
On Properties and State Complexity of
Deterministic State-Partition Automata

Galina Jirásková 1,? and Tomáš Masopust 2,??

1 Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice, Slovak Republic

jiraskov@saske.sk
2 Institute of Mathematics, Academy of Sciences of the Czech Republic

Žižkova 22, 616 62 Brno, Czech Republic
masopust@math.cas.cz

Abstract. A deterministic automaton accepting a regular language L is
a state-partition automaton with respect to a projection P if the state set
of the deterministic automaton accepting the projected language P (L),
obtained by the standard subset construction, forms a partition of the
state set of the automaton. In this paper, we study fundamental proper-
ties of state-partition automata. We provide a construction of the mini-
mal state-partition automaton for a regular language and a projection,
discuss closure properties of state-partition automata under the standard
constructions of deterministic automata for regular operations, and show
that almost all of them fail to preserve the property of being a state-
partition automaton. Finally, we define the notion of a state-partition
complexity, and prove the tight bound on the state-partition complexity
of regular languages represented by incomplete deterministic automata.

Key words: Regular languages, finite automata, descriptional complexity, pro-
jections, state-partition automata.

1 Introduction

A deterministic finite automaton G accepting a regular language L is a state-
partition automaton with respect to a projection P if the state set of the de-
terministic automaton accepting the projected language P (L), obtained by the
standard subset construction [5, 23], forms a partition of the state set of the
automaton G. This means that the projection of a string uniquely specifies the
state of the projected automaton. Therefore, all projected strings of a language
with the same observation, that is, with the same projections, lead to the same
state of the projected automaton. This property immediately implies that the
size of the minimal state-partition automaton is not smaller than the size of the
minimal deterministic automaton accepting the projected language.

? Research supported by the Slovak Research and Development Agency under contract
APVV-0035-10 “Algorithms, Automata, and Discrete Data Structures”.

?? Research supported by the GAČR grant no. P202/11/P028 and by RVO: 67985840.

2 G. Jirásková, T. Masopust

From the practical point of view, state-partition automata are of interest
in engineering and computer science, especially in applications where the user,
supervisor, or controller has only a partial observation of the whole behavior
of a system, which is modeled by a projection. From the theoretical point of
view, state-partition automata have found applications as a proof formalism for
systems with partial observations. Namely, they have been successfully used to
simplify constructions and proofs, and are useful in applications of natural pro-
jections to obtain or describe an abstraction of a system. Note that projections
are sometimes generalized to so-called causal reporter maps, see [21, 24]. We refer
the reader to [3, 4, 11, 12] for applications of state-partition automata in super-
visory control of discrete-event systems. Note that state-partition automata are
related to the Schützenberger covering. More specifically, the construction of a
state-partition automaton is close to the Schützenberger construct [15].

A system represented by a state-partition automaton with respect to a pro-
jection that describes an abstraction or a partial observation has a projected
automaton that is not larger than the original automaton. This is the most im-
portant property from the application point of view. Notice that, up to now,
there is only one well-known condition ensuring that a projected automaton is
smaller than the original automaton, an observer property, cf. [20]. The study of
state-partition automata is thus a further step to the understanding and char-
acterization of the class of automata useful for practical applications in, e.g.,
coordination or hierarchical supervisory control of discrete-event systems [1, 9,
10, 17, 18].

In this paper, we discuss fundamental properties of state-partition automata.
In Section 3, we recall the known result proving that every regular language has
a state-partition automaton with respect to a given projection. A procedure to
construct this automaton is also known, see [3]. We repeat the construction here
and use it to obtain the minimal state-partition automaton for a given language
and a projection. The last result of this section describes a regular language and
two projections with respect to which the language has no state-partition au-
tomaton. This negative result indicates that state-partition automata are useful
for systems with either a partial observation or abstraction, but not with the
combination of both.

Then, in Section 4, we study the closure properties of state-partition au-
tomata under the standard constructions of deterministic automata for the op-
erations of complement, union, intersection, concatenation, Kleene star, reversal,
cyclic shift, and left and right quotients. We show that almost all of them fail
to preserve the property of being a state-partition automaton. Only two of the
considered operations preserve this property, namely, the construction of a de-
terministic automaton for the right quotient of two regular languages, and the
construction of a deterministic automaton for the complement of regular lan-
guages represented by complete deterministic automata.

Finally, in the last section of this paper, we introduce and study the state-
partition complexity of regular languages with respect to a projection, defined
as the smallest number of states in any state-partition automaton (with respect

On Properties and State Complexity of Deterministic SPAs 3

to the projection) accepting the language. The first result of this section shows
that a language represented by a minimal incomplete deterministic automaton
with n states has state-partition complexity at most 3n ·2n−3. The second result
then proves the tightness of this upper bound using a language defined over a
three-letter alphabet and a projection on binary strings.

