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In this paper, we further develop the coordination control framework for discrete-event systems with both com-
plete and partial observations. First, a weaker sufficient condition for the computation of the supremal conditionally-
controllable sublanguage and conditionally-normal is presented. Then we show that this condition can be imposed by
synthesizing a posteriori supervisors. The paper further generalizes the previous study by considering general, non-
prefix-closed languages. Moreover, we prove that for prefix-closed languages the supremal conditionally-controllable
sublanguage and conditionally-normal sublanguage can always be computed in the distributed way without any re-
strictive conditions we have used in the past.
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1. Introduction

Large scale discrete-event systems (DES) are often formed in a compositional way as a synchronous or
asynchronous composition of smaller components, typically automata (or 1-safe Petri nets that can be
viewed as products of automata). Supervisory control theory was proposed in Ramadge and Wonham
(1989) for automata as a formal approach that aims to solve the safety issue and nonblockingness.

A major issue is the computational complexity of the centralized supervisory control design, because
the global system has an exponential number of states in the number of components. Therefore, a modular
supervisory control of DES based on a compositional (local) control synthesis has been introduced and
developed by many authors. Structural conditions have been derived for the local control synthesis to equal
the global control synthesis in the case of both local and global specification languages.

Specifications are mostly defined over the global alphabet, which means that the global specifications
are more relevant than the local specifications. However, several restrictive conditions have to be imposed
on the modular plant such as mutual controllability (and normality) of local plant languages for maximal
permissiveness of modular control, and other conditions are required for nonblockingness.

For that reason, a coordination control approach was proposed for modular DES in Komenda and van
Schuppen (2008) and further developed in Komenda, Masopust, and van Schuppen (2012b). Coordination
control can be seen as a reasonable trade-off between a purely modular control synthesis, which is in some
cases unrealistic, and a global control synthesis, which is naturally prohibitive for high complexity reasons.
The concept of a coordinator is useful for both safety and nonblockingness. The complete supervisor then
consists of the coordinator, its supervisor, and the local supervisors for the subsystems. In Komenda and
van Schuppen (2008), necessary and sufficient conditions are formulated for nonblockingness and safety,
and a sufficient condition is formulated for the maximally permissive control synthesis satisfying a global
specification using a coordinator. Later, in Komenda et al. (2012b), a procedure for a distributive computa-
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tion of the supremal conditionally controllable sublanguage of a given specification has been proposed. We
have extended coordination control for non-prefix-closed specification languages in Komenda, Masopust,
and van Schuppen (2014) and for partial observations in Komenda, Masopust, and van Schuppen (2011b).

In this paper, we first propose a new sufficient condition for a distributed computation of the supremal
conditionally controllable sublanguage. We prove that it generalizes (is weaker than) both conditions we
have introduced earlier in Komenda et al. (2014) and Komenda et al. (2012b). Then we revise (simplify) the
concepts of conditional observability and conditional normality and present new sufficient conditions for a
distributive computation of the supremal conditionally controllable and conditionally normal sublanguage.
Finally, we propose and we prove that surprisingly .

The paper is organized as follows. The next section recalls the basic concepts from the algebraic language
theory that are needed in this paper. Our coordination control framework is briefly recalled in Section 3. In
Section 3.1, new results in coordination control with complete observations are presented: a new, weaker,
sufficient condition for distributed computation of supremal conditionally controllable sublanguages. Sec-
tion 3.2 is dedicated to coordination control with partial observations, where the main concepts are first
simplified and then weaker sufficient conditions are presented for distributed computation of supremal
conditionally controllable and conditionally normal sublanguages. In section 4, we propose a posteriori
supervisors that impose these sufficient conditions, and we prove that this is without altering the maximal
permissiveness in the prefix-closed case, i.e. supremal conditionally controllable and conditionally normal
sublanguages can always be computed in a distributed way in the prefix-closed case. Concluding remarks
are given in Section 5.

2. Preliminaries

We now briefly recall the elements of supervisory control theory. The reader is referred to Cassandras and
Lafortune (2008) for more details. Let Σ be a finite nonempty set of events, and let Σ∗ denote the set of all
finite words (strings) over Σ. The empty word is denoted by ε . Let |Σ| denote the cardinality of Σ.

