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Abstract

Supervisory control of distributed DES with a global specification and local supervisors is a difficult problem. For global
specifications the equivalent conditions for local control synthesis to equal global control synthesis may not be met. This paper
formulates and solves a control synthesis problem for a generator with a global specification and with a combination of a
coordinator and local controllers. Conditional controllability is proven to be an equivalent condition for the existence of such
a coordinated controller. A procedure to compute the least restrictive solution within our coordination control architecture is
provided and conditions under which the result coincides with the supremal controllable sublanguage are stated.
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1 Introduction

This paper investigates supervisory control synthesis of
discrete-event systems (DES) with a coordinator. Com-
plex DES are formed as a synchronous product of a large
number of local components modeled as finite genera-
tors [14] and run in parallel. The aim of supervisory con-
trol is to ensure that the closed-loop system satisfies the
control objectives of safety and of liveness. Safety means
the behavior of the system is included in a specification,
and liveness means the system cannot deadlock or live-
lock. As only controllable specifications are achievable,
one of the key issues in the supervisory control synthesis
is the computation of the supremal controllable sublan-
guage of a given specification from which the supervisor
can be constructed.

The paper addresses control of distributed DES consist-
ing of an interconnection of two or more subsystems. The
aim is to find a supervisor for each subsystem so that the
composition of controlled subsystems reaches the speci-
fication. The issue is that the specification is global be-
cause it deals with the interactions of subsystems.
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Among the most successful approaches to supervisory
control of distributed DES are those that combine de-
centralized and hierarchical control (both horizontal and
vertical abstractions), see [2,4,15], or the approach based
on interfaces [11], which restricts the interaction of the
subsystems (the communication between the high level
and the low level is restricted to these interfaces). A no-
table difference between our coordination control and
the interface-based control of [11] is that the interface is
fixed a priori, whereas coordination control is more flex-
ible because we can choose the coordinator depending
on the system and the control specification.

The approach of this paper is similar to the above men-
tioned papers in the sense that coordination control can
be seen as an instance of hierarchical control, where the
high level is represented by the coordinator and its su-
pervisor. The coordinator receives a part of the obser-
vations from local subsystems and its task is to satisfy
the global part of the specification and nonblockingness.
Hence, the coordinator can be seen as a two-way commu-
nication channel, where some events are communicated
among subsystems.

Thus, coordination control is a reasonable trade-off be-
tween a purely decentralized control synthesis that is
in some cases unrealistic, and a global control synthe-
sis that is prohibitive for complexity reasons. Unlike our
previous results in decentralized control based on struc-
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tural, specification independent conditions, e.g. mutual
controllability [9], the conditions obtained from the co-
ordination control framework are based on the specifi-
cation itself rather than on the local plants.

In this paper, we are concerned with the safety issue and
propose a necessary and sufficient condition on a specifi-
cation (called conditional controllability) to be achieved
in the coordination control architecture consisting of a
coordinator, its supervisor, and local supervisors for the
subsystems. This condition refines the sufficient condi-
tion presented in [8]. In addition, we show that the supre-
mal conditionally-controllable sublanguage of a given
specification always exists and is included in the supre-
mal controllable sublanguage. A computational proce-
dure is proposed.

Since the coordinator is chosen as a projected plant com-
puted locally using distributivity of natural projections
with the synchronous product, the composition of the
plant with the coordinator does not modify the plant. In
fact, it turns out that only the event set of the coordina-
tor matters when we are interested in a safety issue: only
the coordinator for nonblockingness should be chosen so
that the composition with the coordinator restricts the
plant to its trim part.

A possible solution for a coordinator that guarantees
nonblockingness is sketched in [4, Proposition 4.9], where
the coordinator resolves conflicts between local plants
without reducing the plant. We return to this problem
in a future study.

Unfortunately, concerning the safety issue, the approach
of [4] based on abstractions (hierarchical approach) han-
dles the case, where several specifications are given, but
no efficient method is proposed for a global specification.
Our results then fills this gap by proposing a coordina-
tor for safety that is simple (the plant projected into a
suitable coordinator even set) and does not modify the
plant, but is equipped with its supervisor that further re-
duces the plant to achieve the safety specification within
our architecture. Hence, our procedure also yields a con-
trollable sublanguage with respect to the original plant.
Moreover, additional conditions are found under which
the supremal conditionally-controllable sublanguage co-
incides with the supremal controllable sublanguage.

The organization of this paper is as follows. Next two
sections recall supervisory control of DES and motivates
the coordination control approach. Section 4 presents
the condition on a specification to be exactly achieved
in the coordination control architecture and shows that
the supremal conditionally-controllable sublanguage al-
ways exists. Section 5 proposes a computational proce-
dure and conditions under which the result is optimal.
Section 6 summarizes concluding remarks including a
discussion on future extensions.

2 Control of discrete-event systems

In this section, the basic elements of supervisory control
theory needed in this paper are recalled, see [3,17].

A generator is a quintuple G = (Q,E, f, q0, Qm), where
Q is a finite set of states, E is a finite set of events,
f : Q×E → Q is a partial transition function, q0 ∈ Q is
the initial state, and Qm ⊆ Q is a set of marked states.
As usual, f is extended to f : Q×E∗ → Q. The language
generated by G is defined as the set L(G) = {s ∈ E∗ |
f(q0, s) ∈ Q}, and the marked language of G as the set
Lm(G) = {s ∈ E∗ | f(q0, s) ∈ Qm}.

For event setsE0 ⊆ E, a natural projection P : E∗ → E∗0
is a morphism defined by P (a) = ε, a ∈ E \ E0, and
P (a) = a, a ∈ E0. The inverse image P−1 : E∗0 → 2E

∗

of P is defined as P−1(a) = {s ∈ E∗ | P (s) = a}.
These definitions are naturally extended to languages.
Given event sets Ei, Ej , Ek, E`, we denote by P i+j

k∩` the
projection from Ei ∪Ej to Ek ∩E`. In addition, we use
the notation Ei+j = Ei∪Ej , and Ei,u = Eu∩Ei for the
set of uncontrollable events Eu ⊆ E.

A synchronous product of L1 ⊆ E∗1 and L2 ⊆ E∗2 is
defined as L1‖L2 = P−11 (L1) ∩ P−12 (L2) ⊆ E∗, where
Pi : E∗ → E∗i are natural projections, i = 1, 2. The syn-
chronous product is also defined for generators, see [3].
For generators G1 and G2, it is known that L(G1‖G2) =
L(G1)‖L(G2) and Lm(G1‖G2) = Lm(G1)‖Lm(G2).

