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Abstract

Synthesis of normal or controllable and normal sublanguages of global specification languages without computation
of the global modular plant is a difficult problem. In this paper, these sublanguages are computed using a coordinator.
We recall the notion of conditional controllability, introduce a notion of conditional normality, and prove necessary
and sufficient conditions where such a computation is possible. Specifically, we show that conditionally controllable
and conditionally normal languages computed by our method are controllable and normal with respect to the global
plant. The optimality (supremality) of the resulting languages is also discussed.
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1. Introduction

In supervisory control with partial observations, specification languages must be observable and controllable for
a supervisor to exist so that the closed-loop system equals the specification [1]. This condition is often not satisfied
and, moreover, a control requirement is most often a so called safety specification, that is, only the inclusion of the
closed-loop language in the specification is required. In the case when the specification language is not controllable or
observable, a controllable and observable sublanguage of the specification is considered. The synthesis of observable
sublanguages is difficult, especially in the modular setting, where the plant is composed of local subsystems (automata)
running in parallel so that the plant is formed as a synchronous product of local components.

Unfortunately, observability is not preserved under union, unlike controllability. Therefore, the supremal observ-
able sublanguage does not always exist, and there are only maximal observable sublanguages, which are not unique
in general. A slightly stronger notion, called normality, coincides with observability in the case when all controllable
events are observable. Supremal normal sublanguages exist, but they are difficult to compute, especially in the mod-
ular framework. We have studied possibilities of local (modular) computations of supremal normal sublanguages in
[2] for local specification languages and in [3] for global specification languages. However, the sufficient conditions
for their local computation to equal the global computation are too restrictive.

In this paper, another approach is presented for synthesis of controllable and normal sublanguages in modular
discrete-event systems. This approach is much less restrictive, but the optimality (supremality of the computed sub-
language) is only guaranteed under some additional conditions. It is based on the coordination control architecture,
where a coordinator is added to the plant that takes care of the global part of the specification. Since only prefix-closed
specifications are considered in this paper, it is not the coordinator automaton itself, but only its underlying event set
that is the basis of our approach. In fact, coordinators themselves are useful for handling the blocking issues, while in
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the prefix-closed case it is sufficient to choose a suitable event set containing the intersection of local event sets. The
coordinator is then simply the global system projected to this coordinator event set so that the system composed with
the coordinator equals the original modular plant. Moreover, the coordinator can be computed modularly because of
the conditional independence property (amounting to distributivity of natural projections). The event set of the coor-
dinator is chosen so that the specification language is conditional decomposable as defined in the paper. Our results
are based on the notion of conditional controllability and conditional normality, and the computation of supremal
conditionally controllable and conditionally normal sublanguages of the specification computed without building the
global plant. It is shown that supremal conditionally controllable and conditionally normal sublanguages are control-
lable and normal with respect to the coordinated plant that equals the original plant as discussed above. Moreover, it
is shown that, under some additional conditions, supremal conditionally controllable and conditionally normal, and
supremal controllable and normal sublanguages coincide.

The paper is organized as described below. The next section recalls the basic results of supervisory control theory
used further in the paper. In Section 3, basic notions that are needed for our approach are introduced. Section 4
contains further concepts on partially observed modular plants, in particular a necessary and sufficient condition for
the specification to be exactly achievable using our coordination control scheme, called conditional observability. In
Section 5, a stronger notion, called conditional normality, is presented. In Section 6, a procedure for the computation
of supremal conditionally controllable and conditional normal sublanguages is proposed. Finally, a conclusion is
given in Section 7.

2. Preliminaries

In this section, we briefly recall the elements of supervisory control theory needed in this paper. For more details,
the reader is referred to [1, 4].

Discrete-event systems are modeled as deterministic generators that are finite-state machines with partial transition
functions, i.e., a generator is a quintuple G = (Q, E, f , q0,Qm), where Q is a finite set of states, E is the finite event
set, f : Q × E → Q is the partial transition function, q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of marked
states. As usual, f is extended to f : Q × E∗ → Q. The behaviors of G are defined in terms of languages. The
language generated by G is defined as L(G) = {s ∈ E∗ | f (q0, s) ∈ Q}, and the language marked by G is defined as
Lm(G) = {s ∈ E∗ | f (q0, s) ∈ Qm}.

The prefix closure L of a language L ⊆ E∗ is the set of all prefixes of all its words, i.e., L = {w ∈ E∗ | ∃v ∈
E∗ such that wv ∈ L}. A language L is prefix-closed if L = L.

Let L be a prefix-closed language over an event set E with the uncontrollable event set Eu ⊆ E. A language
K ⊆ E∗ is controllable with respect to L and Eu if

KEu ∩ L ⊆ K .

A natural projection P : E∗ → E∗o, for some Eo ⊆ E, is a homomorphism defined so that P(a) = ε, for a ∈ E \ Eo,
and P(a) = a, for a ∈ Eo. The inverse image of P, denoted by P−1 : E∗o → 2E∗ , is defined as P−1(a) = {s ∈ E∗ | P(s) =

a}. These definitions can naturally be extended to languages.
In what follows, given event sets Ei, E j, Ek, we denote by Pi+ j

k the natural projection from (Ei ∪ E j)∗ to E∗k , and
by Pi

j∩k the natural projection from E∗i to (E j ∩ Ek)∗. In addition, we define Ei,o = Ei ∩ Eo, Ei,u = Ei ∩ Eu, etc.

Let K and M = M be languages over an event set E. Let Ec ⊆ E be the subset of controllable events, and let
Eo ⊆ E be the set of observable events with P as the corresponding natural projection from E∗ to E∗o. The specification
language K is said to be observable with respect to M, Eo, and Ec if for all s ∈ K and for all σ ∈ Ec,

(sσ < K) and (sσ ∈ M)⇒ P−1[P(s)]σ ∩ K = ∅ .

Consider M = M ⊆ E∗ and a natural projection P : E∗ → E∗o. A language K ⊆ M is said to be normal with respect
to M and P if

K = P−1[P(K)] ∩ M .

Note that it is known that normality implies observability [1].
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A controlled generator is a structure (G, Ec, P,Γ), where G is a generator, Ec ⊆ E is the set of controllable events,
Eu = E \ Ec is the set of uncontrollable events, P : E∗ → E∗o is the natural projection, and Γ = {γ ⊆ E | Eu ⊆ γ} is the
set of control patterns.

A supervisor for the controlled generator (G, Ec, P,Γ) is a map S : P(L(G))→ Γ.
A closed-loop system associated with the controlled generator (G, Ec, P,Γ) and the supervisor S is defined as the

smallest language L(S/G) ⊆ E∗ which satisfies
1. ε ∈ L(S/G),
2. if s ∈ L(S/G), sa ∈ L(G), and a ∈ S (P(s)), then sa ∈ L(S/G).

In the automata framework where the supervisor is represented as an automaton, one can write L(S/G) as L(S )‖L(G).
Let G be a generator over an event set E. Let Eu ⊆ E be the set of uncontrollable events, Ec = E \ Eu be the

set of controllable events, and Eo ⊆ E be the set of observable events. Given a prefix-closed specification language
K ⊆ L(G) ⊆ E∗, the aim of supervisory control theory is to find a supervisor S such that L(S/G) = K. It is known
that such a supervisor exists if and only if K is controllable with respect to L(G) and Eu and observable with respect
to L(G), Eo, and Ec [1]. However, as there are not, in general, supremal observable sublanguages, normality is used
instead of observability. Thus, for specifications that are either not controllable or not observable, controllable and
normal sublanguages are considered. In what follows, for prefix-closed languages K ⊆ L ⊆ E∗, Eu, Eo ⊆ E, and
Q : E∗ → E∗o, the notation sup CN(K, L, Eu,Q) is chosen for the supremal controllable and normal sublanguage of K
with respect to L, Eu, and Q. This supremal controllable and normal sublanguage always exists and equals the union
of all controllable and normal sublanguages of K, see, e.g, [1]. A formula for calculating supremal controllable and
normal sublanguages can be found in [5].

Below, modular discrete-event systems are considered. First, we recall that the synchronous product of languages
L1 ⊆ E∗1 and L2 ⊆ E∗2 is defined by

L1‖L2 = P−1
1 (L1) ∩ P−1

2 (L2) ⊆ E∗ ,

where Pi : E∗ → E∗i , for i = 1, 2, are natural projections to local event sets. The synchronous product can also be
defined for generators (the reader is referred to [1] for more details). In this case, for two generators G1 and G2, it is
well known that L(G1‖G2) = L(G1)‖L(G2) and Lm(G1‖G2) = Lm(G1)‖Lm(G2).

Decentralized control is control of a monolithic system with two or more controllers each having its own obser-
vation channel. The observation event sets of the observation channels are incomparable in general. A modular or
a distributed discrete-event system is the synchronous product of two or more modules or subsystems. In control of
a distributed system each module or subsystem has its own observation channel and a supervisor or controller either
with locally complete or locally partial observations. Control synthesis of a distributed discrete-event system then
consists of synthesizing local supervisors, one for each subsystem. This is the main problem of the paper for which
the coordinated control synthesis procedure is proposed. The global supervisor then consists of the synchronous prod-
uct of local supervisors although that product is not computed in practice. In terms of behaviors, the optimal global
control synthesis is represented by the closed-loop language sup CN(K, L, Eu,Q) = sup CN(‖ni=1Ki, ‖

n
i=1Li, Eu,Q).