2 Preliminaries and Definitions

In this paper, we assume that the reader is familiar with the basic notions and
concepts of formal languages and automata theory, and we refer the reader to [5,
14, 16] for all details and unexplained notions.

For a finite non-empty set Σ, called an alphabet, the set Σ∗ represents the
free monoid generated by Σ. A string over Σ is any element of Σ∗, and the unit
of Σ∗ is the empty string denoted by ε. A language over Σ is any subset of Σ∗.
For a string w in Σ∗, let |w| denote the length of w, and for a symbol a in Σ,
let |w|a denote the number of occurrences of the symbol a in w. If w = xyz, for
strings x, y, z, w in Σ∗, then x is a prefix of w, and y is a factor of w.

A deterministic finite automaton (a DFA, for short) is a quintuple G =
(Q,Σ, δ, s, F), where Q is a finite non-empty set of states, Σ is an input alphabet,
δ : Q × Σ → Q is a partial transition function, s ∈ Q is the initial (or start)
state, and F ⊆ Q is the set of final states. Note that we consider incomplete
deterministic finite automata that are also called generators in the literature,
cf. [2, 22]. That is why we prefer to use G to denote an incomplete deterministic
automaton. The transition function can be naturally extended to the domain
Q × Σ∗ by induction. The language accepted by the automaton G is the set
of strings L(G) = {w ∈ Σ∗ | δ(s, w) ∈ F}. A state q of G is called reachable
if q = δ(s, w) for a string w in Σ∗, and it is called useful, or co-reachable, if
δ(q, w) ∈ F for a string w.

A nondeterministic finite automaton (an NFA, for short) is a quintuple
N = (Q,Σ, δ, S, F), where Q, Σ, and F are as in a DFA, S ⊆ Q is the set
of initial states, and δ : Q × (Σ ∪ {ε}) → 2Q is the nondeterministic transition
function that can be extended to the domain 2Q×Σ∗ by induction. The language
accepted by the NFA N is defined as the set L(N) = {w ∈ Σ∗ | δ(S,w)∩F 6= ∅}.
Notice that our NFAs may have ε-transitions and multiple initial states. How-
ever, ε-transitions and multiple initial states can be eliminated by a standard
technique [5].

Two automata are equivalent if they accept the same language. Every NFA
N = (Q,Σ, δ, S, F) without ε-transitions can be converted to an equivalent DFA
det(N) = (2Q, Σ, δd, sd, Fd) by an algorithm known as the “subset construc-
tion” [13], where we have

δd(R, a) = δ(R, a) for each R in 2Q and a in Σ,

sd = S, and

Fd = {R ∈ 2Q | R ∩ F 6= ∅}.

4 G. Jirásková, T. Masopust

We call the deterministic automaton det(N) the subset automaton corre-
sponding to the automaton N . Notice that the state set of the subset automaton
is the set of all subsets of Q, even though some of them may be unreachable from
the initial state sd.

Let Σ be an alphabet and Σo ⊆ Σ. A homomorphism P from Σ∗ to Σ∗o is
called a (natural) projection if it is defined by P (a) = a for each a in Σo and
P (a) = ε for each a in Σ \Σo. The inverse image of P is a mapping P−1 from
Σ∗o to 2Σ

∗
defined by P−1(w) = {u ∈ Σ∗ | P (u) = w}.

Let G = (Q,Σ, δ, s, F) be a DFA accepting a language L and P be the
projection from Σ∗ to Σ∗o with Σo ⊆ Σ. From the DFA G, we construct an NFA
NG accepting the language P (L) by replacing all transitions labeled by symbols
from Σ \Σo with ε-transitions, and by eliminating these ε-transitions. Then the
projected automaton for the language P (L) is the deterministic automaton

P (G) = (Q′, Σo, δ
′, s′, F ′)

that forms the reachable part of the subset automaton det(NG). Thus, Q′ is
the set of all states of 2Q reachable from the initial state s′. Notice that we
do not eliminate states, from which no final state is reachable. This is due to
applications in supervisory control, where this problem is known as the problem
of nonblockingness [2].

A DFA G = (Q,Σ, δ, s, F) is a state-partition automaton (an SPA, for short)
with respect to a projection P from Σ∗ to Σ∗o with Σo ⊆ Σ if the states of
the projected automaton P (G) = (Q′, Σo, δ

′, s′, F ′) are pairwise disjoint as sets.
Note that if all states of G are reachable, then the state set of the projected
automaton P (G) defines a partition of the state set of G.