A generator is a quintuple G = (Q,Σ, f ,q0,Qm), where Q is a finite nonempty set of states, Σ is an event
set, f : Q×Σ→Q is a partial transition function, q0 ∈Q is the initial state, and Qm⊆Q is the set of marked
states. In the usual way, the transition function f can be extended to the domain Q×Σ∗ by induction. The
behavior of G is described in terms of languages. The language generated by G is the set L(G) = {s ∈ Σ∗ |
f (q0,s) ∈ Q} and the language marked by G is the set Lm(G) = {s ∈ Σ∗ | f (q0,s) ∈ Qm} ⊆ L(G).

A (regular) language L over an event set Σ is a set L ⊆ Σ∗ such that there exists a generator G with
Lm(G) = L. The prefix closure of L is the set L = {w ∈ Σ∗ | there exists u ∈ Σ∗ such that wu ∈ L}; L is
prefix-closed if L = L.

A (natural) projection P : Σ∗→ Σ∗o, for some Σo ⊆ Σ, is a homomorphism defined so that P(a) = ε , for
a ∈ Σ \Σo, and P(a) = a, for a ∈ Σo. The inverse image of P, denoted by P−1 : Σ∗o → 2Σ∗ , is defined as
P−1(s) = {w ∈ Σ∗ | P(w) = s}. The definitions can naturally be extended to languages. The projection of a
generator G is a generator P(G) whose behavior satisfies L(P(G)) = P(L(G)) and Lm(P(G)) = P(Lm(G)).

A controlled generator is a structure (G,Σc,P,Γ), where G is a generator over Σ, Σc ⊆ Σ is the set of
controllable events, Σu = Σ \ Σc is the set of uncontrollable events, P : Σ∗ → Σ∗o is the projection, and
Γ = {γ ⊆ Σ | Σu ⊆ γ} is the set of control patterns. A supervisor for the controlled generator (G,Σc,P,Γ) is
a map S : P(L(G))→ Γ. A closed-loop system associated with the controlled generator (G,Σc,P,Γ) and the
supervisor S is defined as the smallest language L(S/G)⊆Σ∗ such that (i) ε ∈ L(S/G) and (ii) if s∈ L(S/G),
sa ∈ L(G), and a ∈ S(P(s)), then sa ∈ L(S/G). The marked behavior of the closed-loop system is defined
as Lm(S/G) = L(S/G)∩Lm(G).

Let G be a generator over Σ, and let K ⊆ Lm(G) be a specification. The aim of supervisory control
theory is to find a nonblocking supervisor S such that Lm(S/G) = K. The nonblockingness means that
Lm(S/G) = L(S/G), hence L(S/G) = K. It is known that such a supervisor exists if and only if K is (i)
controllable with respect to L(G) and Σu, that is KΣu ∩L ⊆ K, (ii) Lm(G)-closed, that is K = K ∩Lm(G),
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and (iii) observable with respect to L(G), Σo, and Σc, that is for all s ∈ K and σ ∈ Σc, (sσ /∈ K) and
(sσ ∈ L(G)) imply that P−1[P(s)]σ ∩K = /0, where P : Σ∗→ Σ∗o, cf. Cassandras and Lafortune (2008).

The synchronous product (parallel composition) of languages L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 is defined by L1‖L2 =

P−1
1 (L1)∩P−1

2 (L2)⊆ Σ∗, where Pi : Σ∗→ Σ∗i , for i= 1,2, are projections to local event sets. In terms of gen-
erators, see Cassandras and Lafortune (2008) for more details, it is known that L(G1‖G2) = L(G1)‖L(G2)
and Lm(G1‖G2) = Lm(G1)‖Lm(G2).

3. Coordination Control Framework

A language K ⊆ (Σ1∪Σ2)
∗ is conditionally decomposable with respect to event sets Σ1, Σ2, and Σk, where

Σ1 ∩ Σ2 ⊆ Σk, if K = P1+k(K) ‖ P2+k(K), where Pi+k : (Σ1 ∪ Σ2)
∗ → (Σi ∪ Σk)

∗ is a projection, for i =
1,2. Note that Σk can always be extended so that the language K becomes conditionally decomposable. A
polynomial algorithm how to compute an extension can be found in Komenda, Masopust, and van Schuppen
(2012a). However, to find the minimal extension is NP-hard Komenda et al. (2014).

Now we recall the coordination control problem that is further developed in this paper.