Given a rational global specification language K ⊆ E∗, one can theoretically always compute its supremal control-
lable and normal sublanguage from which the optimal (least restrictive) supervisor can be built. Such a global control
synthesis of a modular discrete-event system consists simply in computing the global plant and then the control syn-
thesis is carried out as described above.

Decentralized control synthesis means that the specification language K is replaced by Ki = K ∩ P−1
i (Li), and the

synthesis is done similarly as for local specifications or using the notion of partial controllability [6]. However, the
purely decentralized control synthesis is not always possible as the sufficient conditions under which it can be used
are quite restrictive. Therefore, we have proposed the coordination control in [7] as a trade-off between the purely
decentralized control synthesis, which is in some cases unrealistic, and the global control synthesis, which is naturally
prohibitive for complexity reasons.

3. Concepts

Consider three generators G1, G2, and Gk. We call G1 and G2 conditionally independent generators given Gk if
there is no simultaneous move in both G1 and G2 without the coordinator Gk being also involved, i.e.,

Er(G1‖G2) ∩ Er(G1) ∩ Er(G2) ⊆ Er(Gk) ,
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where Er(G) is the set of all reachable symbols in G, i.e., symbols that appear in a word of the language L(G).
This concept can easily be extended to the case of three or more generators. The corresponding concept in terms of
languages follows. Consider event sets E1, E2, Ek, and languages L1 ⊆ E∗1, L2 ⊆ E∗2, and Lk ⊆ E∗k . The languages L1
and L2 are conditionally independent given Lk if

Er(L1‖L2) ∩ E1 ∩ E2 ⊆ Ek ,

where Er(L) denotes the set of all symbols occurring in words of L.
A language K ⊆ (E1 ∪ E2 ∪ Ek)∗ is called conditionally decomposable with respect to event sets (E1, E2, Ek) if

K = P1+k(K)‖P2+k(K)‖Pk(K) .

Now, the problem studied in this paper is formulated.

Problem 1. Consider generators G1, G2, Gk with event sets E1, E2, Ek, respectively, and a prefix-closed specification
language K ⊆ L(G1‖G2‖Gk). Assume that the coordinator Gk makes the two generators G1 and G2 conditionally inde-
pendent, and that the specification language K is conditionally decomposable with respect to event sets (E1, E2, Ek).

The overall control task is divided into local subtasks and the coordinator subtask [7]. The coordinator takes care
of its “part” of the specification, namely Pk(K), i.e., L(S k/Gk) ⊆ Pk(K). Similarly, supervisors S 1 and S 2 take care of
their corresponding “parts” of the specification, namely Pi+k(K), i.e., L(S i/[Gi‖(S k/Gk)]) ⊆ Pi+k(K), for i = 1, 2.

Determine supervisors S 1, S 2, and S k for the respective generators so that the closed-loop system with the coor-
dinator is such that

L(S 1/[G1‖(S k/Gk)])‖L(S 2/[G2‖(S k/Gk)])‖L(S k/Gk) = K .

�

In Section 6.1, we discuss the question of how to find a coordinator as well as we demonstrate the method sug-
gested in this paper. However, note that efficient algorithms that are not discussed in the paper are still a part of our
future research.

In what follows, the notion of conditional controllability plays a key role in the theory.

Definition 2. Consider the setting of Problem 1. Call the specification language K ⊆ E∗ conditionally controllable
for generators (G1,G2,Gk) and for the (uncontrollable) event subsets (E1+k,u, E2+k,u, Ek,u) if

(i) The language Pk(K) ⊆ E∗k is controllable with respect to Gk and Ek,u; equivalently,

Pk(K)Ek,u ∩ L(Gk) ⊆ Pk(K) .

(ii.a) The language P1+k(K) ⊆ (E1∪Ek)∗ is controllable with respect to L(G1)‖Pk(K)‖P2+k
k (L(G2)‖Pk(K)) and E1+k,u =

Eu ∩ (E1 ∪ Ek); equivalently,

P1+k(K)E1+k,u ∩ L(G1)‖Pk(K)‖P2+k
k (L(G2)‖Pk(K)) ⊆ P1+k(K) .

(ii.b) The language P2+k(K) ⊆ (E2 ∪ Ek)∗ is controllable with respect to L(G2)‖Pk(K)‖P1+k
k (L(G1)‖Pk(K)) and E2+k,u;

equivalently,
P2+k(K)E2+k,u ∩ L(G2)‖Pk(K)‖P1+k

k (L(G1)‖Pk(K)) ⊆ P2+k(K) .

4. Control synthesis of conditionally observable and conditionally controllable languages

In this section, we introduce a notion of conditional observability and prove that this condition along with con-
ditional controllability are necessary and sufficient conditions for a specification language to be exactly achieved
according to the setting of Problem 1.

Definition 3. Consider the setting of Problem 1. Call the specification language K ⊆ E∗ conditionally observable
for generators (G1,G2,Gk), controllable subsets (E1+k,c, E2+k,c, Ek,c), and natural projections (Q1+k,Q2+k,Qk), where
Qi : E∗i → E∗i,o, for i = 1 + k, 2 + k, k, if
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(i) The language Pk(K) ⊆ E∗k is observable with respect to L(Gk), Ek,c, and Qk; equivalently, for all s ∈ Pk(K) and
for all σ ∈ Ek,c,

(sσ < Pk(K)) and (sσ ∈ L(Gk))⇒ Q−1
k [Qk(s)]σ ∩ Pk(K) = ∅ .

(ii.a) The language P1+k(K) ⊆ (E1 ∪ Ek)∗ is observable with respect to L(G1)‖Pk(K)‖P2+k
k (L(G2)‖Pk(K)), E1+k,c =

Ec ∩ (E1 ∪ Ek), and Q1+k; equivalently, for all s ∈ P1+k(K) and for all σ ∈ E1+k,c,

(sσ < P1+k(K)) and (sσ ∈ L(G1)‖Pk(K)‖P2+k
k (L(G2)‖Pk(K)))⇒ Q−1

1+k[Q1+k(s)]σ ∩ P1+k(K) = ∅ .

(ii.b) The language P2+k(K) ⊆ (E2 ∪ Ek)∗ is observable with respect to L(G2)‖Pk(K)‖P1+k
k (L(G1)‖Pk(K)), E2+k,c, and

Q2+k; equivalently, for all s ∈ P2+k(K) and for all σ ∈ E2+k,c,

(sσ < P2+k(K)) and (sσ ∈ L(G2)‖Pk(K)‖P1+k
k (L(G1)‖Pk(K)))⇒ Q−1

2+k[Q2+k(s)]σ ∩ P2+k(K) = ∅ .

A procedure to determine whether a language is conditionally observable is provided in Section 6. The following
results are useful.

Lemma 4 ([4]). Let Pk : E∗ → E∗k be a natural projection, and let L1 ⊆ E∗1 and L2 ⊆ E∗2 be local languages over
event sets E1 ⊆ E and E2 ⊆ E, respectively, such that E1 ∩ E2 ⊆ Ek. Then, Pk(L1‖L2) = Pk(L1)‖Pk(L2).

Lemma 5 ([8, 9]). Let L ⊆ E∗ and Pk : E∗ → E∗k be a natural projection with Ek ⊆ E. Then, L‖Pk(L) = L.

Lemma 6 ([10]). Let Li ⊆ E∗i (i = 1, 2), and let E0 = E1 ∩ E2. Define the natural projections Pi : (E1 ∪ E2)∗ → E∗i
(i = 0, 1, 2) and Q j : E∗j → E∗0 ( j = 1, 2). Then, for i, j = 1, 2 and i , j, Pi(L1‖L2) = Li ∩ Q−1

i Q j(L j).

Theorem 7. Consider the setting of Problem 1. There exists a set of supervisors (S 1, S 2, S k) such that

L(S 1/[G1‖(S k/Gk)]) ‖ L(S 2/[G2‖(S k/Gk)]) ‖ L(S k/Gk) = K (1)

if and only if (1) the specification language K is conditionally controllable with respect to the set (G1,G2,Gk) of
generators and (E1+k,u, E2+k,u, Ek,u) of locally uncontrollable events, and (2) conditionally observable with respect to
the set (G1,G2,Gk) of generators, (E1+k,c, E2+k,c, Ek,c) of locally controllable events, and (Q1+k,Q2+k,Qk) of natural
projections from E∗i to E∗i,o, for i = 1 + k, 2 + k, k.

Proof. To prove sufficiency, let K be conditionally controllable with respect to (G1,G2,Gk) and (E1+k,u, E2+k,u, Ek,u),
and conditionally observable with respect to (G1,G2,Gk), (E1+k,c, E2+k,c, Ek,c), and (Q1+k,Q2+k,Qk). Equation (1) must
be checked.

Since K ⊆ L(G1‖G2‖Gk) ⇒ Pk(K) ⊆ Pk(L(G1)‖L(G2)‖L(Gk)) ⊆ L(Gk), and Pk(K) is controllable with respect to
L(Gk) and Ek,u, and observable with respect to L(Gk), Ek,c, and Qk, it follows from [11] that there exists a supervisor
S k over the event set Ek such that L(S k/Gk) = Pk(K).