For an automaton A (deterministic or nondeterministic), let sc(A) denote
the number of states of the automaton A.

We immediately have the following result.

Lemma 1. Let G be a DFA over an alphabet Σ that has no unreachable states.
Let P be a projection from Σ∗ to Σ∗o with Σo ⊆ Σ. If G is a state-partition
automaton with respect to P , then sc(P (G)) ≤ sc(G). ut

Now we define a parallel composition of two incomplete deterministic au-
tomata, which is basically the intersection of two automata defined over two
different alphabets. Therefore, it is first necessary to unify their alphabets by
adding the missing symbols.

For two deterministic finite automata G1 = (Q1, Σ1, δ1, s1, F1) and G2 =
(Q2, Σ2, δ2, s2, F2), we define the parallel composition of G1 and G2, denoted by
G1 ‖ G2, as the reachable part of the DFA (Q1×Q2, Σ1∪Σ2, δ, (s1, s2), F1×F2),
where

δ((p, q), a) =

(δ1(p, a), δ2(q, a)), if δ1(p, a) is defined in G1 and

δ2(q, a) is defined in G2;
(δ1(p, a), q), if δ1(p, a) is defined in G1 and a /∈ Σ2;
(p, δ2(q, a)), if a /∈ Σ1 and δ2(q, a) is defined in G2;
undefined, otherwise.

On Properties and State Complexity of Deterministic SPAs 5

From the language point of view, it can be shown that

L(G1 ‖ G2) = P−11 (L(G1)) ∩ P−12 (L(G2)) ,

where Pi is the projection from (Σ1 ∪Σ2)∗ to Σ∗i for i = 1, 2.
Let us briefly recall definitions of the operations of reversal, cyclic shift, and

left and right quotients for languages over an alphabet Σ. The reversal of a string
w over Σ is defined by εR = ε and (va)R = avR for a symbol a in Σ and a string
v in Σ∗. The reversal of a language L is the language LR = {wR ∈ Σ∗ | w ∈ L}.
The cyclic shift of a language L is defined as the language Lshift = {uv ∈ Σ∗ |
vu ∈ L}. The left and right quotients of a language L by a language K are
the languages K\L = {x ∈ Σ∗ | there exists w ∈ K such that wx ∈ L} and
L/K = {x ∈ Σ∗ | there exists w ∈ K such that xw ∈ L}, respectively. By Lc

we denote the complement of a language L, that is, the language Σ∗ \ L.

3 Minimal State-Partition Automata

The fundamental question is whether every regular language can be accepted
by a state-partition automaton with respect to a given projection. If this is the
case, can we construct such a state-partition automaton efficiently? The answer
to this question is known, and we repeat it in the following theorem. Although
a proof has been given in [3], we prefer to recall it here since some fundamental
observations play a role later in the paper.

Theorem 1 ([3, 4]). Let P be a projection from Σ∗ to Σ∗o with Σo ⊆ Σ. Let L
be a language over the alphabet Σ, and let G be a DFA accepting the language
L. Then the automaton P (G) ‖ G is a state-partition automaton with respect to
the projection P that accepts the language L.

Proof. Let G = (Q,Σ, δ, s, F) be a DFA accepting the language L, and let
P (G) = (Q′, Σo, δ

′, s′, F ′) be the corresponding projected automaton. By defini-
tion of the parallel composition and the comment below the definition, we have
that

L(P (G) ‖ G) = P−1(P (L(G))) ∩ L(G) = L(G) .

Hence, the automaton P (G) ‖ G accepts the language L.
Let w be a string over the alphabet Σo. Then the state of the projected

automaton P (P (G) ‖ G) reached from the initial state by the string w is{
(δ′(s′, w), q) | q ∈ δ(s, P−1(w))

}
.

Since δ(s, P−1(w)) = δ′(s′, w), by definition of the transition function of the
automaton P (G), the state reachable from its initial state by the string w in the
DFA P (P (G) ‖ G) is, in fact,

{(δ′(s′, w), q) | q ∈ δ′(s′, w)} .

It then follows that the states of the projected automaton P (P (G) ‖ G) reachable
by two different strings are either the same or disjoint. ut

6 G. Jirásková, T. Masopust

Next we prove that the state-partition automaton constructed from a mini-
mal DFA using the construction of the previous theorem is the minimal state-
partition automaton with respect to the number of states. To prove this, we
need the notion of isomorphic automata, and the result proved in the following
lemma.