A controlled generator is a structure (G,Ec,Γ), where G
is a generator, Ec ⊆ E is the set of controllable events,
Eu = E \ Ec is the set of uncontrollable events, and
Γ = {γ ⊆ E | Eu ⊆ γ} is the set of control patterns.
A supervisor for (G,Ec,Γ) is a map S : L(G) → Γ. A
closed-loop system associated with the controlled genera-
tor (G,Ec,Γ) and the supervisor S is defined as the min-
imal language L(S/G) ⊆ E∗ satisfying (i) ε ∈ L(S/G)
and (ii) if s ∈ L(S/G), a ∈ S(s), and sa ∈ L(G), then
sa ∈ L(S/G).

In the automata framework, where supervisors are rep-
resented by generators, the closed-loop system can be
recast as a synchronous product of the supervisor and
the plant, i.e., L(S/G) = L(S)‖L(G).

The prefix closure L of a language L is the set of all
prefixes of all its words; L is prefix-closed if L = L.

Definition 1 Let L = L ⊆ E∗ be a language and Eu ⊆
E be a set of uncontrollable events. A language K ⊆ L is
controllable with respect to L and Eu if KEu ∩ L ⊆ K.

Given a language K = K ⊆ E∗, the goal of supervisory
control is to find a supervisor S such that L(S/G) = K.
Such a supervisor exists if and only if K is controllable
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[14]. For uncontrollable languages, controllable sublan-
guages are considered. The notation sup C(K,L,Eu) de-
notes the supremal controllable sublanguage of K with
respect to L and Eu, which always exists and equals to
the union of all controllable sublanguages of K, see [3].

Distributed control synthesis of a distributed DES is
a procedure where control synthesis is carried out sep-
arately for each of the two or more local supervisors.
The global supervisor then formally consists of the syn-
chronous product of local supervisors, although it is not
computed in practice. In terms of behaviors, the optimal
global control synthesis is represented by the closed-loop
language sup C(K,L,Eu) = sup C(‖ni=1Ki, ‖ni=1Li, Eu).
For a rational global specification K, the supremal con-
trollable sublanguage from which the optimal (least re-
strictive) supervisor is built can be computed. Such a
global control synthesis consists in computing the global
plant, and then the control synthesis is carried out as
above. However, the computational complexity is for
most practical problems so high that other approaches
need to be developed.

In the decentralized control synthesis, the specification
K is replaced by Ki = K ∩ P−1i (Li) and the synthesis
is done as for local specifications or using the notion of
partial controllability [6]. Notice the difference with de-
centralized control of monolithic plants studied in [18],
where several control agents have different observations,
but the system has no modular structure consisting of
subsystems running in parallel. The purely decentralized
control synthesis is not always possible because the suf-
ficient conditions under which it can be used are quite
restrictive. Therefore, in [8], coordination control is pro-
posed as a trade-off between the purely decentralized
control synthesis and the global control synthesis.

3 Concepts

Coordination control for DES is inspired by the concept
of conditional independence of the theory of probability
and of stochastic processes. Recall from [8] that condi-
tional independence is roughly captured by the event set
condition, when every joint action of local subsystems
must be accompanied by a coordinator action.

In the coordination scheme, first a supervisor Sk for the
coordinator taking care of the part Pk(K) of the speci-
fication K is synthesized. Then, supervisors Si, i = 1, 2,
are synthesized so that the specifications Pi+k(K) are
met by the new plant languages Gi‖(Sk/Gk), i = 1, 2.
The concept of a reachable event set associated with a
generator G over E, denoted by Er(G) ⊆ E, is defined
so that e ∈ Er(G) if and only if there exist s1, s2 ∈ E∗
such that s1es2 ∈ L(G).

Definition 2 Consider generators G1, G2, Gk. We call
G1 and G2 conditionally independent given Gk if in the

global system there is no common transition of both G1

and G2 without the coordinator Gk being also involved,
i.e., Er(G1‖G2) ∩ Er(G1) ∩ Er(G2) ⊆ Er(Gk).

Representing languages by generators, we obtain the
concept of conditionally-independent languages. An im-
portant feature of conditionally-independent languages
is that the natural projection to Ek (the event set of
L(Gk)) distributes with the synchronous composition
(cf. proof of Lemma 10 below). Another important con-
cept is that of conditional decomposability.

Definition 3 A language K is conditionally decompos-
able with respect to event sets (E1+k, E2+k, Ek) if K =
P1+k(K)‖P2+k(K)‖Pk(K).

Note that as Pi+k(K) ⊆ (P i+k
k )−1Pk(K), i = 1, 2,

P1+k(K)‖P2+k(K)‖Pk(K) = P1+k(K)‖P2+k(K), and
K is conditionally decomposable if and only if there
exist languages M1 ⊆ E∗1+k, M2 ⊆ E∗2+k, and Mk ⊆ E∗k
such that K = M1‖M2‖Mk (or K = M1‖M2), cf. [7].
Moreover, if K = M1‖M2‖Mk, then P1+k(K) ⊆ M1,
P2+k(K) ⊆ M2, and Pk(K) ⊆ Mk. This means that
even though in general several languages Mi may exist,
i = 1, 2, k, the triple P1+k(K), P2+k(K), Pk(K) is the
smallest decomposition.

Let us mention that for a languageK ⊆ E∗, there always
exists an event set Ek with the corresponding projection
Pk : E∗ → E∗k such that K is conditionally decompos-
able with respect to (E1+k, E2+k, Ek). In the worst case,
Ek = E1 ∪ E2 is the whole global event set.

To give more intuition, for a conditionally-decomposable
language K and Ek ⊇ E1 ∩E2, the order of local events
from E1 \ Ek and E2 \ Ek in between two coordina-
tor events from Ek is irrelevant in the sense that if two
strings over the global event set differ only in the order
of local events, then either both belong to K or both do
not. This concept is called shuffle-closedness in [8].

4 Control synthesis: existence conditions

In this section, we propose our coordination control ap-
proach consisting of the union of a coordinator and its
supervisor and the distributed system as an alternative
to the well known modular control setting consisting of
local plants and local supervisors. Necessary and suffi-
cient conditions are provided on the global specification
for the existence of the three supervisors (the one for the
coordinator and the other two for local plants combined
with the coordinator) so that the specification is exactly
achieved. We consider the case of two local generators
because the extension to n local generators with a single
coordinator is straightforward.

Problem 4 Consider generators G1 and G2 over event
sets E1 and E2, respectively, such that the global system
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is given by the synchronous product G1‖G2. In addition
to this usual modular setting we have a coordinator gen-
erator Gk over the event set Ek ⊇ E1∩E2. It is assumed
that a prefix-closed specification K ⊆ L(G1‖G2) is given
as the behavior to be imposed on the plant. It should be
noted that Ek is chosen depending on K so that K be-
comes conditionally decomposable as defined in Section 3.
Moreover, it is shown that the coordinator may be cho-
sen so that L(G1‖G2‖Gk) = L(G1‖G2), namely as the
generator for Gk = Pk(G1‖G2) = Pk(G1)‖Pk(G2).