Furthermore, K ⊆ L(G1‖G2‖Gk) implies that

P1+k(K) ⊆ P1+k(L(G1‖G2‖Gk)) = P1+k(L(G1)‖L(Gk)) ‖ Pk∩2(L(G2)), by Lemma 4,
= L(G1)‖Pk∩2(L(G2))‖L(Gk) .

Then, P1+k(K) ⊆ L(G1)‖Pk∩2(L(G2))‖L(Gk) and P1+k(K) ⊆ (P1+k
k )−1Pk(K) imply that

P1+k(K) ⊆ L(G1)‖Pk∩2(L(G2))‖L(Gk)‖Pk(K)
= L(G1)‖Pk∩2(L(G2))‖L(Gk)‖L(S k/Gk)
= L(G1)‖Pk∩2(L(G2))‖L(S k/Gk) , by L(Gk)‖L(S k/Gk) = L(S k/Gk) ,
= L(G1)‖Pk∩2(L(G2))‖L(S k/Gk)‖Pk(K)
= L(G1)‖L(S k/Gk)‖Pk(L(G2‖(S k/Gk))), by Pk∩2(L(G2))‖Pk(K) = Pk(L(G2‖(S k/Gk))) .

This, the assumption that the specification is conditionally controllable and conditionally observable, and [11] imply
that there exists a supervisor S 1 such that L(S 1/[G1‖(S k/Gk)‖Pk(G2‖(S k/Gk))]) = P1+k(K), where for a generator G
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and a natural projection P, P(G) denotes the minimal generator that generates the language P(L(G)), i.e., L(P(G)) =

P(L(G)) (see [1, 4] for details). For (ii.b) of Definition 8, a similar argument shows that there exists a supervisor S 2
such that L(S 2/[G2‖(S k/Gk)‖Pk(G1‖(S k/Gk))]) = P2+k(K).

In addition,

L(S i/[Gi‖(S k/Gk)‖Pk(Gi‖(S k/Gk))]) = L(S i)‖L(Gi‖(S k/Gk))‖Pk(L(Gi‖(S k/Gk))) (∗)
= L(S i)‖L(Gi‖(S k/Gk)), by Lemma 5,
= L(S i/[Gi‖(S k/Gk)]) ,

which follows from the properties of synchronous product. It is now sufficient to notice that

L(S 1/[G1‖(S k/Gk)‖Pk(G2‖(S k/Gk))])‖L(S 2/[G2‖(S k/Gk)‖Pk(G1‖(S k/Gk))])

= L(S 1) ‖ L(G1‖(S k/Gk)) ‖ Pk(L(G2‖(S k/Gk))) ‖ L(S 2) ‖ L(G2‖(S k/Gk)) ‖ Pk(L(G1‖(S k/Gk)))
= L(S 1) ‖ L(G1‖(S k/Gk)) ‖ Pk(L(G1‖(S k/Gk))) ‖ L(S 2) ‖ L(G2‖(S k/Gk)) ‖ Pk(L(G2‖(S k/Gk)))
= L(S 1) ‖ L(G1‖(S k/Gk)) ‖ L(S 2) ‖ L(G2‖(S k/Gk)), using (∗),
= L(S 1/[G1‖(S k/Gk)]) ‖ L(S 2/[G2‖(S k/Gk)]) ,

where the second equality is by the commutativity of the synchronous product. Summarized, we have shown that

L(S 1/[G1‖(S k/Gk)‖Pk(G2‖(S k/Gk))]) ‖ L(S 2/[G2‖(S k/Gk)‖Pk(G1‖(S k/Gk))]) ‖ L(S k/Gk)

= L(S 1/[G1‖(S k/Gk)]) ‖ L(S 2/[G2‖(S k/Gk)]) ‖ L(S k/Gk) .

Finally, since K is conditionally decomposable and the following equalities are proven above,

P1+k(K) = L(S 1/[G1‖(S k/Gk)‖Pk(G2‖(S k/Gk))])
P2+k(K) = L(S 2/[G2‖(S k/Gk)‖Pk(G1‖(S k/Gk))])

Pk(K) = L(S k/Gk) ,

it follows that L(S 1/[G1‖(S k/Gk)]) ‖ L(S 2/[G2‖(S k/Gk)]) ‖ L(S k/Gk) = P1+k(K)‖P2+k(K)‖Pk(K) = K. Thus, suffi-
ciency is proven.

To prove necessity, projections Pk, P1+k, and P2+k will be applied to Equation (1). Since all the supervisors cannot
disable uncontrollable events, the closed-loop languages can be written as corresponding synchronous products. Thus,
(1) can be rewritten as follows.

K = L(S 1)‖L(G1)‖L(S k)‖L(Gk) ‖ L(S 2)‖L(G2)‖L(S k)‖L(Gk) ‖ L(S k)‖L(Gk)
= L(S 1)‖L(G1)‖L(S 2)‖L(G2)‖L(S k)‖L(Gk) ,

which yields after projecting by Pk that

Pk(K) = Pk(L(S 1)‖L(G1)‖L(S 2)‖L(G2)‖L(S k)‖L(Gk)) = L(S k)‖L(Gk) ∩ Pk(L(S 1)‖L(G1)‖L(S 2)‖L(G2))
⊆ L(S k)‖L(Gk) = L(S k/Gk) .

On the other hand, we always have L(S k/Gk) ⊆ Pk(K) because S k is a supervisor that enforces the coordinator part
of the specification Pk(K). Hence, we have that L(S k/Gk) = Pk(K), which means, according to the basic theorem
of supervisory control, that Pk(K) ⊆ E∗k is controllable with respect to L(Gk) and Ek,u and observable with respect to
L(Gk), Ek,c, and Qk, i.e., (i) of definitions of conditional controllability and conditional observability are satisfied.

Now, (ii.a) of conditional controllability is shown; (ii.b) is a symmetric condition. An application of the projection
P1+k to (1) yields P1+k

(
L(S k/Gk)‖L(S 1/[G1‖(S k/Gk)])‖L(S 2/[G2‖(S k/Gk)])

)
= P1+k(K). Since E1+k ∩ E2+k = Ek, and

using the fact that L(S 2)‖L(G2‖(S k/Gk)) = L(S 2) ∩ L(G2‖(S k/Gk)) because both components are over the same event
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set E2+k, we obtain that

P1+k(K) = L(S k/Gk) ‖ L(S 1/[G1‖(S k/Gk)]) ‖ P1+k(L(S 2/[G2‖(S k/Gk)]))
= L(S k/Gk) ‖ L(S 1/[G1‖(S k/Gk)]) ‖ P1+k(L(S 2)‖L(G2‖(S k/Gk)))
⊆ L(S k/Gk) ‖ L(S 1/[G1‖(S k/Gk)]) ‖ P1+k(L(G2‖(S k/Gk)))
⊆ L(S 1/[G1‖(S k/Gk)]) ‖ P1+k(L(G2‖(S k/Gk)))
⊆ L(S 1/[G1‖(S k/Gk)])
⊆ P1+k(K) .

Using again the fact that the closed-loop behavior under admissible supervisors can be recast as a synchronous com-
position of the plant and the supervisor, we get L(S 1) ‖ L(G1)‖L(S k/Gk)‖P1+k(L(G2‖(S k/Gk))) = P1+k(K). The whole
term after L(S 1) can now be taken as a new plant G1‖(S k/Gk)‖P1+k(G2‖(S k/Gk)). According to the basic theorem of
supervisory control it implies that P1+k(K) is controllable with respect to G1‖(S k/Gk)‖P1+k(G2‖(S k/Gk)) and E1+k,u

and observable with respect to G1‖(S k/Gk)‖P1+k(G2‖(S k/Gk)), E1+k,c, and Q1+k, i.e., (ii.a) of definitions of conditional
controllability and conditional observability are satisfied, which was to be shown. �

5. Control synthesis of conditionally controllable and conditionally normal languages

As discussed above, it is well known that supremal observable sublanguages do not exist in general and it is not
hard to see that this is also the case of conditionally observable sublanguages. Therefore, this section introduces
an analogous notion to normality, so called conditional normality, and proves that conditional normality along with
conditional controllability are sufficient conditions for the specification language to solve Problem 1.

Definition 8. Consider the setting of Problem 1. Call the specification language K ⊆ E∗ conditionally normal for
generators (G1,G2,Gk) and for the natural projections (Q1+k,Q2+k,Qk), where Qi : E∗i → E∗i,o, for i = 1 + k, 2 + k, k, if

(i) The language Pk(K) ⊆ E∗k is normal with respect to L(Gk) and Qk; equivalently,

Q−1
k Qk(Pk(K)) ∩ L(Gk) = Pk(K) .

(ii.a) The language P1+k(K) ⊆ (E1 ∪ Ek)∗ is normal with respect to L(G1)‖Pk(K)‖P2+k
k (L(G2)‖Pk(K)) and Q1+k;

equivalently,

Q−1
1+kQ1+k(P1+k(K)) ∩ L(G1)‖Pk(K)‖P2+k

k (L(G2)‖Pk(K)) = P1+k(K) .