Let G1 = (Q1, Σ, δ1, s1, F1) and G2 = (Q2, Σ, δ2, s2, F2) be two DFAs. Let f
be a mapping from Q1 to Q2 such that

• f(δ1(q, a)) = δ2(f(q), a) for each q in Q1 and a in Σ,
• f(s1) = s2, and
• q ∈ F1 if and only if f(q) ∈ F2.

The mapping f is called a homomorphism from G1 to G2. If f is a bijection,
then it is called an isomorphism, and G1 and G2 are said to be isomorphic.

The next lemma shows that the parallel composition of automata P (G) and
G is isomorphic to G for a state-partition automaton G.

Lemma 2. Let G be an SPA with respect to a projection P from Σ∗ to Σ∗o , in
which all states are reachable. Then the DFA P (G) ‖ G is isomorphic to G.

Proof. Let G = (Q,Σ, δ, s, F) be a state-partition automaton with respect to the
projection P , and let P (G) = (Q′, Σo, δ

′, s′, F ′) be the corresponding projected
automaton. Define a mapping f : Q′ × Q → Q by f(X, q) = q. Then it holds
that δ(q, a) = δ(f(X, q), a), and f is an isomorphism from P (G) ‖ G to G. ut

The following result constructs the minimal state-partition automaton for a
given regular language and a projection.

Theorem 2. Let L be a regular language over an alphabet Σ, and let G be the
minimal DFA accepting the language L. Let P be a projection from Σ∗ to Σ∗o .
Then the DFA P (G) ‖ G is the minimal state-partition automaton with respect
to the projection P that accepts the language L.

Proof. Let G = (Q,Σ, δ, s, F) be the minimal DFA accepting the language L,
and let G2 = (Q2, Σ, δ2, s2, F2) be a state-partition automaton with respect to
the projection P that also accepts the language L. We may assume that all states
of the DFA G2 are reachable and useful; otherwise, we can remove unreachable
and useless states from G2 and obtain a smaller state-partition automaton.

Define a mapping f : Q2 → Q as follows. For a state q in Q2 that is reachable
in the automaton G2 from the initial state s2 by a string w, set f(q) = δ(s, w),
that is, f(q) is a state in Q that is reachable in the automaton G from the
initial state s by the string w. Notice that f is well-defined since if a state in
Q2 is reached by two different strings u and v, then states δ(s, u) and δ(s, v)
must be equivalent in the automaton G, and since G is minimal, we must have
δ(s, u) = δ(s, v).

Next, we have f(δ2(q, a)) = δ(f(q), a) for each state q in Q2 and symbol a in
Σ, f(s2) = s, and q ∈ F2 if and only if f(q) ∈ F . Hence f is a homomorphism
from G2 to G.

On Properties and State Complexity of Deterministic SPAs 7

Now, extend the mapping f to a mapping from the state set of the automaton
P (G2) ‖ G2 to the state set of the automaton P (G) ‖ G by setting

f(X, q) = (f(X), f(q)) .

Then f is surjective. Since the automaton G2 is a state-partition automaton
with respect to the projection P , we have, using Lemma 2, that

sc(P (G) ‖ G) ≤ sc(P (G2) ‖ G2) = sc(G2) .

This completes the proof. ut

Corollary 1. Let L be a regular language over an alphabet Σ, and let P be a
projection from Σ∗. Then the minimal state-partition automaton accepting the
language L is unique up to isomorphism. ut

It is natural to ask whether an automaton can be a state-partition automaton
with respect to more than one projection. This property would be useful in
applications, where both an abstraction and a partial observation are combined,
cf. [1]. Unfortunately, the following result shows that this does not hold true in
general [8].

Lemma 3. There exist a language L and projections P and P̃ such that no
DFA accepting the language L is a state-partition automaton with respect to
both projections P and P̃ .

Proof. Let Σ = {a, b}. Let P and P̃ be projections from Σ∗ onto {a}∗ and {b}∗,
respectively. Consider the language L = (ab)∗. Assume that G = (Q,Σ, δ, s, F) is
a state-partition automaton for both projections P and P̃ accepting the language
L. Notice that the DFA G does not have any loop, that is, no state of G goes to
itself on any symbol, because otherwise the automaton G would accept a string
that does not belong to the language L.

Let w be a string of the language L of length at least |Q|. Then at least one
state appears twice in the computation of the automaton G on the string w. Let
p be the first such state. Then w = xyz, where x is the shortest prefix of w such
that the initial state s goes to state p by x, and y is the shortest non-empty
factor of w by which p goes to itself. Since the automaton G has no loops, the
length of y is at least two. Therefore, y = cy′d, where c, d ∈ {a, b}. In addition,
c 6= d because xyyz = xcy′dcy′dz belongs to the language L. Let q be the state
of the automaton G that is reached from the state p on reading the string cy′.
Fig. 1 illustrates the computation of G on the string w. Since x is the shortest
prefix of w that moves G to state p, and y is the shortest non-empty factor of w
by which p goes to itself, we have p 6= q.