Problem 1 (Coordination control problem): Consider generators G1 and G2 over Σ1 and Σ2, respectively,
and a generator Gk (called a coordinator) over Σk with Σ1 ∩ Σ2 ⊆ Σk. Assume that a specification K ⊆
Lm(G1‖G2‖Gk) and its prefix-closure K are conditionally decomposable with respect to event sets Σ1,
Σ2, and Σk. The aim of coordination control is to determine nonblocking supervisors S1, S2, and Sk for
respective generators such that Lm(Sk/Gk) ⊆ Pk(K) and Lm(Si/[Gi‖(Sk/Gk)]) ⊆ Pi+k(K), for i = 1,2, and
the closed-loop satisfies Lm(S1/[G1 ‖ (Sk/Gk)]) ‖ Lm(S2/[G2 ‖ (Sk/Gk)]) = K.

Recall that coordinator for safety can be defined as a projected plant to the coordinator alphabet and can
be computed in the distributed way as Gk = Pk(G1) ‖ Pk(G2), cf. Komenda et al. (2012b, 2014). This choice
of coordinator implies that G1‖G2‖Gk = G1‖G2, because for any language L⊆ Σ∗ we have that L ‖ Pk(L) =
L. However, other choices of a coordinator are also possible, notably a coordinator for nonblockingness
of Komenda et al. (2014).

3.1 Coordination Control with Complete Observations

Conditional controllability introduced in Komenda and van Schuppen (2008) and further developed and
studied in Komenda, Masopust, and van Schuppen (2011a); Komenda et al. (2011b, 2012b, 2014) plays the
central role in coordination control. In what follows, we use the notation Σi,u = Σi∩Σu to denote the set of
uncontrollable events of the event set Σi for i = 1,2.

We point out that although only two subsystems are considered, all concepts and results can be extended
to an arbitrary number of components. For instance, coordinator alphabet Σk then should contain all events
common to two or more subsystems. Since there might be too many events in the coordinator alphabet for
systems with a large number of local automata, it is better for large systems to organize local automata
into groups and apply coordination control separately in smaller groups, which might require additional
coordination of groups at a higher level as we have proposed in Komenda, Masopust, and van Schuppen
(2013).

Definition 1 (Conditional controllability): Let G1 and G2 be generators over Σ1 and Σ2, respectively, and
let Gk be a coordinator over Σk. A language K ⊆ Lm(G1‖G2‖Gk) is conditionally controllable with respect
to generators G1, G2, Gk and uncontrollable event sets Σ1,u, Σ2,u, Σk,u if

(1) Pk(K) is controllable with respect to L(Gk) and Σk,u,
(2) P1+k(K) is controllable with respect to L(G1) ‖ Pk(K) and Σ1+k,u,
(3) P2+k(K) is controllable with respect to L(G2) ‖ Pk(K) and Σ2+k,u,
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where Σi+k,u = (Σi∪Σk)∩Σu, for i = 1,2.

The supremal conditionally controllable sublanguage always exists and equals to the union of all condi-
tionally controllable sublanguages Komenda et al. (2014). Let

supcC = supcC(K,L,(Σ1,u,Σ2,u,Σk,u))

denote the supremal conditionally controllable sublanguage of K with respect to L = L(G1‖G2‖Gk) and
sets of uncontrollable events Σ1,u, Σ2,u, Σk,u. The problem is now reduced to determining how to compute
the supremal conditionally-controllable sublanguage.

Consider the setting of Problem 1 and define the languages

supCk = supC(Pk(K),L(Gk),Σk,u)

supC1+k = supC(P1+k(K),L(G1)‖supCk,Σ1+k,u)

supC2+k = supC(P2+k(K),L(G2)‖supCk,Σ2+k,u)

(1)

where supC(K,L,Σu) denotes the supremal controllable sublanguage of K with respect to L and Σu, see Cas-
sandras and Lafortune (2008) for more details and algorithms. We have shown that Pk(supCi+k) ⊆ supCk
always holds, for i = 1,2, and that if the converse inclusion holds, we can compute the supremal
conditionally-controllable sublanguage in a distributed way.

Theorem 1: Komenda et al. (2014) Consider the setting of Problem 1 and languages defined in (1). If
supCk ⊆ Pk(supCi+k), for i = 1,2, then supC1+k ‖ supC2+k = supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) , where L =
L(G1‖G2‖Gk).