(ii.b) The language P2+k(K) ⊆ (E2 ∪ Ek)∗ is normal with respect to L(G2)‖Pk(K)‖P1+k
k (L(G1)‖Pk(K)) and Q2+k;

equivalently,

Q−1
2+kQ2+k(P2+k(K)) ∩ L(G2)‖Pk(K)‖P1+k

k (L(G1)‖Pk(K)) = P2+k(K) .

A procedure to determine whether a language is conditionally normal is provided in Section 6. To demonstrate that
the definition is correct, it remains to show that Pi+k(K) ⊆ L(Gi)‖Pk(K)‖P j+k

k (L(G j)‖Pk(K)), for {i, j} = {1, 2}, i , j.
This is shown in the following lemma.

Lemma 9. For {i, j} = {1, 2}, i , j, it holds that Pi+k(K) ⊆ L(Gi)‖Pk(K)‖P j+k
k (L(G j)‖Pk(K)).

Proof. By the definition, we need to show that Pi+k(K) ⊆ (Pi+k
i )−1L(Gi)∩ (Pi+k

k )−1Pk(K)∩ (Pi+k
k )−1P j+k

k (L(G j)‖Pk(K)).
However, Pi+k(K) ⊆ (Pi+k

i )−1Pi+k
i Pi+k(K) = (Pi+k

i )−1Pi(K) and Pi+k(K) ⊆ (Pi+k
k )−1Pi+k

k Pi+k(K) = (Pi+k
k )−1Pk(K) imply

that Pi+k(K) ⊆ Pi(K)‖Pk(K), for i = 1, 2. In addition, the equality Pi+k
k Pi+k(K) = P j+k

k P j+k(K) implies that Pi+k(K) ⊆
(Pi+k

k )−1Pi+k
k Pi+k(K) = (Pi+k

k )−1P j+k
k P j+k(K) ⊆ (Pi+k

k )−1P j+k
k (P j(K)‖Pk(K)). Thus, we have shown that Pi+k(K) ⊆

Pi(K)‖Pk(K)‖P j+k
k (P j(K)‖Pk(K)). Finally, as K ⊆ L(G1‖G2‖Gk), we obtain that Pi(K) ⊆ Pi(L(G1‖G2‖Gk)) ⊆ L(Gi).

This implies that Pi+k(K) ⊆ Pi(K)‖Pk(K)‖P j+k
k (P j(K)‖Pk(K)) ⊆ L(Gi)‖Pk(K)‖P j+k

k (L(G j)‖Pk(K)), which was to be
shown. �
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Theorem 10. Consider the setting of Problem 1. If the specification language K is conditionally controllable with
respect to (G1,G2,Gk) and (E1+k,u, E2+k,u, Ek,u) of locally uncontrollable events, and conditionally normal with respect
to (G1,G2,Gk) and (Q1+k,Q2+k,Qk) of natural projections from E∗i to E∗i,o, for i = 1 + k, 2 + k, k, then there exist
supervisors S 1, S 2, S k such that

L(S 1/[G1‖(S k/Gk)]) ‖ L(S 2/[G2‖(S k/Gk)]) ‖ L(S k/Gk) = K .

Proof. As normality implies observability, the proof of this theorem follows immediately from Theorem 7. �

6. Computation of supremal conditionally controllable and conditionally normal sublanguages

So far, we have discussed conditions placed on the specification language under which a solution to Problem 1
exists. However, if the specification language does not satisfy these conditions, a supremal sublanguage that satisfies
them is to be considered. In what follows, we present a procedure for computation of the supremal conditionally
controllable and conditionally normal sublanguage for a given prefix-closed specification.

Theorem 11. The supremal conditionally controllable sublanguage of a given language K always exists and is equal
to the union of all conditionally controllable sublanguages of K.

Proof. We show that conditional controllability is preserved by union. Let I be an index set, and let Ki, i ∈ I, be con-
ditionally controllable sublanguages of K ⊆ L(G1‖G2‖Gk) with respect to generators (G1,G2,Gk) and uncontrollable
event sets (E1+k,u, E2+k,u, Ek,u). We prove that

⋃
i∈I Ki is conditionally controllable with respect to those generators and

uncontrollable event sets, i.e., the three items of the definition hold.
i) First, we prove that Pk(

⋃
i∈I Ki) is controllable with respect to L(Gk) and Ek,u. To do this, note that

Pk

⋃
i∈I

Ki

 Ek,u ∩ L(Gk) =
⋃
i∈I

(
Pk(Ki)Ek,u ∩ L(Gk)

)
⊆

⋃
i∈I

Pk(Ki) = Pk

⋃
i∈I

Ki

 ,
where the inclusion is by controllability of Pk(Ki) with respect to L(Gk) and Ek,u, i ∈ I.

ii) To prove the other statement, note first that

L(G1)‖Pk

⋃
i∈I

Ki

 ‖P2+k
k

L(G2)‖Pk

⋃
i∈I

Ki

 = L(G1)‖Pk

⋃
i∈I

Ki

 ‖P2+k
k (L(G2)) (1)

because P2+k
k (L(G2)‖Pk (∪i∈I Ki)) = P2+k

k (L(G2))‖Pk (∪i∈I Ki) by Lemma 4, and the second element is already included
in the equation. Thus, we need to show that

P1+k

⋃
i∈I

Ki

 E1+k,u ∩ L(G1)‖Pk

⋃
i∈I

Ki

 ‖P2+k
k (L(G2)) ⊆ P1+k

⋃
i∈I

Ki

 .
However, it holds that

P1+k

⋃
i∈I

Ki

 E1+k,u ∩ L(G1)‖Pk

⋃
i∈I

Ki

 ‖P2+k
k (L(G2))

=
⋃
i∈I

(
P1+k(Ki)E1+k,u

)
∩

⋃
i∈I

(
L(G1)‖Pk(Ki)‖P2+k

k (L(G2))
)

=
⋃
i∈I

⋃
j∈I

(
P1+k(Ki)E1+k,u ∩ L(G1)‖Pk(K j)‖P2+k

k (L(G2))
)
.

For the sake of contradiction, assume that there are two different indexes i, j ∈ I such that

P1+k(Ki)E1+k,u ∩ L(G1)‖Pk(K j)‖P2+k
k (L(G2)) * P1+k

⋃
i∈I

Ki

 .
Then, there exist x ∈ P1+k(Ki) and u ∈ E1+k,u such that xu ∈ L(G1)‖Pk(K j)‖P2+k

k (L(G2)), and xu < P1+k (∪i∈I Ki). It
follows that
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• Pk(x) ∈ PkP1+k(Ki) = Pk(Ki),

• Pk(xu) ∈ Pk(K j), and

• Pk(xu) < Pk(Ki); otherwise, if Pk(xu) ∈ Pk(Ki), then xu ∈ L(G1)‖Pk(Ki)‖Pk(L(G2)), and controllability of
P1+k(Ki) with respect to L(G1)‖Pk(Ki)‖Pk(L(G2)) implies that xu ∈ P1+k(Ki) ⊆ P1+k (∪i∈I Ki), which is not true.

Assume that u < Ek,u. Then, Pk(xu) = Pk(x) ∈ Pk(Ki), which does not hold. Thus, u ∈ Ek,u. As Pk(Ki) ∪ Pk(K j) ⊆
L(Gk), we get that

Pk(xu) = Pk(x)u ∈ L(Gk) .

However, controllability of Pk(Ki) with respect to L(Gk) and Ek,u implies that Pk(x)u = Pk(xu) is in Pk(Ki). This is a
contradiction.

iii) As the last item of the definition is proven in the same way, the theorem holds. �

Theorem 12. The supremal conditionally normal sublanguage of a given language K always exists and is equal to
the union of all conditionally normal sublanguages of K.

Proof. We show that conditional normality is preserved by union. Let I be an index set, and let Ki, i ∈ I, be
conditionally normal sublanguages of K ⊆ L(G1‖G2‖Gk) with respect to generators (G1,G2,Gk) and the natural
projections (Q1+k,Q2+k,Qk) to local observable event sets, see Fig. 1. We prove that

⋃
i∈I Ki is conditionally normal

with respect to those generators and natural projections, i.e., the three items of the definition hold.
i) First, note that Pk(

⋃
i∈I Ki) is normal with respect to L(Gk) and Qk because

Q−1
k QkPk

⋃
i∈I

Ki

 ∩ L(Gk) =
⋃
i∈I

(
Q−1

k QkPk(Ki) ∩ L(Gk)
)

=
⋃
i∈I

Pk(Ki) = Pk

⋃
i∈I

Ki

 ,
where the second equality is by normality of Pk(Ki) with respect to L(Gk) and Qk, i ∈ I.

ii) To prove the other statement, by (1) we need to show that

Q−1
1+kQ1+kP1+k

⋃
i∈I

Ki

 ∩ L(G1)‖Pk

⋃
i∈I

Ki

 ‖P2+k
k (L(G2)) = P1+k

⋃
i∈I

Ki

 .
However, it is true that P1+k (∪i∈I Ki) ⊆ Q−1

1+kQ1+kP1+k (∪i∈I Ki) ∩ L(G1)‖Pk (∪i∈I Ki) ‖P2+k
k (L(G2)), and that

Q−1
1+kQ1+kP1+k

⋃
i∈I

Ki

 ∩ L(G1)‖Pk

⋃
i∈I

Ki

 ‖P2+k
k (L(G2))

=
⋃
i∈I

(
Q−1

1+kQ1+kP1+k(Ki)
)
∩

⋃
i∈I

(
L(G1)‖Pk(Ki)‖P2+k

k (L(G2))
)

=
⋃
i∈I

⋃
j∈I

(
Q−1

1+kQ1+kP1+k(Ki) ∩ L(G1)‖Pk(K j)‖P2+k
k (L(G2))

)
.