In case d = b, we consider the projected automaton

P (G) = (Q′, {a}, δ′, s′, F ′) .

Let X = δ′(s′, P (x)) and Y = δ′(X,P (ay′)) be two states of the automaton
P (G). Then p ∈ X and p, q ∈ Y . Notice that X = δ(s, P−1(P (x))). Since

8 G. Jirásková, T. Masopust

Fig. 1. The computation of G on the string w = xcy′dz.

c = a and w ∈ L, we have x = (ab)k for a non-negative integer k. Therefore,
P−1(P (x)) = P−1(ak).

Assume that there exists a string u in P−1(ak) that moves the automaton
G from the initial state s to the state q. Then the string udz is accepted by
the automaton G. Since d = b, we must have u = (ab)k−1a. However, then the
state q would be the first state in the computation on the string w that appears
at least twice in it, which contradicts the choice of the state p. It follows that
q /∈ X, and, therefore, X 6= Y . Hence, the automaton G is not a state-partition
automaton with respect to the projection P .

The case d = a is similar. ut

4 Closure Properties

Since every regular language has a state-partition automaton with respect to
a given projection, the class of languages accepted by state-partition automata
is closed under all regular operations. In the following, we consider the closure
properties of state-partition automata under the standard constructions of deter-
ministic automata for regular operations as described in the literature [5, 16, 19,
23]. Hence, we investigate the following question: Given state-partition automata
with respect to a projection, is the deterministic automaton resulting from the
standard construction for a regular operation a state-partition automaton with
respect to the same projection?

We prove that almost all standard constructions, except for the complement
of complete state-partition automata and right quotient, fail to preserve the
property of being a state-partition automaton.

Theorem 3. State-partition automata are not closed under the operations of
complement, intersection, union, concatenation, star, reversal, cyclic shift, and
left quotient.

Proof. We briefly recall the standard construction of a deterministic automa-
ton for each operation under consideration. Let us emphasize that we do not
minimize the resulting deterministic automata.

Complement: To get a deterministic automaton for complement from a possibly
incomplete DFA G, add the dead state, if necessary, and interchange the final and
non-final states. We prove that state-partition automata are not closed under
this operation.

Consider the two-state DFA G in Fig. 2 (left). The DFA accepts the language
ab∗. Let P be the projection from {a, b}∗ to {a}∗. Then G is a state-partition

On Properties and State Complexity of Deterministic SPAs 9

Fig. 2. SPA G (left), and DFA Gc for the complement of the language L(G) (right);
projection P : {a, b}∗ → {a}∗.

automaton with respect to the projection P since the projected automaton P (G)
is deterministic. However, the complement of G, the DFA Gc shown in Fig. 2
(right), is not a state-partition automaton with respect to the projection P
because we have to add the dead state, 3, which then appears in two different
reachable sets of the projected automaton P (Gc), namely, in {1, 3} reached by
ε and in {2, 3} reached by a. However, as the next theorem shows, the resulting
DFA is a state-partition automaton if the given DFA is complete.

Intersection and union: To get the deterministic automaton for intersection and
union, we apply the standard cross-product construction.

Consider two automata G1 and G2 shown in Fig. 3, and their cross-product
automaton G1×G2 depicted in Fig. 3. In the case of intersection, the only final
state is state 3, while in the case of union, the final states are states 3 and 4. Let
P be the projection from {a, b}∗ to {a}∗. Both G1 and G2 are state-partition
automata with respect to the projection P . However, the automaton G1 × G2

is not since the sets {2, 3} and {3, 4} are reachable in the projected automaton
P (G1 ×G2) by strings a and aa, respectively.

Concatenation: Recall that an NFA for concatenation of two DFAs G1 and G2 is
obtained from G1 and G2 by adding ε-transitions from final states of G1 to the
initial state of G2, and by setting the initial state to be the initial state of G1,
and final states to be final states of G2. The corresponding subset automaton
restricted to its reachable states provides the resulting DFA for concatenation.

Now, let G be the DFA shown in Fig. 4 (left). Let P be the projection
from {a, b}∗ to {b}∗. The projected automaton P (G) is a one-state automaton
and, therefore, the DFA G is a state-partition automaton with respect to the
projection P . The DFA G ·G for concatenation is depicted in Fig. 4 (right), and
states {1, 2, 3} and {1, 2, 3, 4} are reachable in the projected automaton P (G ·G)
by strings ε and b, respectively. Hence, the DFA G · G for concatenation is not
a state-partition automaton for the projection P .