Assume now that the coordinator Gk makes G1 and G2

conditionally independent (cf. Definition 2) and that K
is conditionally decomposable with respect to event sets
(E1+k, E2+k, Ek). This means that the control task is in
fact divided into local subtasks and the coordinator sub-
task. The coordinator takes care of its part of the spec-
ification, namely Pk(K). Otherwise stated, Sk is such
that L(Sk/Gk) ⊆ Pk(K). Similarly, supervisors S1 and
S2 take care of their corresponding parts of the specifica-
tion, namely Pi+k(K), for i = 1, 2, i.e., Si is such that
L(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K), i = 1, 2. The problem
is to determine supervisors S1, S2, Sk for the respective
generators so that the closed-loop system with the coor-
dinator satisfies

L(S1/[G1‖(Sk/Gk)])‖L(S2/[G2‖(Sk/Gk)])

‖L(Sk/Gk) = K .
(*)

Note that (∗) implies that K = L(S1/[G1‖(Sk/Gk)]) ‖
L(S2/[G2‖(Sk/Gk)]) because the part Sk/Gk is already
included in both subsystems.

In this paper, we assume that K is prefix-closed because
we focus on controllability issues. An important role of
the coordinator to prevent blocking is not considered, a
suitable choice of the coordinator for blocking based on
abstraction has been discussed in [4].

The solution of Problem 4 requires a concept of con-
ditional controllability which will be proven to be the
characterization of the solution of that problem.

Definition 5 Consider the setting of Problem 4. A lan-
guage K ⊆ E∗ is said to be conditionally controllable for
generators (G1, G2, Gk) and locally uncontrollable event
sets (E1+k,u, E2+k,u, Ek,u) if

(i) Pk(K) ⊆ E∗k is controllable wrt L(Gk) and Ek,u,
(ii.a) P1+k(K) ⊆ (E1 ∪ Ek)∗ is controllable wrt

L(G1)‖Pk(K)‖P 2+k
k (L(G2)‖Pk(K)) and E1+k,u,

(ii.b) P2+k(K) ⊆ (E2 ∪ Ek)∗ is controllable wrt

L(G2)‖Pk(K)‖P 1+k
k (L(G1)‖Pk(K)) and E2+k,u.

Notice that P i+k
k (L(Gi)‖Pk(K)) = P i

k(L(Gi))‖Pk(K)
by results shown in [17].

The conditions of Definition 5 can be checked by classi-
cal algorithms with low complexities for verification of
controllability as is clear from the definition. The com-
plexity of checking conditional controllability is less than
that of controllability of the global system G1‖G2‖Gk.
This is because instead of checking controllability with
the global specification and the global system, we check
it on the corresponding projections, which are smaller
when they satisfy the observer property (Definition 8
below).

The following theorem presents the necessary and suffi-
cient condition on a specification to be exactly achieved
in the coordination control architecture.

Theorem 6 Consider the setting of Problem 4. Then,
there exist supervisors S1, S2, Sk such that

L(S1/[G1‖(Sk/Gk)]) ‖ L(S2/[G2‖(Sk/Gk)])

‖ L(Sk/Gk) = K
(1)

if and only if K is conditionally controllable for genera-
tors (G1, G2, Gk) and event sets (E1+k,u, E2+k,u, Ek,u).

PROOF. To simplify the notation, denote Li = L(Gi),
i = 1, 2, k, and L = L1‖L2‖Lk. By discussion below
Definition 3, P (L) = P1+k(L)‖P2+k(L)‖Pk(L).

To prove sufficiency, let K ⊆ L be conditionally con-
trollable. We prove (1). First, Pk(K) ⊆ Lk control-
lable with respect to Lk means that there exists a
supervisor Sk such that L(Sk/Gk) = Pk(K), cf. [13].
Next, K ⊆ L implies P1+k(K) ⊆ L1‖Lk‖P 2

k (L2), by
[17] (since Pk(L1‖L2) = Pk(L1)‖Pk(L2), Li ⊆ E∗i ,
whenever E1 ∩ E2 ⊆ Ek). This, with P1+k(K) ⊆
(P 1+k

k )−1Pk(K), Pk(K) ⊆ Lk, and P 2
k (L2)‖Pk(K) =

P 2+k
k (L2‖L(Sk/Gk)), implies P1+k(K) ⊆ L1‖Pk(K)‖
P 2+k
k (L2‖Pk(K)). By conditional controllability of K,

there exists a supervisor S1 such that P1+k(K) =

L(S1/[G1‖(Sk/Gk)‖P 2+k
k (G2‖(Sk/Gk))]), where for

a generator H and a projection P , P (H) denotes a
generator such that L(P (H)) = P (L(H)). Similarly,
there exists a supervisor S2 such that P2+k(K) =

L(S2/[G2‖(Sk/Gk)‖P 1+k
k (G1‖(Sk/Gk))]). Since L =

L‖Pk(L), we get L(Gi‖(Sk/Gk)‖P i+k
k (Gi‖(Sk/Gk))) =

L(Gi‖(Sk/Gk)). Notice that L(S1/[G1‖(Sk/Gk)])‖
L(S2/[G2‖(Sk/Gk)]) = P1+k(K)‖P2+k(K) = K be-
cause K is conditionally decomposable. This proves (1).

To prove necessity, projections Pk, P1+k, P2+k are ap-
plied to (1). First, note thatK = L(S1‖S2‖Sk)‖L, which
yields Pk(K) ⊆ L(Sk)‖Lk = L(Sk/Gk). On the other
hand, recall that L(Sk/Gk) ⊆ Pk(K) because Sk is
a supervisor that enforces the coordinator part of the
specification Pk(K). Hence, L(Sk/Gk) = Pk(K), which
means that Pk(K) is controllable with respect to L(Gk),
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i.e., (i) of Definition 5 is satisfied. Now, we prove (ii.a);
(ii.b) is a symmetric condition. As E1+k ∩ E2+k = Ek,
L(S2)‖L(G2‖(Sk/Gk)) = L(S2) ∩ L(G2‖(Sk/Gk)) be-
cause the components are over the same event set E2+k,
and P 2+k

1+k = P 2+k
k ,

P1+k(K) ⊆ L(S1‖G1‖(Sk/Gk)‖P 2+k
k (G2‖(Sk/Gk)))

⊆ L(S1)‖L(Sk)‖L1‖Lk

= L(S1/[G1‖(Sk/Gk)]) ⊆ P1+k(K) .

Then, G1‖(Sk/Gk)‖P 2+k
k (G2‖(Sk/Gk)) is taken as a

new plant, i.e., the language P1+k(K) is controllable

with respect to L(G1‖(Sk/Gk)‖P 2+k
k (G2‖(Sk/Gk))).