For the sake of contradiction, assume that there are two different indexes i, j ∈ I such that

Q−1
1+kQ1+kP1+k(Ki) ∩ L(G1)‖Pk(K j)‖P2+k

k (L(G2)) * P1+k

⋃
i∈I

Ki

 .
Then, there is x ∈ Q−1

1+kQ1+kP1+k(Ki) such that x ∈ L(G1)‖Pk(K j)‖P2+k
k (L(G2)), and x < P1+k (∪i∈I Ki). It follows that

P1+k
k (x) ∈ Pk(K j) and P1+k

k (x) < Pk(Ki) ; (2)

otherwise, P1+k
k (x) ∈ Pk(Ki) implies that x ∈ L(G1)‖Pk(Ki)‖Pk(L(G2)), and normality of P1+k(Ki) then implies that

x ∈ P1+k(Ki) ⊆ P1+k(∪i∈I Ki), which does not hold. As Pk(Ki) ∪ Pk(K j) ⊆ L(Gk), we get that

P1+k
k (x) ∈ L(Gk) .
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E

E1+k

E1+k,oEk

Ek,o

P1+k

Pk

Q1+k

P′
k

P1+k
k

Qk

Figure 1: A commutative diagram of the natural projections.

However, as x ∈ Q−1
1+kQ1+kP1+k(Ki), there exists w ∈ Ki such that Q1+k(x) = Q1+kP1+k(w). Thus, applying the natural

projection P′k : E∗1+k,o → E∗k,o, we get that P′kQ1+k(x) = P′kQ1+kP1+k(w). As it holds that QkP1+k
k = P′kQ1+k and

QkPk = P′kQ1+kP1+k (see Fig. 1), we have that

QkP1+k
k (x) = P′kQ1+k(x) = P′kQ1+kP1+k(w) = QkPk(w) ,

i.e., P1+k
k (x) ∈ Q−1

k QkPk(Ki). By normality of Pk(Ki) with respect to L(Gk) and Qk, we obtain that P1+k
k (x) ∈ Pk(Ki),

which is a contradiction with (2).
iii) As the last item of the definition is proven in the same way, the theorem holds. �

Given generators G1, G2, and Gk. For brevity we denote Li = L(Gi) in what follows, for i = 1, 2, k. In addition, let

sup cCN(K, L, (E1+k,u, E2+k,u, Ek,u), (Q1+k,Q2+k,Qk))

denote the supremal conditionally controllable and conditionally normal sublanguage of the specification language K
with respect to the plant language L = L(G1‖G2‖Gk), the sets of uncontrollable events (E1+k,u, E2+k,u, Ek,u), and the
natural projections (Q1+k,Q2+k,Qk), where Qi : E∗i → E∗i,o, for i = 1 + k, 2 + k, k. The following auxiliary lemmas will
be useful.

Lemma 13. Let L1 ⊆ E∗1, L2 ⊆ E∗2, and E1 ∩ E2 ⊆ Ek. Then, Pk(L1‖L2) = P1+k
k (P1+k

1 )−1(L1) ∩ P2+k
k (P2+k

2 )−1(L2).

Proof. This follows from Lemma 4, the definition of the synchronous product, and Proposition 4.2(6) in [10] showing
the commutativity (Pk

i∩k)−1Pi
i∩k = Pi+k

k (Pi+k
i )−1, for i = 1, 2. Specifically, in turn we have

Pk(L1‖L2) = Pk(L1)‖Pk(L2) = (Pk
1∩k)−1P1

1∩k(L1) ∩ (Pk
2∩k)−1P2

2∩k(L2) = P1+k
k (P1+k

1 )−1(L1) ∩ P2+k
k (P2+k

2 )−1(L2) ,

which proves the lemma. �

Lemma 14 ([8]). Let E = E1 ∪ E2 be event sets, and let L1 ⊆ E∗1 and L2 ⊆ E∗2 be two languages. Let Pi : E∗ → E∗i be
natural projections, for i = 1, 2. Let A ⊆ E∗ be a language such that P1(A) ⊆ L1 and P2(A) ⊆ L2. Then, A ⊆ L1‖L2.

Lemma 15 ([8]). Let K ⊆ L ⊆ M be languages over an event set E such that K is controllable with respect to L and
Eu, and L is controllable with respect to M and Eu. Then, K is controllable with respect to M and Eu.

Lemma 16. Let K ⊆ L ⊆ M be prefix-closed languages such that K is normal with respect to L and Q, and L is
normal with respect to M and Q. Then, K is normal with respect to M and Q.
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Proof. We know that Q−1Q(K) ∩ L = K and Q−1Q(L) ∩ M = L. Then, Q−1Q(K) ∩ M ⊆ Q−1Q(L) ∩ M = L. This
implies that Q−1Q(K) ∩ M = (Q−1Q(K) ∩ M) ∩ L = (Q−1Q(K) ∩ L) ∩ M = K ∩ M = K. �

Lemma 17. Let Q : E∗ → E∗o, Pk : E∗ → E∗k , and Qk : E∗k → E∗k,o be natural projections. Then, for every language
M ⊆ E∗k , the inclusion Q−1QP−1

k (M) ⊆ P−1
k Q−1

k Qk(M) holds.

Proof. Let M ⊆ E∗k be a language, then QP−1
k (X) ⊆ QP−1

k Q−1
k Qk(X) = Q(QkPk)−1Qk(X) = Q(P′kQ)−1Qk(X) =

QQ−1(P′k)−1Qk(X) = (P′k)−1Qk(X), where P′k : E∗o → E∗k,o is a restriction of the projection Pk to E∗o. This implies that
Q−1QP−1

k (X) ⊆ Q−1(P′k)−1Qk(X) = (P′kQ)−1Qk(X) = (QkPk)−1Qk(X) = P−1
k Q−1

k Qk(X), which was to be shown. �

The following conditions are required in the main result of this section. The reader is referred to [10, 12] for more
details.

Definition 18. The natural projection Pk : E∗ → E∗k , where Ek ⊆ E, is an L-observer for L ⊆ E∗ if, for all t ∈ P(L)
and s ∈ L, P(s) is a prefix of t implies that there exists u ∈ E∗ such that su ∈ L and P(su) = t.

Definition 19. The natural projection Pk : E∗ → E∗k , where Ek ⊆ E, is output control consistent (OCC) for L ⊆ E∗ if
for every s ∈ L of the form

s = σ1 . . . σ` or s = s′σ0σ1 . . . σ`, ` ≥ 1 ,

where s′ ∈ E∗, σ0, σ` ∈ Ek, and σi ∈ E \ Ek, for i = 1, 2, . . . , ` − 1, if σ` ∈ Eu, then σi ∈ Eu, for all i = 1, 2, . . . , ` − 1.

Note that OCC can be replaced by a similar condition called local control consistency (LCC) discussed in [13, 14].

Theorem 20. Consider the setting of Problem 1. Define the local languages

sup CNk = sup CN(Pk(K), L(Gk), Ek,u,Qk) ,
sup CN1+k = sup CN(P1+k(K), L(G1)‖sup CNk, E1+k,u,Q1+k) ,
sup CN2+k = sup CN(P2+k(K), L(G2)‖sup CNk, E2+k,u,Q2+k) .

Let the projection Pi+k
k be an (Pi+k

i )−1L(Gi)-observer and OCC for (Pi+k
i )−1L(Gi), for i = 1, 2. Assume that the language

P1+k
k (sup CN1+k) ∩ P2+k

k (sup CN2+k) is normal with respect to L(Gk) and Qk. Then,

sup CNk‖sup CN1+k‖sup CN2+k = sup cCN(K, L, (E1+k,u, E2+k,u, Ek,u), (Q1+k,Q2+k,Qk)) .

Proof. To prove the theorem, we first denote the left-hand side and the right-hand side as

M = sup CNk‖sup CN1+k‖sup CN2+k and sup cCN = sup cCN(K, L, (E1+k,u, E2+k,u, Ek,u), (Q1+k,Q2+k,Qk)) ,

respectively, and we denote L = L(G1‖G2‖Gk) and Li = L(Gi), i = 1, 2, k. To show that the inclusion M ⊆ sup cCN
holds, we need to show that

1. M ⊆ K,
2. M is conditionally controllable with respect to L and (E1+k,u, E2+k,u, Ek,u), and
3. M is conditionally normal with respect to L and (Q1+k,Q2+k,Qk).

1. Note that M = sup CNk‖sup CN1+k‖sup CN2+k ⊆ Pk(K)‖P1+k(K)‖P2+k(K) = K since K is conditionally decompos-
able. Thus, M ⊆ K holds true.

2. For a proof showing that M is conditionally controllable with respect to L and (E1+k,u, E2+k,u, Ek,u), the reader is
referred to [8].