Fig. 3. SPAs G1 (left) and G2 (middle), and their cross-product G1 × G2 (right);
projection P : {a, b}∗ → {a}∗.

10 G. Jirásková, T. Masopust

Fig. 4. SPA G (left) and DFA G · G for concatenation of the languages L(G) · L(G)
(right); projection P : {a, b}∗ → {b}∗.

Star: To construct an NFA for star of a DFA G, add a new initial and final state
and ε-transitions from all final states, including the new one, to the original
initial state of the automaton G. The subset construction results in a DFA for
star.

Consider the DFA G in Fig. 5 (left), and the projection P from {a, b, c}∗
to {a, b}∗. The automaton G is a state-partition automaton with respect to the
projection P since the projected automaton P (G) is deterministic. However, the
deterministic automaton G∗ for star, shown in Fig. 5 (right), is not a state-
partition automaton with respect to the projection P because the sets {3} and
{3, 4} are reachable in the projected automaton P (G∗) by strings ab and aba,
respectively.

Fig. 5. SPA G (left), and DFA G∗ for the star of the language L(G) (right); projection
P : {a, b, c}∗ → {a, b}∗.

Reversal: We can get an NFA for reversal from a DFA G by swapping the roles
of initial and final states, and by reversing all transitions. After the application
of the subset construction, we obtain a DFA for reversal.

Consider the DFA G in Fig. 6 (left), and the projection P from {a, b, c}∗ to
{a, c}∗. The DFA G is a state-partition automaton with respect to P since the
states of the projected automaton P (G) are {2, 3} and {1}. On the other hand,
the DFA GR in Fig. 6 (right) is not a state-partition automaton with respect to
the projection P because the sets {2} and {2, 3} are reachable in the projected
automaton P (GR) by strings a and ac, respectively.

Cyclic shift: For the construction of an NFA for cyclic shift, we refer to [7]. Fig. 7
(middle) shows an NFA for the cyclic shift of the language accepted by the DFA
G of Fig. 7 (left). Let P be the projection from {a, b}∗ to {b}∗. Then G is a
state-partition automaton with respect to the projection P since the projected
automaton P (G) has just one state {1, 2}. However, the automaton Gshift in
Fig. 7 (right) is not a state-partition automaton with respect to the projection

On Properties and State Complexity of Deterministic SPAs 11

Fig. 6. SPA G (left), and DFA GR for the reversal of the language L(G) (right);
projection P : {a, b, c}∗ → {a, c}∗.

Fig. 7. SPA G (left), NFA for shift(L(G)) (middle), and DFA Gshift (right); projection
P : {a, b}∗ → {b}∗.

P since states {1, 2, 3} and {2, 3, 4, 5, 6, 7, 8} are reachable by strings ε and b,
respectively.

Left quotient: Construct a DFA for left quotient by a string w from a DFA G by
making the state reached after reading the string w initial.

Consider the DFA G shown in Fig. 8 (left) and the projection P from {a, b}∗
to {b}∗. The automaton G is a state-partition automaton with respect to the
projection P as in the case of cyclic shift. The automaton a\G for the left
quotient by the string a is shown in Fig. 8 (right). It is not a state-partition
automaton with respect to the projection P since the sets {2} and {1, 2} are
reachable in the projected automaton by strings ε and b, respectively. ut

The following theorem demonstrates that if the structure of the automaton
is not changed after an operation, then the automaton remains state-partition
with respect to the same projection.

Theorem 4. State-partition automata are closed under the operations of right
quotient and complement of complete state-partition automata.

Fig. 8. SPA G (left) and DFA a\G for the left quotient by the string a (right); projec-
tion P : {a, b}∗ → {b}∗.

12 G. Jirásková, T. Masopust

Proof. Let G be a complete state-partition automaton. Construct a deterministic
automaton Gc for the complement of L(G) from the DFA G by interchanging
final and non-final states. The result now follows from the fact that the states
of the projected automaton P (Gc) are the same as the states of the projected
automaton P (G) since the structure of the automaton Gc is the same as the
structure of the automaton G.