Thus, (ii.a) is satisfied. 2

The interest in Theorem 6 is in the computational sav-
ings in the computation of supervisors. The distributed
way of constructing supervisors S1, S2, Sk is less complex
than the construction of the supervisor for the global
systemG1‖G2‖Gk if the coordinator event setEk is such
that the projection Pk satisfies the observer property.
Naturally, conditional controllability seems to be a re-
strictive condition that need not be met by a given spec-
ification. However, if the specification is not conditional
controllable, conditional controllable sublanguages are
considered instead. It is shown in the next section that
the supremal conditionally-controllable sublanguage ex-
ists and can be computed under fairly weak conditions.
Moreover, if these conditions are not met, we can al-
ways add new events into Ek so that the conditions are
met and the supremal conditionally-controllable sublan-
guage can be computed.

Note that it is required that L(Sk/Gk) ⊆ Pk(K) and,
similarly, L(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K), i = 1, 2.
Otherwise stated, we are looking for necessary condi-
tions on global specifications for having the maximal
permissiveness of the language resulting by the applica-
tion of the control scheme only in the (reasonable) case
where safety can be achieved by the supervisors S1,
S2, Sk. We have proven that in such a case conditional
controllability is necessary for the optimality (maximal
permitting). It is clear from the proof that for sufficiency
we need not assume the inclusions above (cf. [8]).

In practice, it is interesting to know when safety holds
when applying the control scheme combining a coordi-
nator with local supervisors. Similarly as in the mono-
lithic case, it may happen that the maximal acceptable
behavior given by the specification K is not achievable
using the coordination control scheme. By Theorem 6,
such a situation occurs whenever K is not conditionally
controllable. A natural question is to find the best ap-
proximation from below, i.e., a supremal conditionally-
controllable sublanguage.

Theorem 7 A union of conditionally-controllable sub-
languages of a language is conditionally controllable.

PROOF. Let I be an index set, and let Ki, i ∈ I,
be sublanguages of a language K ⊆ L(G1‖G2‖Gk) con-
ditionally controllable for generators (G1, G2, Gk) and
event sets (E1+k,u, E2+k,u, Ek,u) . We prove that ∪i∈IKi

is conditionally controllable.

First, note that Pk(∪i∈IKi) is controllable with re-
spect to L(Gk) because Pk(∪i∈IKi)Ek,u ∩ L(Gk) =
∪i∈I(Pk(Ki)Ek,u∩L(Gk)) ⊆ ∪i∈IPk(Ki) = Pk(∪i∈IKi)
where the inclusion is by controllability of Pk(Ki) with
respect to L(Gk), i ∈ I.

To prove the other property, note first that, by [17],

P 2+k
k (L2‖Pk(∪i∈IKi)) = P 2

k (L2)‖Pk(∪i∈IKi), where
Li = L(Gi), i = 1, 2, k. Thus, we need to show
that P1+k(∪i∈IKi)E1+k,u ∩ L1‖Pk(∪i∈IKi)‖P 2

k (L2) ⊆
P1+k(∪i∈IKi). However,

P1+k(∪i∈IKi)E1+k,u ∩ L1‖Pk(∪i∈IKi)‖P 2
k (L2)

= ∪i∈I (P1+k(Ki)E1+k,u) ∩ ∪i∈I(L1‖Pk(Ki)‖P 2
k (L2))

= ∪i∈I ∪j∈I(P1+k(Ki)E1+k,u ∩ L1‖Pk(Kj)‖P 2
k (L2)) .

Assume there are two different indexes i, j ∈ I such that
P1+k(Ki)E1+k,u∩L1‖Pk(Kj)‖P 2

k (L2) 6⊆ P1+k(∪i∈IKi).
Then, there exist x ∈ P1+k(Ki) and u ∈ E1+k,u such
that xu ∈ L1‖Pk(Kj)‖P 2

k (L2) and xu /∈ P1+k (∪i∈IKi).

Thus, Pk(x) ∈ P 1+k
k P1+k(Ki) = Pk(Ki), Pk(xu) ∈

Pk(Kj), and Pk(xu) /∈ Pk(Ki); otherwise, Pk(xu) ∈
Pk(Ki) implies xu ∈ L1‖Pk(Ki)‖P 2

k (L2), and control-
lability of P1+k(Ki) with respect to L1‖Pk(Ki)‖P 2

k (L2)
implies xu ∈ P1+k(Ki) ⊆ P1+k (∪i∈IKi), which is not
true. If u /∈ Ek,u, then Pk(xu) = Pk(x) ∈ Pk(Ki), which
does not hold. Thus, u ∈ Ek,u. AsPk(Ki)∪Pk(Kj) ⊆ Lk,
we get that Pk(xu) = Pk(x)u ∈ Lk. However, control-
lability of Pk(Ki) with respect to Lk and Ek,u implies
that Pk(x)u = Pk(xu) is in Pk(Ki); a contradiction. 2

5 Supremal sublanguages

We present a procedure for computation of the supremal
conditionally-controllable sublanguage of a language K.
Given generatorsG1,G2,Gk, we denote Li = L(Gi), i =
1, 2, k. Let sup cC(K,L, (E1+k,u, E2+k,u, Ek,u)) denote
the supremal conditionally-controllable sublanguage of
K with respect to L = L1‖L2‖Lk and uncontrollable
event sets (E1+k,u, E2+k,u, Ek,u). The following concepts
(see [4,16]) are required in the next result. These con-
cepts are adopted from hierarchical supervisory control
[16]. It should not be surprising that they play a role in
our study because coordination control is very much re-
lated to hierarchical control; the coordinator level can
be seen as a high level of hierarchical control.
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Definition 8 A natural projection P : E∗ → E∗k , where
Ek ⊆ E, is an L-observer for L ⊆ E∗ if for all t ∈ P (L)
and s ∈ L, if P (s) is a prefix of t, then there exists u ∈ E∗
such that su ∈ L and P (su) = t.

Definition 9 A natural projection P : E∗ → E∗k , where
Ek ⊆ E, is output control consistent (OCC) for L ⊆ E∗
if for every s ∈ L of the form s = σ1σ2 . . . σ` or s =
s′σ0σ1 . . . σ`, ` ≥ 1, where σ0, σ` ∈ Ek and σi ∈ E \ Ek,
for i = 1, 2, . . . , ` − 1, if σ` ∈ Eu, then σi ∈ Eu, for all
i = 1, 2, . . . , `− 1.

If L is represented by a generator with n states, then the
time and space complexities to verify whether P is an
L-observer are O(n3) and O(n), respectively, see [4], or
both complexities are O(n2) as shown in [12]. The time
and space complexities of the verification whether P is
OCC for L are O(n2) and O(n), respectively, see [4].