3. Thus, it remains to prove that M is conditionally normal with respect to L and (Q1+k,Q2+k,Qk). To do this, we need
to show the following three properties of Definition 8:

(I) Q−1
k Qk(Pk(M)) ∩ L(Gk) = Pk(M),
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(II) Q−1
1+kQ1+k(P1+k(M)) ∩ L(G1)‖Pk(M)‖P2+k

k (L(G2)‖Pk(M)) = P1+k(M), and

(III) Q−1
2+kQ2+k(P2+k(M)) ∩ L(G2)‖Pk(M)‖P1+k

k (L(G1)‖Pk(M)) = P2+k(M).

As the last two properties are similar, we prove only (II).

(I) To prove Q−1
k Qk(Pk(M)) ∩ L(Gk) = Pk(M), note that

Pk(M) = sup CNk ∩ P1+k
k (sup CN1+k) ∩ P2+k

k (sup CN2+k) = P1+k
k (sup CN1+k) ∩ P2+k

k (sup CN2+k) ,

where the first equality follows from Lemma 4 by replacing the synchronous product with the intersection, and the
other follows from the fact that sup CNi+k ⊆ L(Gi)‖sup CNk ⊆ (Pi+k

k )−1(sup CNk). Thus, by the assumption, Pk(M) is
normal with respect to L(Gk) and Qk, i.e., (I) holds true.

(II) Now, we show the other property, namely

Q−1
1+kQ1+k(P1+k(M)) ∩ L(G1)‖Pk(M)‖P2+k

k (L(G2)‖Pk(M)) = P1+k(M) .

The inclusion ⊇ is proven as in Lemma 9. Thus, it remains to show the other inclusion. First, note that by Lemma 6
and the definition of synchronous product we obtain that

P1+k(M) = (P1+k
k )−1(sup CNk) ∩ sup CN1+k ∩ (P1+k

k )−1P2+k
k (sup CN2+k) .

Assume that x ∈ Q−1
1+kQ1+k(P1+k(M)) ∩ L(G1)‖Pk(M)‖P2+k

k (L(G2)‖Pk(M)). Then, P1+k(M) ⊆ sup CN1+k and Pk(M) ⊆
sup CNk imply that

Q−1
1+kQ1+k(P1+k(M)) ∩ L(G1)‖Pk(M)‖P2+k

k (L(G2)‖Pk(M))

⊆ Q−1
1+kQ1+k(sup CN1+k) ∩ L(G1)‖Pk(M)‖P2+k

k (L(G2)‖Pk(M))

⊆ Q−1
1+kQ1+k(sup CN1+k) ∩ L(G1)‖sup CNk = sup CN1+k .

Thus, we have shown that x ∈ sup CN1+k. In addition, it is satisfied that P1+k
k (x) ∈ P2+k

k (L(G2)‖Pk(M)) ⊆ Pk(M) ⊆
P2+k

k (sup CN2+k), which implies that x ∈ (P1+k
k )−1P2+k

k (sup CN2+k). Furthermore, P1+k
k (x) ∈ Pk(M) ⊆ sup CNk implies

that x ∈ (P1+k
k )−1(sup CNk). Hence, x ∈ P1+k(M). As (III) is proven analogously, we have shown that M ⊆ sup cCN.

To prove the opposite inclusion, sup cCN ⊆ M, by Lemma 14 it is sufficient to show that

• Pk(sup cCN) ⊆ sup CNk and

• Pi+k(sup cCN) ⊆ sup CNi+k, for i = 1, 2.

To prove this, note that Pk(sup cCN) ⊆ Pk(K) is controllable with respect to L(Gk) and Ek,u and normal with respect
to L(Gk) and Qk, which implies that Pk(sup cCN) ⊆ sup CNk is satisfied. Furthermore, P1+k(sup cCN) ⊆ P1+k(K) is
controllable with respect to L1‖Pk(sup cCN)‖P2+k

k (L2‖Pk(sup cCN)) and E1+k,u and normal with respect to the same
language and Q1+k. By Lemma 13, Pk(sup cCN) ⊆ sup CNk ⊆ Pk(L) ⊆ P2+k

k (P2+k
2 )−1(L2). The following holds:

L1‖Pk(sup cCN)‖P2+k
k (L2‖Pk(sup cCN)) = L1‖Pk(sup cCN)‖[Pk(sup cCN) ∩ P2+k

k (P2+k
2 )−1(L2)]

= L1‖Pk(sup cCN)‖Pk(sup cCN)
= L1‖Pk(sup cCN) .

Since Pk(sup cCN) is controllable with respect to L(Gk) and Ek,u, and normal with respect to L(Gk) and Qk, it
is also controllable with respect to sup CNk ⊆ L(Gk) and Ek,u, and normal with respect to sup CNk and Qk be-
cause Pk(sup cCN) ⊆ sup CNk. As P1+k(sup cCN) is controllable with respect to L1‖Pk(sup cCN) and E1+k,u, and
L1‖Pk(sup cCN) is controllable with respect to L1‖sup CNk and E1+k,u by [10, Proposition 4.6] (since all the lan-
guages under consideration are prefix-closed), Lemma 15 implies that P1+k(sup cCN) is controllable with respect
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to L1‖sup CNk and E1+k,u. Furthermore, as P1+k(sup cCN) is normal with respect to L1‖Pk(sup cCN) and Q1+k, and
L1‖Pk(sup cCN) is normal with respect to L1‖sup CNk and Q1+k because (using Lemma 17)

Q−1
1+kQ1+k(L1‖Pk(sup cCN)) ∩ L1‖sup CNk

= Q−1
1+kQ1+k((P1+k

1 )−1(L1) ∩ (P1+k
k )−1Pk(sup cCN)) ∩ (P1+k

1 )−1(L1) ∩ (P1+k
k )−1(sup CNk)

⊆ Q−1
1+kQ1+k(P1+k

1 )−1(L1) ∩ Q−1
1+kQ1+k(P1+k

k )−1Pk(sup cCN) ∩ (P1+k
1 )−1(L1) ∩ (P1+k

k )−1(sup CNk)

= (P1+k
1 )−1(L1) ∩ Q−1

1+kQ1+k(P1+k
k )−1Pk(sup cCN) ∩ (P1+k

k )−1(sup CNk)

⊆ (P1+k
1 )−1(L1) ∩ (P1+k

k )−1Q−1
k QkPk(sup cCN) ∩ (P1+k

k )−1(sup CNk)

= (P1+k
1 )−1(L1) ∩ (P1+k

k )−1
(
Q−1

k QkPk(sup cCN) ∩ sup CNk

)
= (P1+k

1 )−1(L1) ∩ (P1+k
k )−1Pk(sup cCN)

= L1‖Pk(sup cCN) .

Then, Lemma 16 implies that P1+k(sup cCN) is normal with respect to L1‖sup CNk and Q1+k. Thus, we have shown
that P1+k(sup cCN) ⊆ sup CN1+k. The case of the property (ii.b) is proven analogously. Hence, sup cCN ⊆ M and the
proof is complete. �

Remark 21. The assumption that the language P1+k
k (sup CN1+k) ∩ P2+k

k (sup CN2+k) is normal is rather technical. If
Ek = Ek,o = Ek ∩ Eo, then the projection Qk is identity and the condition is trivially satisfied. However, the example
below (see Section 6.1) demonstrates that the condition can also be satisfied although Ek and Ek,o do not coincide.
On the other hand, if Eo ⊆ Ek, P1+k

k (sup CN1+k) ∩ P2+k
k (sup CN2+k) is normal with respect to Pk(L1‖L2)‖Lk. Thus, for

the coordinator defined as Lk = Pk(L1‖L2) discussed in the example below, the technical assumption is satisfied. The
proof is as follows: Eo ⊆ Ek implies QkPk = Q. Then, normality of K with respect to L and Q implies normality
of Pk(K) with respect to Pk(L) and Qk. To see this, let t ∈ Pk(L), t′ ∈ Pk(K), and Qk(t) = Qk(t′). There exist s ∈ L
and s′ ∈ K such that Pk(s) = t and Pk(s′) = t′. Thus, Q(s) = QkPk(s) = Qk(t) = Qk(t′) = QkPk(s′) = Q(s′). Now,
normality of K with respect to L and Q implies s ∈ K, i.e., t = Pk(s) ∈ Pk(K). Note that sup CN1+k is normal with
respect to L1‖sup CNk and Q1+k, sup CNk is normal with respect to Lk and Qk, and L1 is normal with respect to L1 and
Q1. This implies that L1‖sup CNk is normal with respect to L1‖Lk and Q1+k. Lemma 16 then implies that sup CN1+k
is normal with respect to L1‖Lk and Q1+k. The same arguments show that sup CN2+k is normal with respect to L2‖Lk

and Q2+k. Now, two applications of the preservation of normality under projection yield normality of Pi+k
k (sup CNi+k)

with respect to Pk(Li‖Lk) = Lk‖Pk(Li) and Qk, for i = 1, 2. Then, P1+k
k (sup CN1+k) ∩ P2+k

k (sup CN2+k) is normal with
respect to Lk‖Pk(L1)‖Pk(L2) = Lk and Qk as required in the technical condition.

