to L(Gk), L(G1)‖Pk(K)‖P 2+k

k (L(G2)‖Pk(K)), and
L(G2)‖Pk(K)‖P 1+k

k (L(G1)‖Pk(K)), respectively. This ob-
servation implies that the specification language K is
conditionally controllable for generators (G1, G2, Gk) and
the corresponding sets of locally uncontrollable events.
Analogously, the reader can verify that the projected
language Pk(K) is Lm(Gk)-closed, the language P1+k(K)
is Lm(G1)‖Pk(K)‖P 2+k

k (Lm(G2)‖Pk(K))-closed, and that
P2+k(K) is Lm(G2)‖Pk(K)‖P 1+k

k (Lm(G1)‖Pk(K))-closed
language. Thus, this observation implies that the specifica-
tion language K is also conditionally closed for generators
(G1, G2, Gk). According to the statement of Theorem 18,
it immediately follows that there exist supervisors S1, S2,
Sk such that the equations from the theorem holds. More
specifically, the automata representations of supervisors
S1, S2, and Sk coincide with the generators for languages
Pk(K), P1+k(K), and P2+k(K), respectively, depicted in
Fig. 3. Finally, it is not hard to see that

L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)])
‖ L(Sk/Gk)) = K

and
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Fig. 2. Generators G1, G2, and Gk.
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1 3

2

4

5

a b

ϕf a

f

(c) Supervisor S2 generating P2+k(K).

Fig. 3. Supervisors Sk, S1, and S2.

Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)])
‖ Lm(Sk/Gk)) = K ,

which was to be shown.

6. CONCLUSION

In Komenda et al. (2010a,b), the case of prefix-closed
global specification languages has been discussed. In those
papers, the necessary and sufficient conditions placed on
the global specification language to ensure the existence of
a solution for the problem under consideration have been
presented, and, in addition, for the specification languages
that do not satisfy these conditions, a distributed pro-
cedure for the computation of the supremal sublanguage
satisfying those conditions has been proposed.

In the present paper, this research has continued and the
discussion has been generalized to the case of non-prefix-
closed global specification languages and non-prefix-closed
plant languages. The necessary and sufficient conditions
for the existence of a solution for the problem have been
proposed and discussed. However, in contrast to the prefix-
closed specification languages, an analogous distributed
procedure for the computation of the supremal sublan-
guage satisfying the required conditions for non-prefix-
closed specification languages such that it is still condition-
ally decomposable (provided in the above references for
prefix-closed languages) has not been derived yet since it
turns out to be more complicated than in the prefix-closed
case. Therefore, to construct such a procedure requires
further investigation and is planned as a part of the future
research.
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