We can now further improve this result by introducing a weaker condition for nonconflicting supervisors.
Recall that two languages L1 and L2 are nonconflicting if L1‖L2 = L1‖L2.

Theorem 2: Consider the setting of Problem 1 and languages defined in (1). Assume that supC1+k and
supC2+k are nonconflicting. If Pk(supC1+k)∩Pk(supC2+k) is controllable with respect to L(Gk) and Σk,u,
then supC1+k ‖ supC2+k = supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) , where L = L(G1‖G2‖Gk).

Proof. Let supcC = supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) and M = supC1+k ‖ supC2+k. To prove M ⊆ supcC, we
show that M ⊆ P1+k(K) ‖ P2+k(K) = K (by conditional decomposability) is conditionally controllable with
respect to G1,G2,Gk and Σ1,u,Σ2,u,Σk,u. However, Pk(M) = Pk(supC1+k)∩ Pk(supC2+k) (by Lemma 5)
is controllable with respect to L(Gk) and Σk,u by the assumption. Furthermore, P1+k(M) = supC1+k ‖
P2+k

k (supC2+k) implies that supC1+k ‖ P1+k
k (supC1+k) ‖ P2+k

k (supC2+k) = supC1+k ‖ P2+k
k (supC2+k) =

P1+k(M). Thus, P1+k(M) = supC1+k ‖ [P1+k
k (supC1+k) ‖ P2+k

k (supC2+k)] is controllable with respect
to [L(G1)‖supCk] ‖ Pk(M) = L(G1) ‖ Pk(M) by Lemma 2 (because nonconflictingness of supC1+k and
supC2+k implies nonconflictingness of supC1+k and P1+k

k (supC1+k) ‖ P2+k
k (supC2+k)) and by the fact that

Pi+k
k (supCi+k)⊆ supCk, for i = 1,2, cf. Komenda et al. (2014). Similarly for P2+k(M), hence M ⊆ supcC.
To prove the opposite inclusion, it is sufficient to show by Lemma 6 that Pi+k(supcC) ⊆ supCi+k, for

i = 1,2. To prove this note that P1+k(supcC) is controllable with respect to L(G1) ‖ Pk(supcC) and Σ1+k,u,
and L(G1) ‖ Pk(supcC) is controllable with respect to L(G1) ‖ supCk and Σ1+k,u (by Lemma 2) because
Pk(supcC) being controllable with respect to L(Gk) is also controllable with respect to supCk ⊆ L(Gk). By
the transitivity of controllability (Lemma 4), P1+k(supcC) is controllable with respect to L(G1) ‖ supCk
and Σ1+k,u, which implies that P1+k(supcC) ⊆ supC1+k. The other case is analogous, hence supcC ⊆ M
and the proof is complete.

It should be stated here that checking nonconflictingness is computationally demanding as we discuss
at the end of Section 4. However, we have shown how to construct a coordinator for nonblockingness
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in Komenda et al. (2014) based on abstraction satisfying the observer property. The coordinator for non-
blockingness imposes the nonconflictingness on an appropriate subalphabet and, by the observer property,
the nonconflictingness also holds on the whole alphabet. This coordinator can also be used here, but the
goal of the paper is to leave out all restrictive conditions in the prefix-closed case, which is done at Sec-
tion 4. On the way to this goal we first notice that the controllability condition of Theorem 2 is weaker than
to require that supCk ⊆ Pk(supCi+k), for i = 1,2.

Proposition 1: If supCk ⊆ Pk(supCi+k), for i = 1,2, then Pk(supC1+k)∩Pk(supC2+k) is controllable with
respect to L(Gk) and Σk,u.

Proof. This is obvious, because due to the converse inclusion being always true we have that Pk(supCi+k)=
supCk, for i = 1,2. Hence, Pk(supC1+k)∩Pk(supC2+k) = supCk is controllable with respect to L(Gk) and
Σk,u by definition of supCk.

Using the example from Komenda et al. (2014) we can now show that there are languages such that
supCk 6⊆ Pk(supCi+k), but such that Pk(supC1+k)∩Pk(supC2+k) is controllable with respect to L(Gk) and
Σk,u.