Let us mention that even if Pk(sup CN1+k) ∩ Pk(sup CN2+k) fails to be normal with respect to Lk and Qk, and the
equality in Theorem 20 does not need to hold, it does not mean that our approach is useless. In fact, our procedure
to compute the supremal normal sublanguage as the composition of corresponding supremal normal sublanguages
over the alphabets Ek, E1 ∪ Ek, and E2 ∪ Ek is natural and we always compute a normal sublanguage of L1‖L2‖Lk

using the computation scheme. Indeed, it follows by the same argument as the proof of normality of Pk(sup CN1+k) ∩
Pk(sup CN2+k) with respect to Lk and Qk in the special case Eo ⊆ Ek discussed above. Namely, sup CNk is by definition
normal with respect to Lk and Qk, and for i = 1, 2 we have that sup CNi+k is normal with respect to Li‖Lk and Qi+k.
Since we deal with prefix-closed (hence nonconflicting) languages, this gives that M = sup CNk‖sup CN1+k‖sup CN2+k
is normal with respect to Lk‖(L1‖Lk)‖(L2‖Lk) = L1‖L2‖Lk. This is because normality (as well as controllability) of
prefix-closed languages is preserved by the parallel composition under a very mild assumption that all shared events
have the same observability status in all subsystems that share them. Formally, Eo,2 ∩ E1 = E2 ∩ Eo,1, which is
automatically satisfied because we defined locally observable events as Eo,i = Eo ∩ Ei.

As the assumption that the projection Pi+k
k is an (Pi+k

i )−1L(Gi)-observer and OCC for (Pi+k
i )−1L(Gi), for i = 1, 2,

is required only for controllability, we have the following corollary. Let sup N(K, L,Q) denote the supremal normal
sublanguage of K with respect to L and Q.
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Corollary 22. Consider the setting of Problem 1. Define the local languages

sup Nk = sup N(Pk(K), L(Gk),Qk) ,
sup N1+k = sup N(P1+k(K), L(G1)‖sup Nk,Q1+k) ,
sup N2+k = sup N(P2+k(K), L(G2)‖sup Nk,Q2+k) .

Assume that the language P1+k
k (sup N1+k) ∩ P2+k

k (sup N2+k) is normal with respect to L(Gk) and Qk. Then,

sup Nk‖sup N1+k‖sup N2+k = sup cN(K, L, (Q1+k,Q2+k,Qk)) .

The minimal cardinality of the coordinator event set depends on the specification language. If we assume that the
projections are observers, the state size of the computed models is guaranteed to be no larger than that of the original
models. In a typical situation, the projected models are significantly smaller than the original models. The reader is
referred to [15, 16] for more details.

In [17], the computational complexity of the supremal controllable sublanguage of a specification language K
with respect to the plant language L with n and m states in their minimal generator representations, respectively, is
shown (for prefix-closed languages) to be O(mn). The computational complexity of the supremal controllable and
normal sublanguage is O(2mn), see [5]. We denote the number of states of minimal generators for L(G1), L(G2),
and L(Gk) by m1, m2, and mk, respectively. As the specification language K is conditionally decomposable, i.e., K =

P1+k(K)‖P2+k(K)‖Pk(K), we denote the number of states of minimal generators for P1+k(K), P2+k(K), and Pk(K) by n1,
n2, and nk, respectively. Then, in the worst case, m = O(m1m2mk) and n = O(n1n2nk). The computational complexity
of sup Ck, sup C1+k, and sup C2+k (see [8]) gives the formula O(mknk + m1n1mknk + m2n2mknk), which is better than
O(mn) = O(m1m2mkn1n2nk) of the monolithic case. The situation is more complicated for supremal controllable and
normal sublanguages. In this case, the computational complexity of sup CNk, sup CN1+k, and sup CN2+k gives the
formula O(2mknk +2m1n12mknk

+2m2n22mknk ), which is better than O(2m1m2mkn1n2nk ) of the monolithic case if mini >
2mknk

mknk
, for

i = 1, 2, i.e., if the coordinator is significantly smaller than the subsystems. As the coordinator (and its event set) can
be chosen to be minimal, there is a possibility to choose the coordinator so that it, in addition, satisfies the condition
that the number of states of the minimal generator of sup CNk is in O(mknk) or even in O(min{mk, nk}). However, this
question requires further investigation.

In addition to the procedure for computation of sup cCN in a distributed way, another consequence is of interest.
Namely, under the conditions of Theorem 20, sup cCN is conditionally decomposable, cf. Lemma 23.

Lemma 23 ([8, 9]). A language M ⊆ E∗ is conditionally decomposable with respect to event sets E1 ∪ E2 ∪ Ek = E
if and only if there exist languages Mi ⊆ E∗i , for i = 1, 2, k, such that M = M1‖M2‖Mk.

Even more, this implies that the supremal conditionally controllable and conditionally normal sublanguage is con-
trollable and normal with respect to the global plant as we show below and, consequently, the supremal conditionally
controllable and conditionally normal sublanguage is included in the global supremal controllable and normal sub-
language. This is because the language synthesized using our coordination architecture is more restrictive than the
language synthesized using the supervisory control for the global plant.

Theorem 24. In the setting of Theorem 20, sup cCN(K, L, (Ek,u, E1+k,u, E2+k,u), (Qk,Q1+k,Q2+k)) is controllable with
respect to L = L1‖L2‖Lk and Eu, and normal with respect to L and Q : E∗ → E∗o, where E = E1+k ∪ E2+k.

Proof. Let sup cCN = sup cCN(K, L, (Ek,u, E1+k,u, E2+k,u), (Qk,Q1+k,Q2+k)). Controllability of sup cCN is shown in
[8], thus we only prove normality here and refer the reader to [8]. Note that according to Theorem 20, there exist
sup CNk ⊆ E∗k , sup CN1+k ⊆ E∗1+k, and sup CN2+k ⊆ E∗2+k so that sup cCN = sup CNk‖sup CN1+k‖sup CN2+k. In
addition, the following three properties hold: (1) sup CNk is normal with respect to Lk and Qk, (2) sup CN1+k is
normal with respect to L1‖sup CNk and Q1+k, and (3) sup CN2+k is normal with respect to L2‖sup CNk and Q2+k. Then,

14



using Lemma 17,

Q−1Q(sup cCN) ∩ L‖sup CNk

= Q−1Q(sup CNk‖sup CN1+k‖sup CN2+k) ∩ L‖sup CNk

= Q−1Q
(
P−1

k (sup CNk) ∩ P−1
1+k(sup CN1+k) ∩ P−1

2+k(sup CN2+k)
)
∩ L‖sup CNk

⊆ Q−1QP−1
k (sup CNk) ∩ Q−1QP−1

1+k(sup CN1+k) ∩ Q−1QP−1
2+k(sup CN2+k) ∩ L‖sup CNk

⊆ P−1
k Q−1

k Qk(sup CNk) ∩ P−1
1+kQ−1

1+kQ1+k(sup CN1+k) ∩ P−1
2+kQ−1

2+kQ2+k(sup CN2+k) ∩ L1‖L2‖Lk‖sup CNk

= P−1
k

(
Q−1

k Qk(sup CNk) ∩ Lk

)
∩ P−1

1+k

(
Q−1

1+kQ1+k(sup CN1+k) ∩ L1‖sup CNk

)
∩ P−1

2+k

(
Q−1

2+kQ2+k(sup CN2+k) ∩ L2‖sup CNk

)
= sup cCN .

Thus, sup cCN is normal with respect to L‖sup CNk and Q. Analogously, we can prove that L‖sup CNk is normal with
respect to L‖Lk = L and Q. Finally, by the transitivity of normality for prefix-closed languages (Lemma 16) we obtain
that sup cCN is normal with respect to L and Q, which was to be shown. �

Theorem 24 demonstrates that the result of our approach is controllable and normal with respect to L, Eu, and Q.
To complete this study, we show that if some additional conditions are also satisfied, then the constructed supremal
conditionally controllable and conditionally normal sublanguage is optimal.

Theorem 25. Consider the setting of Theorem 20. If, in addition, Lk ⊆ Pk(L) and Pi+k is OCC for the language
P−1

i+k(Li‖Lk), for i = 1, 2, then

sup cCN(K, L, (Ek,u, E1+k,u, E2+k,u), (Qk,Q1+k,Q2+k)) = sup CN(K, L, Eu,Q)

if and only if

• Pk(Q−1Q(sup CN) ∩ L) = PkQ−1Q(sup CN) ∩ Lk and

• Pi+k(Q−1Q(sup CN) ∩ L1‖L2‖Pk(sup CN)) = Pi+kQ−1Q(sup CN) ∩ Pi+k(L1‖L2‖Pk(sup CN)), for i = 1, 2,

where sup CN = sup CN(K, L, Eu,Q).

Proof. First, note that the case considering controllability is proven in [8], i.e., sup cC(K, L, (Ek,u, E1+k,u, E2+k,u)) =

sup C(K, L, Eu). Moreover, sup cCN(K, L, (Ek,u, E1+k,u, E2+k,u), (Qk,Q1+k,Q2+k)) ⊆ sup CN(K, L, Eu,Q) is proven in
Theorem 24. Thus, it remains to show that sup CN is conditionally normal if and only if Pk(Q−1Q(sup CN) ∩ L) =

PkQ−1Q(sup CN)∩Lk and Pi+k(Q−1Q(sup CN)∩L1‖L2‖Pk(sup CN)) = Pi+kQ−1Q(sup CN)∩P1+k(L1‖L2‖Pk(sup CN)),
for i = 1, 2.