Lemma 10 Let E1, E2, and Ek be event sets such that
E1 ∩ E2 ⊆ Ek. Let L1 ⊆ E∗1 and L2 ⊆ E∗2 , and let
Pk : (E1 ∪ E2)∗ → E∗k be a natural projection. Then,

Pk(L1‖L2) = P 1+k
k (P 1+k

1 )−1(L1)∩P 2+k
k (P 2+k

2 )−1(L2).

PROOF. It follows from the fact that Pk(L1‖L2) =
P 1
1∩k(L1)‖P 2

2∩k(L2) shown in [17], definition of the syn-
chronous product, and [4, Proposition 4.2(6)] showing

that (P k
i∩k)−1P i

i∩k = P i+k
k (P i+k

i )−1, for i = 1, 2. 2

The next theorem gives a computational procedure for
the construction of supremal conditionally-controllable
sublanguages.

Theorem 11 Let K ⊆ L = L1‖L2‖Lk be two prefix-
closed languages over an event set E = E1 ∪ E2 ∪ Ek,
where Li ⊆ E∗i , i = 1, 2, k, assume that K is condition-
ally decomposable, and define the languages

sup Ck = sup C(Pk(K), Lk, Ek,u) ,

sup C1+k = sup C(P1+k(K), L1‖sup Ck, E1+k,u) ,

sup C2+k = sup C(P2+k(K), L2‖sup Ck, E2+k,u) .

Let the projection P i+k
k be an (P i+k

i )−1(Li)-observer and

OCC for (P i+k
i )−1(Li), for i = 1, 2. Then,

sup Ck‖sup C1+k‖sup C2+k

= sup cC(K,L, (E1+k,u, E2+k,u, Ek,u)) .

PROOF. Define M := sup Ck‖sup C1+k‖sup C2+k
and sup cC := sup cC(K,L, (E1+k,u, E2+k,u, Ek,u)). To
prove M ⊆ sup cC, we show that (1) M ⊆ K and (2)
M is conditionally controllable with respect to L and
(E1+k,u, E2+k,u, Ek,u).

1) First, notice that M = sup Ck‖sup C1+k‖sup C2+k ⊆
Pk(K)‖P1+k(K)‖P2+k(K) = K becauseK is condition-
ally decomposable.

2) To prove that M is conditionally controllable with
respect to L and (E1+k,u, E2+k,u, Ek,u), we show the
properties of Definition 5.

(i) To prove that Pk(M)Ek,u ∩ Lk ⊆ Pk(M) note that

Pk(M) = sup Ck ∩ P 1+k
k (sup C1+k) ∩ P 2+k

k (sup C2+k),
which follows from [17] by Pk(L1‖L2) = Pk(L1)‖Pk(L2)
whenever E1 ∩ E2 ⊆ Ek, and by definition of the syn-
chronous product. Let x ∈ Pk(M), then there exists
w ∈ M such that Pk(w) = x. Assume that a ∈ Ek,u

is such that xa ∈ Lk. We show that xa ∈ Pk(M). As
x ∈ Pk(M) ⊆ sup Ck, it follows by controllability of
sup Ck with respect to Lk that

xa ∈ sup Ck . (2)

Thus, it remains to show that

xa ∈ P i+k
k (sup Ci+k) , (3)

for i = 1, 2. To this end, note first that by the properties
of natural projections we have

P1+k(w) ∈ P1+k(M) ⊆ sup C1+k , (4)

and a ∈ Ek,u ⊆ E1+k,u. By definition of the synchronous
product we obtain

L1‖sup Ck = (P 1+k
1 )−1(L1) ∩ (P 1+k

k )−1(sup Ck) . (5)

Furthermore, P 1+k
k (P1+k(w)a) = xa ∈ sup Ck implies

that P1+k(w)a ∈ (P 1+k
k )−1(sup Ck). This and

sup Ck ⊆ Pk(K)‖Pk(L1‖L2)

= Pk(K) ∩ P 1+k
k (P 1+k

1 )−1(L1) (6)

∩ P 2+k
k (P 2+k

2 )−1(L2) , by Lemma 10 ,

imply P 1+k
k (P1+k(w)a) ∈ P 1+k

k (P 1+k
1 )−1(L1). By (4)

and definition of sup C1+k,P1+k(w) ∈ (P 1+k
1 )−1(L1). As

P 1+k
k (P1+k(w)) is a prefix of P 1+k

k (P1+k(w)a), and P 1+k
k

is an (P 1+k
1 )−1(L1)-observer, there exists u ∈ E∗1+k such

that

P1+k(w)ua ∈ (P 1+k
1 )−1(L1) (7)

and P 1+k
k (P1+k(w)ua) = P 1+k

k (P1+k(w)a), which
means that u ∈ (E1 \ Ek)∗. As L1 is prefix-closed, so

is (P 1+k
1 )−1(L1). Thus, P1+k(w)u ∈ (P 1+k

k )−1(L1).

Notice that P 1+k
k (P1+k(w)u) = x ∈ sup Ck, i.e.,

P1+k(w)u ∈ (P 1+k
k )−1(sup Ck). By (5), P1+k(w)u ∈
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L1‖sup Ck. As P 1+k
k is OCC for (P 1+k

1 )−1(L1) and
P1+k(w)ua satisfies a ∈ Ek, u ∈ (E1 \ Ek)∗, and
a ∈ Eu, it follows that u ∈ E∗u. As P1+k(w) ∈ sup C1+k,
sup C1+k is controllable with respect to L1‖sup Ck
and E1+k,u, and P1+k(w)u ∈ L1‖sup Ck, it holds
that P1+k(w)u ∈ sup C1+k, see [1]. Recall that

P1+k(w)ua ∈ (P 1+k
1 )−1(L1) is satisfied by (7). As it

also holds that P 1+k
k (P1+k(w)ua) = xa ∈ sup Ck by

(2), we obtain by (5) that P1+k(w)ua ∈ L1‖sup Ck,
which implies, by controllability of sup C1+k with re-
spect to L1‖sup Ck, that P1+k(w)ua ∈ sup C1+k, i.e.,

xa = P 1+k
k (P1+k(w)ua) ∈ P 1+k

k (sup C1+k). Analo-

gously, we can prove that xa ∈ P 2+k
k (sup C2+k), which

proves (3). Thus, xa ∈ Pk(M), which was to be shown.

(ii.a) P1+k(M)E1+k,u∩L1‖Pk(M)‖P 2+k
k (L2‖Pk(M)) ⊆

P1+k(M). By [4] (showing that for L1 ⊆ E∗1 , L2 ⊆ E∗2 ,
with Ek = E1 ∩ E2, and natural projections Pi : (E1 ∪
E2)∗ → E∗i , P j

k : E∗j → E∗k , i = 1, 2, k, j = 1, 2, {i, j} =

{1, 2}, Pi(L1‖L2) = Li ∩ (P i
k)−1P j

k (Lj)) and definition
of the synchronous product,

P1+k(M) = (P 1+k
k )−1(sup Ck) ∩ sup C1+k

∩ (P 1+k
k )−1P 2+k

k (sup C2+k) .