Example 1: Let G1 and G2 be generators and K be the language of the generator shown in Fig-
ure 1. Let Σc = {a1,a2,c} and Σk = {a1,a2,c,u}. Let the coordinator Gk = Pk(G1) ‖ Pk(G2). Then K
is conditionally decomposable, supCk = {a1a2,a2a1}, supC1+k = {a2a1u1}, supC2+k = {a1a2u2}, and
supCk 6⊆ Pk(supCi+k). However, Pk(supC1+k)∩Pk(supC2+k) = {ε} is controllable with respect to L(Gk)
and Σk,u. /
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Figure 1. Generators G1 and G2 and specification K.

On the other hand, Pk(supC1+k)∩Pk(supC2+k) is not always controllable with respect to L(Gk) and Σk,u.

Example 2: Let G1 and G2 be generators and K be the language of the generator shown in Figure 2.
Let Σc = {a,c1,c2} and Σk = {a,b}. Let the coordinator Gk = Pk(G1) ‖ Pk(G2). Then the language K
is conditionally decomposable, supCk = {b}, supC1+k = {c1b}, supC2+k = {ε}, and Pk(supC1+k) ∩
Pk(supC2+k) = {ε} is not controllable with respect to L(Gk) = {ab,b} and Σk,u = {b}. /
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Figure 2. Generators G1 and G2 and specification K.

Recall that it is still an open problem how to compute the supremal conditionally-controllable sublan-
guage for a general, non-prefix-closed language.
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The following conditions were required in Komenda et al. (2012b) to prove the main result for prefix-
closed languages. We recall the result here and show that the previous condition is a weaker condition than
the one required in Komenda et al. (2012b).

The projection P : Σ∗→ Σ∗0, where Σ0 ⊆ Σ, is an L-observer for L⊆ Σ∗ if, for all t ∈ P(L) and s ∈ L, P(s)
is a prefix of t implies that there exists u ∈ Σ∗ such that su ∈ L and P(su) = t.

The projection P : Σ∗→ Σ∗0 is output control consistent (OCC) for L ⊆ Σ∗ if for every s ∈ L of the form
s = σ1 . . .σ` or s = s′σ0σ1 . . .σ`, `≥ 1, where s′ ∈ Σ∗, σ0,σ` ∈ Σk, and σi ∈ Σ\Σk, for i = 1,2, . . . , `−1, if
σ` ∈ Σu, then σi ∈ Σu, for all i = 1,2, . . . , `−1.

The OCC condition can be replaced by a weaker condition called local control consistency (LCC) dis-
cussed in Schmidt and Breindl (2008, 2011), see Komenda et al. (2014). Let L be a prefix-closed language
over Σ, and let Σ0 be a subset of Σ. The projection P : Σ∗ → Σ∗0 is locally control consistent (LCC) with
respect to a word s ∈ L if for all events σu ∈ Σ0∩Σu such that P(s)σu ∈ P(L), it holds that either there does
not exist any word u∈ (Σ\Σ0)

∗ such that suσu ∈ L, or there exists a word u∈ (Σu \Σ0)
∗ such that suσu ∈ L.

The projection P is LCC with respect to L if P is LCC for all words of L.

Theorem 3: Komenda et al. (2014) Consider the setting of Problem 1 with a prefix-closed specification
K. Consider the languages defined in (1) and assume that supC1+k and supC2+k are nonconflicting. Let
Pi+k

k be an (Pi+k
i )−1L(Gi)-observer and OCC (resp. LCC) for (Pi+k

i )−1L(Gi), for i = 1,2. Then the parallel
composition supC1+k ‖ supC2+k = supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) , where L = L(G1‖G2‖Gk).

We can now prove that the assumptions of the previous theorem are stronger than the assumptions of
Theorem 2. This is shown in the following lemma and corollary, and summarized in Theorem 4.

Lemma 1: Consider the setting of Problem 1 and the languages defined in (1). Assume that supC1+k and
supC2+k are nonconflicting, and let the projection Pi+k

k : (Σi ∪Σk)
∗ → Σ∗k be an (Pi+k

i )−1L(Gi)-observer
and OCC (resp. LCC) for (Pi+k

i )−1L(Gi), for i= 1,2. Then P1+k
k (supC1+k)∩P2+k

k (supC2+k) is controllable
with respect to Pk(L(G1)) ‖ Pk(L(G2)) ‖ L(Gk) and Σk,u.