Now, consider the right quotient of a language L(G) by a language K; here,
the DFA G may be incomplete. Construct an automaton for the right quotient
L(G)/K from the automaton G by replacing the set of final states with the set
of states of G from which a string of the language K is accepted. Again, the
structure of the automaton remains the same; we only change the set of final
states. ut

5 State-Partition Complexity

Let L be a regular language over an alphabet Σ, and let P be a projection from
Σ∗ to Σ∗o . We define the state-partition complexity of the language L, denoted
by spc(L), as the smallest number of states in any automaton accepting the
language L that is a state-partition automaton with respect to the projection P .
By Theorem 2, the state-partition complexity of the language L is the number of
states of the DFA P (G) ‖ G, where G is the minimal incomplete DFA accepting
the language L.

Now, we give the upper bound on the state-partition complexity of regular
languages, and prove that this bound is tight. We omit the proof due to space
constraints.

Theorem 5. Let L be a language over an alphabet Σ accepted by the minimal
incomplete DFA G with n states. Let P be a projection from Σ∗ to Σ∗o . Then
spc(L) ≤ 3n · 2n−3. ut

Finally, we prove that the bound proved in the previous theorem is tight.

Theorem 6. For every integer n ≥ 3, there exists a regular language L accepted
by the minimal incomplete DFA G with n states such that spc(L) = 3n · 2n−3.

Proof. Consider the language L accepted by the DFA G depicted in Fig. 9 and
the projection P from {a, b, c}∗ to {a, b}∗. We need to prove that all subsets
of the state set {0, 1, . . . , n − 1}, except for the sets that contain n − 1 and do
not contain 0, are states of the automaton P (G). Notice that if X is reachable
in P (G) by a string u over {a, b} and q ∈ X, then state q is reachable in the
automaton G by a string w in P−1(u). This means that (X, q) is a reachable state
in the automaton P (G) ‖ G since (X, q) =

(
δ(s, P−1(P (w)), δ(s, w)

)
. First, we

construct an NFA accepting the language P (L) as shown in Fig. 10. Let us show
that all subsets of the state set {0, 1, . . . , n− 1} containing state 0, as well as all
non-empty subsets of the set {1, 2, . . . , n− 2} are reachable.

The proof is by induction on the size of subsets. Each set {i}, where i ≤
n − 2, is reached from {0} by the string ai. Let 2 ≤ k ≤ n. Assume that each

On Properties and State Complexity of Deterministic SPAs 13

Fig. 9. The minimal incomplete DFA G meeting the upper bound 3n · 2n−3.

subset of size k− 1, satisfying the above mentioned conditions, is reachable. Let
X = {i1, i2, . . . , ik}, where 0 ≤ i1 < i2 < · · · < ik ≤ n− 1, be a subset of size k.
Consider two cases:

(i) i1 = 0. Take Y = {ij − i2 − 1 | 3 ≤ j ≤ k} ∪ {n − 2}. Then Y is of size
k − 1 and it does not contain state n − 1. Therefore, it is reachable by the
induction hypothesis. The subset Y goes to X on the string aabi2−1 since
we have

Y
a→ {0, n− 1} ∪ {ij − i2 | 3 ≤ j ≤ k}
a→ {0, 1} ∪ {ij − i2 + 1 | 3 ≤ j ≤ k}
bi2−1

−−−→ X.

(ii) i1 ≥ 1. Then ik ≤ n − 2. Take Y = {0} ∪ {ij − i1 | 2 ≤ j ≤ k}. Then the
subset Y is of size k and contains state 0. Therefore, it is reachable as shown
in case (i). The subset Y goes to X on the string ai1 .

This proves the reachability of all 3 · 2n−2 − 1 subsets of the automaton P (G).

The number of all reachable pairs (X, q) with q ∈ X of the automaton P (G) ‖
G is

∑n−1
i=0

(
n−1
i

)
(i+1)+

∑n−2
i=0

(
n−2
i

)
i = 3n·2n−3, which proves the theorem. ut

Fig. 10. An NFA for language P (L(G)), where G is shown in Fig. 9.

14 G. Jirásková, T. Masopust

6 Conclusions and Discussion

We investigated deterministic state-partition automata with respect to a given
projection. The state set of such an automaton is partitioned into disjoint subsets
that are reachable in the projected automaton. Using a result from the literature
that every regular language has a state-partition automaton with respect to a
given projection, we provided the construction of the minimal state-partition
automaton for a regular language and a projection. We also described a regular
language and two projections such that no automaton accepting this language
is a state-partition automaton with respect to both projections.

Next, we studied closure properties of state-partition automata under the
standard constructions of deterministic automata for the operations of comple-
ment, union, intersection, concatenation, star, reversal, cyclic shift, and left and
right quotients. We showed that except for the right quotient and complement
of complete deterministic automata, all other constructions fail to preserve the
property of being a state-partition automaton.