Assume that x ∈ P1+k(M), which is if and only if there
exists w ∈ M such that P1+k(w) = x. Let there be
a ∈ E1+k,u such that

xa ∈ L1‖Pk(M)‖P 2+k
k (L2‖Pk(M)) . (8)

We show that xa ∈ P1+k(M). As Pk(M) ⊆ sup Ck, it

holds that L1‖Pk(M)‖P 2+k
k (L2‖Pk(M)) ⊆ L1‖sup Ck

‖P 2+k
k (L2‖sup Ck). Then, by controllability of sup C1+k

with respect to L1‖sup Ck, and by the inclusion

L1‖sup Ck‖P 2+k
k (L2‖sup Ck) ⊆ L1‖sup Ck, we obtain

that xa ∈ sup C1+k. Moreover, it holds that Pk(w) ∈
Pk(M) ⊆ sup Ck and P2+k(w) ∈ P2+k(M) ⊆ sup C2+k
(see above).

(A) If a ∈ E1 \ Ek, then P 1+k
k (xa) = Pk(wa) =

Pk(w) implies P 1+k
k (xa) ∈ sup Ck, and P 1+k

k (xa) =

P 2+k
k P2+k(wa) = P 2+k

k P2+k(w) implies P 1+k
k (xa) ∈

P 2+k
k (sup C2+k). Hence, xa ∈ P1+k(M).

(B) If a ∈ E1 ∩ Ek, then xa ∈ L1‖Pk(M) im-

plies that P 1+k
k (xa) ∈ Pk(M) ⊆ sup Ck. Therefore,

xa ∈ (P 1+k
k )−1(sup Ck) is satisfied. It remains to show

xa ∈ (P 1+k
k )−1P 2+k

k (sup C2+k) . (9)

However, by (8) and Lemma 10 it follows that

P 1+k
k (xa) ∈ P 2+k

k (P 2+k
2 )−1(L2) ∩ Pk(M) . (10)

In addition, it holds, by definition of sup C2+k, that

P2+k(w) ∈ (P 2+k
2 )−1(L2). As P 2+k

k (P2+k(w)) is a pre-

fix of P 2+k
k (P2+k(w)a), P 2+k

k (P2+k(w)a) = P 1+k
k (x)a ∈

Pk(M) ⊆ sup Ck ⊆ P 2+k
k (P 2+k

2 )−1(L2), and P 2+k
k is an

(P 2+k
2 )−1(L2)-observer, there exists u ∈ E∗2+k such that

P2+k(w)ua ∈ (P 2+k
2 )−1(L2) (11)

where P 2+k
k (P2+k(w)ua) = P 2+k

k (P2+k(w)a), i.e., u ∈
(E2 \ Ek)∗. As L2 is prefix-closed, so is (P 1+k

2 )−1(L2).

Therefore, P2+k(w)u ∈ (P 2+k
2 )−1(L2) is satisfied. Fur-

thermore, P 2+k
k (P2+k(w)u) = P 1+k

k (x) ∈ Pk(M) ⊆
sup Ck means that P2+k(w)u ∈ (P 2+k

k )−1(sup Ck).
Together and with definition of the synchronous
product, P2+k(w)u ∈ L2‖sup Ck. As P 2+k

k is OCC

for (P 2+k
2 )−1(L2), and P2+k(w)ua satisfies a ∈ Ek,

u ∈ (E2 \ Ek)∗, and a ∈ Eu, it holds that u ∈
E∗u. As P2+k(w) ∈ sup C2+k, sup C2+k is control-
lable with respect to L2‖sup Ck, and P2+k(w)u ∈
L2‖sup Ck is satisfied, P2+k(w)u ∈ sup C2+k. Finally,

as P 2+k
k (P2+k(w)ua) = P 1+k

k (x)a ∈ Pk(M) ⊆ sup Ck,
by (10), it follows by this, (11), and definition of the
synchronous product that P2+k(w)ua ∈ L2‖sup Ck.
By this and controllability of sup C2+k with re-
spect to L2‖sup Ck, P2+k(w)ua ∈ sup C2+k, i.e.,

P 1+k
k (x)a = P 2+k

k (P2+k(w)ua) ∈ P 2+k
k (sup C2+k),

which proves (9). Thus, xa ∈ P1+k(M).

As condition (ii.b) of Definition 5 is analogous, we have
shown that M is conditionally controllable with respect
to L = L1‖L2‖Lk and (E1+k,u, E2+k,u, Ek,u), i.e., M ⊆
sup cC.

To prove the opposite inclusion, sup cC ⊆ M , it
is sufficient to show that (1) Pk(sup cC) ⊆ sup Ck
and (2) Pi+k(sup cC) ⊆ sup Ci+k, for i = 1, 2. To
prove this note that Pk(sup cC) ⊆ Pk(K) ⊆ Lk.
As Pk(sup cC) is controllable with respect to Lk

and Ek,u, Pk(sup cC) ⊆ sup Ck is satisfied. Further-
more, P1+k(sup cC) ⊆ P1+k(K) ⊆ L1‖Lk. More-
over, P1+k(sup cC) is controllable with respect to

L1‖Pk(sup cC)‖P 2+k
k (L2‖Pk(sup cC)) and E1+k,u.

By (6), Pk(sup cC) ⊆ sup Ck ⊆ P 2+k
k (P 2+k

2 )−1(L2).
The following holds.

L1‖Pk(sup cC)‖P 2+k
k (L2‖Pk(sup cC))

= L1‖Pk(sup cC)‖Pk(sup cC) ∩ P 2+k
k (P 2+k

2 )−1(L2)

= L1‖Pk(sup cC) .

As Pk(sup cC) is controllable with respect to Lk, it
is also controllable with respect to sup Ck ⊆ Lk.
As P1+k(sup cC) is controllable with respect to
L1‖Pk(sup cC), and L1‖Pk(sup cC) is controllable with
respect to L1‖sup Ck by [4, Proposition 4.6] (as all the
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languages under consideration are prefix-closed), it fol-
lows by Lemma 12 (see below) that P1+k(sup cC) is
controllable with respect to L1‖sup Ck, which implies
that P1+k(sup cC) ⊆ sup C1+k. The case of property
(ii.b) is proven analogously. Hence, we have proven that
sup cC ⊆M and the proof is complete. 2

Lemma 12 (Transitivity of controllability) Let
K ⊆ L ⊆ M be languages over an event set E such
that K is controllable with respect to L and Eu, and L
is controllable with respect to M and Eu. Then, K is
controllable with respect to M and Eu.