The assumption Lk ⊆ Pk(L) implies that Lk = Pk(L) because Pk(L) ⊆ Lk always holds. Moreover, for any A ⊆ E∗,
Q−1

k QkPk(A) = PkQ−1Q(A). This can be proven as follows. Let x ∈ Q−1
k QkPk(A), then there exists z ∈ A such

that Qk(x) = QkPk(z), Pk(z) = y, and Q(z) = w, for some y ∈ E∗k and w ∈ E∗o. Assume Qk(x) = Qk(y) = v =

σ0σ1 . . . σn, for σi ∈ Ek,o, or v = ε. Then, x = u0σ0u1σ1 . . . unσnun+1, for some ui ∈ (Ek \ Eo)∗. As QkPk(z) =

P′kQ(z) = v, where P′k denotes the restriction of Pk to E∗o, w = w0σ0w1σ1 . . .wnσnwn+1, for wi ∈ (Eo \ Ek)∗. Set
z′ = u0w0σ0u1w1σ1 . . . unwnσnun+1wn+1. Then, Pk(z′) = x and Q(z′) = w, which implies that z′ ∈ Q−1Q(z). Thus,
x ∈ PkQ−1Q(A). On the other hand, x ∈ PkQ−1Q(A) implies that there exists y ∈ Q−1Q(A) such that Pk(y) = x, and
that there is z ∈ A such that Q(y) = Q(z). Thus, considering the image of z under Qk ◦ Pk, we obtain that QkPk(z) =

P′kQ(z) = P′kQ(y) = QkPk(y) = Qk(x), which implies that x ∈ Q−1
k QkPk(A). Thus, Q−1

k QkPk(A) = PkQ−1Q(A) is
shown.

Based on these observations and the normality of sup CN, we obtain that the natural projection Pk(sup CN) =

Pk(Q−1Q(sup CN) ∩ L) ⊆ PkQ−1Q(sup CN) ∩ Pk(L) = PkQ−1Q(sup CN) ∩ Lk = Q−1
k QkPk(sup CN) ∩ Lk. It follows

that Pk(sup CN) is normal if and only if Pk(Q−1Q(sup CN) ∩ L) = PkQ−1Q(sup CN) ∩ Lk. Now, we show that the
language P1+k(sup CN) is normal with respect to L1‖Pk(sup CN)‖P2+k

k (L2‖Pk(sup CN)) and Q1+k if and only if the
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assumption is satisfied. The case of the language P2+k(sup CN) is proven analogously. First, as Pk(sup CN) ⊆ Lk, we
obtain that Q−1Q(sup CN) ∩ L1‖L2‖Pk(sup CN) = Q−1Q(sup CN) ∩ P−1

1 (L1) ∩ P−1
2 (L2) ∩ P−1

k (Lk) ∩ P−1
k Pk(sup CN) =

Q−1Q(sup CN)∩L1‖L2‖Lk∩P−1
k Pk(sup CN) = sup CN∩P−1

k Pk(sup CN) = sup CN, i.e., sup CN is normal with respect
to L1‖L2‖Pk(sup CN) and Q. Thus,

P1+k(sup CN) = P1+k(Q−1Q(sup CN) ∩ L1‖L2‖Pk(sup CN))

⊆ P1+kQ−1Q(sup CN) ∩ P1+k(L1‖L2‖Pk(sup CN))

= Q−1
1+kQ1+kP1+k(sup CN) ∩ P1+k(L1‖L2‖Pk(sup CN)) , by an analogous argument as above,

= Q−1
1+kQ1+kP1+k(sup CN) ∩ L1‖Pk(sup CN)‖P2

2∩k(L2) , by Lemma 4,

= Q−1
1+kQ1+kP1+k(sup CN) ∩ L1‖Pk(sup CN)‖P2

2∩k(L2)‖Pk(sup CN)

= Q−1
1+kQ1+kP1+k(sup CN) ∩ L1‖Pk(sup CN)‖P2+k

k (L2‖Pk(sup CN)) ,

which implies that the language P1+k(sup CN) is normal with respect to L1‖Pk(sup CN)‖P2+k
k (L2‖Pk(sup CN)) and

Q1+k if and only if the projection P1+k distributes over the languages Q−1Q(sup CN) and L1‖L2‖Pk(sup CN). Hence,
the proof is complete. �

Note that to verify this condition, we need to compute the plant language L. However, this language is not
computed during the computational process because of the complexity reasons. Thus, it is an open problem how to
verify the optimality of the computed result based only on the local languages L1, L2, and Lk.

6.1. An example
In this section, we demonstrate our approach on an example. As controllability is demonstrated on an example

presented in [8], we consider only the case of conditional normality here.
Let G = G1‖G2 be a plant defined over an event set E = E1 ∪ E2 = {a1, c, t, t1} ∪ {a2, c, t, t2} = {a1, a2, c, t, t1, t2}

as a synchronous composition of two systems G1 and G2 defined as shown in Figure 2, where the set of unobservable
events is Euo = {t, t1, t2}. The behaviors of these systems are L(G1) = {t1c, a1t}, L(G2) = {t2c, a2t}, and L(G) =

0

1

2

3

4

t1

c

a1

t

(a) Generator G1.

0

1

2

3

4

t2

c

a2

t

(b) Generator G2.

0

1 2

3

t t1

c

(c) Coordinator.

Figure 2: Generators G1, G2, and the coordinator.

{a1a2t, a2a1t, a1t2, a2t1, t1t2c, t2t1c, t1a2, t2a1}. The specification K = {t1t2c, t1a2, a2t1, a2a1t, a1a2t, a1t2, t2a1, t2t1} is
define by the generator shown in Figure 3.

Now, we need to find a coordinator Gk; specifically, its event set Ek. Note that, by the definition, Ek has to contain
both shared events c and t. In addition, to ensure that the specification language K is conditionally decomposable,
at least one of t1 and t2 has to be added to Ek. Assume t1 is added, i.e., Ek = {c, t, t1}. Thus, K is conditionally
decomposable.

Moreover, as we consider only prefix-closed languages in this paper, and the choice of a coordinator plays a role in
solving blocking issues, we choose the coordinator so that its behavior Lk = L(Gk) does not change the original system
when composed together, i.e., L(G1‖G2)‖Lk = L(G1‖G2) is satisfied, see Figure 2(c). In fact, due to the absence of
blocking issues, the important aspect in the choice of the coordinator is the choice of its alphabet, Ek, so that OCC
and observer properties are satisfied together with the technical condition on normality.

Our choice is thus Lk = L(P1
k(G1)‖P2

k(G2)), which means that Lk = {t, t1c}. The projections of K are then the
following languages Pk(K) = {t, t1c}, P1+k(K) = {a1t, t1c}, and P2+k(K) = {t2t1, a2t, a2t1, t1a2, t1t2c}. We can compute
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Figure 3: Generator for the specification language K.

the languages sup Nk = {t, t1c}, sup N1+k = {t1c, a1t}, sup N2+k = {t2t1, t1t2, t1a2, a2t1, a2t}, as defined in Corollary 22,
where their composition

sup Nk‖sup N1+k‖sup N2+k = {t2t1, t2a1, a1t2, a1a2t, t1t2, t1a2, a2a1t, a2t1}

is the supremal conditionally normal sublanguage of K, which is also normal by Theorem 24. In addition, it can be
verified that the resulting language coincides with the supremal normal sublanguage of K with respect to L(G) and Q.

7. Conclusion

In this paper, we have investigated coordination control of modular discrete-event systems with partial observa-
tions. We have established that conditional observability together with conditional controllability form a necessary
and sufficient condition for a global specification language to be exactly achievable within our coordination control
that consists of local supervisors and a supervisor for the coordinator.

Similarly as observability in monolithic supervisory control with partial observations, conditional observability
is not preserved by language union, hence we have studied conditional normality and supremal conditional normal
sublanguages that always exist. We have shown that under quite weak assumptions supremal conditionally control-
lable sublanguages are conditionally decomposable and can be fairly easily computed. Sufficient conditions have been
established, where a distributed computation is possible, which consists of computing the supremal conditionally con-
trollable and conditionally normal sublanguage of a global specification language as the synchronous composition of
the supremal controllable and normal sublanguages for the coordinator and those for the coordinator combined with
local subsystems.

Moreover, conditions have been found under which our supremal conditionally controllable and conditionally nor-
mal sublanguage coincides with the globally optimal solution, i.e. the supremal controllable and normal sublanguage.
Hence, as a consequence we have proposed an efficient computation of supremal controllable and normal sublanguage
of a global specification, a very difficult problem.

For a future consideration, several extensions of our approach are left open. Let us note that the approach can be
fairly easily extended to the general case of n subsystems running in parallel. In fact, it is possible to introduce one
central coordinator which should dispose of all events shared by at least two subsystems. Another extension to non-
prefix-closed global specification languages is currently investigated. It should be noted that there is an implicit and
simple form of communication between coordinator and local controllers, namely , there is a two way communication
channel between the coordinator and the local supervisors such that all coordinator events are communicated between
local supervisors via the coordinator. In this respect, generalizations to coordination control with more general forms
of communication between coordinator and local supervisors should be investigated. Finally, it would be nice to
extend the coordination control to classes of timed automata.
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