Finally, we defined the notion of the state-partition complexity of a regular
language as the smallest number of states of any state-partition automaton with
respect to a given projection accepting the language. We proved that the tight
bound on the state-partition complexity of a language represented by an incom-
plete deterministic automaton with n states is 3n · 2n−3. To prove the tightness
of this bound, we used a language defined over the ternary alphabet {a, b, c}
and the projection from {a, b, c}∗ to {a, b}∗. Note that it follows from the results
of [6] that this bound cannot be reached using a smaller alphabet or a projection
to a singleton.

State-partition complexity of regular operations may be investigated in the
future. We only know that state-partition complexity of a language and its com-
plement differs by one in the case of complete deterministic automata, and by
3n if the automata are incomplete. Defining nondeterministic state-partition au-
tomata and investigating their properties may also be of interest.

Acknowledgements. We wish to thank Jan Komenda, Klaus Schmidt, and
Jan H. van Schuppen for a discussion on state-partition automata.

References

1. Boutin, O., Komenda, J., Masopust, T., Schmidt, K., van Schuppen, J.H.: Hier-
archical control with partial observations: Sufficient conditions. In: Proc. of IEEE
Conference on Decision and Control and European Control Conference (CDC-ECC
2011). pp. 1817–1822. Orlando, Florida, USA (2011)

2. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer,
second edn. (2008)

3. Cho, H., Marcus, S.I.: On supremal languages of classes of sublanguages that arise
in supervisor synthesis problems with partial observation. Mathematics of Control,
Signals, and Systems 2, 47–69 (1989)

On Properties and State Complexity of Deterministic SPAs 15

4. Cho, H., Marcus, S.I.: Supremal and maximal sublanguages arising in supervisor
synthesis problems with partial observations. Theory of Computing Systems 22(1),
177–211 (1989)

5. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation. Addison-Wesley, Boston (2003)

6. Jirásková, G., Masopust, T.: On a structural property in the state complexity of
projected regular languages. Theoretical Computer Science 449C, 93–105 (2012)

7. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. RAIRO – Theoretical
Informatics and Applications 42(2), 335–360 (2008)

8. Komenda, J., Masopust, T., Schmidt, K., van Schuppen, J.H.: (2011), personal
communication

9. Komenda, J., Masopust, T., van Schuppen, J.H.: Synthesis of controllable and
normal sublanguages for discrete-event systems using a coordinator. Systems &
Control Letters 60(7), 492–502 (2011)

10. Komenda, J., Masopust, T., van Schuppen, J.H.: Supervisory control synthesis of
discrete-event systems using a coordination scheme. Automatica 48(2), 247–254
(2012)

11. Komenda, J., van Schuppen, J.H.: Supremal normal sublanguages of large dis-
tributed discrete-event systems. In: Proc. of International Workshop on Discrete
Event Systems (WODES 2004). pp. 73–78. Reims, France (2004)

12. Komenda, J., van Schuppen, J.H.: Modular control of discrete-event systems with
coalgebra. IEEE Transactions on Automatic Control 53(2), 447–460 (2008)

13. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3(2), 114–125 (1959)

14. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3.
Springer (1997)

15. Sakarovitch, J.: A construction on finite automata that has remained hidden. The-
oretical Computer Science 204(1-2), 205–231 (1998)

16. Salomaa, A.: Formal languages. Academic Press, New York (1973)
17. Schmidt, K., Breindl, C.: Maximally permissive hierarchical control of decentralized

discrete event systems. IEEE Transactions on Automatic Control 56(4), 723–737
(2011)

18. Schmidt, K., Moor, T., Perk, S.: Nonblocking hierarchical control of decentralized
discrete event systems. IEEE Transactions on Automatic Control 53(10), 2252–
2265 (2008)

19. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

20. Wong, K.: On the complexity of projections of discrete-event systems. In: Proc. of
Workshop on Discrete Event Systems (WODES 1998). pp. 201–206. Cagliari, Italy
(1998)

21. Wong, K., Wonham, W.: Hierarchical control of discrete-event systems. Discrete
Event Dynamic Systems: Theory and Applications 6(3), 241–273 (1996)

22. Wonham, W.M.: Supervisory control of discrete-event systems (2011), lecture
notes, University of Toronto, [Online].
Available http://www.control.utoronto.ca/DES/

23. Yu, S.: Regular languages. In: Handbook of Formal Languages, vol. I, pp. 41–110.
Springer (1997)

24. Zhong, H., Wonham, W.M.: On the consistency of hierarchical supervision in
discrete-event systems. IEEE Transactions on Automatic Control 35(10), 1125–
1134 (1990)