PROOF. From KEu ∩ L ⊆ K and LEu ∩ M ⊆ L,
we show that KEu ∩ M ⊆ K. Assume that s ∈ K,
a ∈ Eu, and sa ∈ M . As K ⊆ L, s ∈ L, which implies
that sa ∈ L by controllability of L with respect to M .
However, sa ∈ L implies sa ∈ K, by controllability of K
with respect to L. 2

Another consequence is of interest. Namely, under the
conditions of Theorem 11, sup cC is conditionally decom-
posable (cf. the discussion below Definition 3). Moreover,
sup cC is controllable with respect to the global plant.

Corollary 13 In the setting of Theorem 11, the lan-
guage sup cC := sup cC(K,L, (E1+k,u, E2+k,u, Ek,u)) is
controllable with respect to L and Eu.

PROOF. It is sufficient to show that sup cC is con-
trollable with respect to L = L1‖L2‖Lk. There ex-
ist sup Ck ⊆ E∗k , sup C1+k ⊆ E∗1+k, and sup C2+k ⊆
E∗2+k as defined in Theorem 11 so that sup cC =
sup Ck‖sup C1+k‖sup C2+k. In addition, sup Ck is con-
trollable with respect to Lk, sup C1+k is controllable
with respect to L1‖sup Ck, sup C2+k is controllable
with respect to L2‖sup Ck. By [4, Proposition 4.6] (as
the languages under consideration are prefix-closed)
sup Ck‖sup C1+k‖sup C2+k is controllable with re-
spect to Lk‖(L1‖sup Ck)‖(L2‖sup Ck) = L‖sup Ck.
Analogously, L‖sup Ck is controllable with respect to
L‖Lk = L. By Lemma 12, sup cC is controllable with
respect to L. 2

We show that if some additional conditions are satis-
fied, the resulting supremal conditionally-controllable
sublanguage constructed in Theorem 11 is optimal. The
conditions of Theorem 11 imply that Pk is OCC for L.

Lemma 14 Let Li ⊆ E∗i , i = 1, 2, be two (prefix-closed)
languages, and let Pi : (E1 ∪ E2)∗ → E∗i , i = 1, 2, k and
Ek ⊆ E1 ∪E2, be natural projections. Let Eu ⊆ E1 ∪E2

be the set of uncontrollable events. If E1 ∩ E2 ⊆ Ek and
P i+k
k is OCC for (P i+k

i )−1(Li), i = 1, 2, then Pk is OCC
for L = L1‖L2‖Lk.

PROOF. For s ∈ L of the form s = s′σ0σ1 . . . σk−1σk,
for some k ≥ 1, assume that σ0, σk ∈ Ek, σi ∈ E \ Ek,
for i = 1, 2, . . . , k − 1, and σk ∈ Eu. We show that
σi ∈ Eu, for i = 1, 2, . . . , k − 1. However, Pi+k(s) =

Pi+k(s′)σ0Pi+k(σ1 . . . σk−1)σk ∈ (P i+k
i )−1(Li) and the

OCC property imply that Pi+k(σ1 . . . σk−1) ∈ E∗u, for
i = 1, 2. Let σ ∈ {σ1, σ2, . . . , σk−1}. Then, σ ∈ (E1 ∪
E2)\Ek. Without loss of generality, assume that σ ∈ E1.
Then, P1+k(σ) = σ ∈ Eu and P2+k(σ) = ε ∈ E∗u. Thus,
{σ1, σ2, . . . , σk−1} ⊆ Eu. 2

Theorem 15 Consider the setting of Theorem 11.
If, in addition, Lk ⊆ Pk(L) and Pi+k is OCC for
P−1i+k(Li‖Lk), for i = 1, 2, then sup C(K,L,Eu) =
sup cC(K,L, (E1+k,u, E2+k,u, Ek,u)).

PROOF. One inclusion is shown in Corollary 13. We
prove the other inclusion. By the assumptions P i+k

k is

the (P i+k
i )−1(Li)-observer, i = 1, 2, and P k

k is an Lk-
observer, as the observer property holds for identities.
Proposition 4.5 in [4] applied to P 1+k

k and P 2+k
k implies

that Pk is an (P 1+k
1 )−1(L1)‖(P 2+k

2 )−1(L2) = L1‖L2-
observer. Another application of this result to Pk and
P k
k implies that Pk is an (L1‖L2)‖Lk = L-observer.

By Lemma 14, Pk is OCC for L. Denote sup C :=
sup C(K,L,Eu). We prove that Pk(sup C) is controllable
with respect to Lk. Assume t ∈ Pk(sup C), a ∈ Ek,u,
and ta ∈ Lk ⊆ Pk(L). Then, there is s ∈ sup C such
that Pk(s) = t. As Pk is the L-observer, there is v ∈ E∗
such that sv ∈ L and Pk(sv) = Pk(s)Pk(v) = ta, i.e.,
v = ua, for some u ∈ (E \Ek)∗. By the OCC property of
Pk, u ∈ E∗u. By controllability of sup C with respect to
L, sua ∈ sup C, i.e., Pk(sua) = ta ∈ Pk(sup C). Thus,
(i) of Definition 5 holds.

Note that the identities P i+k
i+k are the (P i+k

i )−1(Li)-ob-

servers, i = 1, 2, that P i+k
j+k = P i+k

k is the (P i+k
i )−1(Li)-

observer, {i, j} = {1, 2}, and that P k
k = P k

i+k is the Lk-
observer, i = 1, 2. Similarly as above, Proposition 4.5

in [4] applied to projections P i+k
i+k , P j+k

i+k , j 6= i, and

P k
i+k implies that Pi+k are L-observers, for i = 1, 2.

To prove (ii) of Definition 5, assume that, for some
1 ≤ i ≤ 2, t ∈ Pi+k(sup C), a ∈ Ei+k,u, and ta ∈
Li‖Pk(sup C)‖P j+k

k (Lj‖Pk(sup C)), for j 6= i. Then,
there exists s ∈ sup C such that Pi+k(s) = t. As Pi+k is

the L-observer, and Li‖Pk(sup C)‖P j+k
k (Lj‖Pk(sup C))

is a subset of Pi+k(L) = Li‖Lk‖P j+k
k (Lj‖Lk), j 6= i,

because Pk(sup C) ⊆ Pk(K) ⊆ Pk(L) ⊆ Lk, there
exists v ∈ E∗ such that sv ∈ L and Pi+k(sv) =
Pi+k(s)Pi+k(v) = ta, i.e., v = ua, for some u ∈
(E \ Ei+k)∗. Since Pi+k is OCC for P−1i+k(Li‖Lk) and

sua ∈ L ⊆ P−1i+k(Li‖Lk), we obtain that u ∈ E∗u.
Then, controllability of sup C with respect to L
and Eu implies that sua ∈ sup C. This means that
Pi+k(sua) = ta ∈ Pi+k(sup C). 2
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Fig. 1. Generators G1, G2, and the coordinator.

It is sufficient to assume that Pi+k is OCC for L, which is
less restrictive than the used assumption. However, it is
an open problem how to verify this assumption without
computing the whole plant. On the other hand, if Pi+k

is OCC for P−1i (Li), i = 1, 2, then the theorem holds as
well. In addition, the assumptions do not imply that all
controllable events are contained in the event set of the
coordinator as shown in the following examples.

The complexity of the computation of the supremal con-
trollable sublanguage of a language K with respect to L
with n and m states in their minimal generator repre-
sentations, respectively, is O(mn) for prefix-closed lan-
guages [10]. Denote the number of states of minimal gen-
erators for L(G1), L(G2), L(Gk) by m1, m2, mk, respec-
tively. As the languageK is conditionally decomposable,
K = P1+k(K)‖P2+k(K)‖Pk(K), we denote the number
of states of minimal generators for P1+k(K), P2+k(K),
Pk(K) by n1, n2, nk, respectively. Then, in the worst
case, m = O(m1m2mk) and n = O(n1n2nk). The com-
putational complexity of sup Ck, sup C1+k, sup C2+k re-
sults in the formulaO(mknk+m1n1mknk+m2n2mknk),
which is better than O(mn) = O(m1m2mkn1n2nk) in
the monolithic case.

Recall that both the output control consistency and the
observer property, standard notions used in hierarchical
supervisory control, can be checked in polynomial time,
cf. [17]. However, if Ek does not satisfy these proper-
ties it does not mean that we cannot compute a con-
trollable sublanguage without building the global plant.
It suffices to extend Ek by adding new events so that
Pk satisfies the observer and OCC properties required
in Theorem 11 to compute the supremal conditionally-
controllable sublanguage. Let us recall from [5] that find-
ing a minimal extension of an event set that satisfies the
observer property is NP-hard, but there is a polynomial-
time algorithm that finds a satisfactory extension.

Example 16 LetG = G1‖G2 be a system over the event
set E = {a1, a2, c, u, u1, u2}, where G1 and G2 are de-
fined in Fig. 1, Eu = {u, u1, u2}. The specification K is
defined in Fig. 2. The coordinator event setEk has to con-
tain shared events c and u, and to make K conditionally
decomposable, at least one of a1, a2 has to be in Ek. The
projections must satisfy observer and OCC properties. If
a1 or a2 is not in Ek, P i+k

k is not OCC for (P i+k
i )−1(Li).

Thus,Ek = {a1, a2, c, u}. The coordinator is now defined
as Gk = Pk(G1)‖Pk(G2), see Fig. 1. Then, Pk(K) =

Fig. 2. Generator for the specification K.

Fig. 3. Generators Gi, i = 1, 2, and the coordinator Gk.

Fig. 4. The specification K.

{a2a1, c, a1a2u}, P1+k(K) = {a1a2u, a2a1, cu1},
and P2+k(K) = {a1a2u, a2a1, cu2}. As the assump-
tions of Theorem 11 are satisfied, we can compute
sup Ck = {a2, c, a1a2u}, sup C1+k = {a1a2u, a2, cu1},
sup C2+k = {a1a2u, a2, cu2}, whose synchronous prod-
uct results in the supremal conditionally-controllable
sublanguage {a1a2u, a2, cu1u2, cu2u1} of K that coin-
cides with the supremal controllable sublanguage of K.
Note that the subsystems are not mutually controllable,
thus the approach of [9] cannot be used.

Example 17 (Concurrent access to a database)
Database transactions are typical examples of DES
that should be controlled to avoid incorrect behaviors.
Our model of a transaction to the database is a se-
quence of request, access (read), and exit (write) oper-
ations. Often, several users access the database, which
can lead to inconsistencies when executed concurrently
because not all interleaving of operations gives a cor-
rect behavior. Consider two users and events ri, ai, ei,
i = 1, 2. All possible schedules are given by the lan-
guage of the plant G = G1‖G2 over the event set
E = {r1, r2, a1, a2, e1, e2}, where G1 and G2 are de-
fined as in Fig. 3, and Ec = {a1, a2, e1, e2}. The spec-
ification K, depicted in Fig. 4, describes the correct
behavior consisting in finishing the transaction in the
write stage before another transaction can proceed to
the write phase. For Ek = {a1, a2} and the coordinator
Gk = Pk(G1)‖Pk(G2), the assumptions of Theorem 11
are satisfied. Thus, we compute sup Ck, sup C1+k,
sup C2+k, see Fig. 5. The solution is optimal: the supre-
mal conditionally-controllable sublanguage of K coin-
cides with the supremal controllable sublanguage of K.
Note that K 6⊆ L(G), which is no problem because the
computation of supremal sublanguages of K with respect
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Fig. 5. supCi+k, i = 1, 2, where j = 1, 2, j 6= i; supCk = Gk.

to L(G) results in sublanguages of K ∩L(G). The benefit
of this representation is a space saving. Moreover, ex-
tending the example to three or more subsystems means
to add new events ai and ei into Ec, ai into Ek, for
i ≥ 3, and modify the specification in a natural way. The
required space results in a square root of the number of
states needed by the global plant.

6 Conclusion and discussion

We have considered supervisory control of distributed
DES with global specifications. A coordination control
framework has been adopted where, unlike the purely
decentralized setting, a global layer with a coordina-
tor acting on a subset of the global event set has been
added. Two main results have been presented—a nec-
essary and sufficient condition on a specification to be
exactly achieved, and the synthesis of the supremal
conditionally-controllable sublanguage and its relation
to the supremal controllable sublanguage. The approach
is general, any distributed plant and any specification
can be treated within this control architecture, which
is a considerable difference with earlier approaches to
control of distributed DES with global specifications.

As blocking is not considered, it is sufficient to choose a
suitable coordinator event set and the coordinator itself
need not impose any restriction on the behavior because
its supervisor takes care of the required restriction. We
will address the blocking issue in the future. In partic-
ular, the synthesis of coordinators for nonblocking and
an extension to partially observed distributed plants.

The approach can be extended to more subsystems
with one central coordinator, whose event set con-
tains all shared events (which is a common assump-
tion, see [2,15]). Specifically, Condition (ii) of Defini-
tion 5 results in Pi+k(K) is controllable with respect
to Pi+k(‖ni=1L(Gi)‖Pk(K)) = ‖ni=1Pi+k(L(Gi)‖Pk(K))
and Ei+k,u. In the future work, multi-level coordination
architectures depending on coupling local components
will be studied.

Finally, note that it is clear that there have to be proce-
dures and algorithms for the exceptional circumstances
like breakdown of communication and other failures.
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