Proof. Since Σ1+k ∩Σ2+k = Σk, Lemma 5 implies that P1+k
k (supC1+k)∩P2+k

k (supC2+k) = Pk(supC1+k ‖
supC2+k). By Lemma 7, because Pk

k = id is an L(Gk)-observer, Pk is an L := L(G1‖G2‖Gk)-observer.
Assume that t ∈ Pk(supC1+k ‖ supC2+k), u ∈ Σk,u, and tu ∈ Pk(L) = Pk(L(G1)) ‖ Pk(L(G2)) ‖ L(Gk).
Then there exists s ∈ supC1+k ‖ supC2+k ⊆ L such that Pk(s) = t. By the observer property, there exists
v such that sv ∈ L and Pk(sv) = tu, that is, v = v1u with Pk(v1u) = u. By the OCC property, v1 ∈ Σ∗u,
and by controllability of supCi+k, i = 1,2, sv1u ∈ supC1+k ‖ supC2+k = supC1+k ‖ supC2+k, hence
tu ∈ Pk(supC1+k ‖ supC2+k).

Similarly for LCC: from sv = sv1u ∈ L, by the LCC property, there exists v2 ∈ (Σu \ Σk)
∗ such that

sv2u ∈ L, and by controllability of supCi+k, i = 1,2, sv2u ∈ supC1+k ‖ supC2+k = supC1+k ‖ supC2+k,
hence tu ∈ Pk(supC1+k ‖ supC2+k).

Note that if L(Gk)⊆ Pk(L(G1)) ‖ Pk(L(G2)), which is actually the way we usually define the coordinator
(since we usually define Gk = Pk(G1) ‖ Pk(G2)), we get the following corollary.

Corollary 1: Consider the setting of Problem 1 with L(Gk) ⊆ Pk(L(G1)) ‖ Pk(L(G2)) and the languages
defined in (1). Assume that supC1+k and supC2+k are nonconflicting. Let Pi+k

k : (Σi ∪ Σk)
∗ → Σ∗k be an

(Pi+k
i )−1L(Gi)-observer and OCC (resp. LCC) for (Pi+k

i )−1L(Gi), for i = 1,2. Then P1+k
k (supC1+k)∩

P2+k
k (supC2+k) is controllable with respect to L(Gk) and Σk,u.

Proof. The assumption L(Gk) ⊆ Pk(L(G1)) ‖ Pk(L(G2)) implies that Pk(L(G1)) ‖ Pk(L(G2)) ‖ L(Gk) =
L(Gk).

Finally, as a consequence of Lemma 1 and Theorem 2, we obtain the following result.
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Theorem 4: Consider the setting of Problem 1 with the inclusion L(Gk) ⊆ Pk(L(G1)) ‖ Pk(L(G2)) and
the languages defined in (1). Assume that supC1+k and supC2+k are nonconflicting. Let Pi+k

k be an
(Pi+k

i )−1L(Gi)-observer and OCC (resp. LCC) for (Pi+k
i )−1L(Gi), for i = 1,2. Then the parallel com-

position supC1+k ‖ supC2+k = supcC(K,L,(Σ1,u,Σ2,u,Σk,u)) , where L = L(G1‖G2‖Gk).

The following simple example demonstrates the approach.

Example 3: Database transactions are examples of discrete-event systems that should be controlled to
avoid incorrect behaviors. Transactions are modeled by a sequence of request (r), access (a), and exit
(e) operations. Often, several users access the database, which can lead to inconsistencies when executed
concurrently, because not all interleavings of operations give a correct behavior.

Consider two users with events ri,ai,ei, for i = 1,2. All possible schedules are described by the behavior
of the plant G1‖G2, where G1,G2 are nonblocking generators with Lm(Gi) = {(riaiei)

j | j ≥ 0}, which is
also denoted as (riaiei)

∗, defined as in Figure 3. Naturally, we can control the access event, but not the
other events, hence the set of controllable events is Σc = {a1,a2}. The specification K (Figure 4) describes

1 2 3
r1 a1

e1

1 2 3
r2 a2

e2

Figure 3. Generators Gi, i = 1,2.

the correct behavior consisting in finishing the transaction in the exit stage before another transaction can
proceed to the exit phase.

01 2a1

e1 a2

e2

r1,r2,e1,e2r1,r2,e2 r1,r2,e1

1

a1,a2

Figure 4. Specification K and the coordinator Gk , where supCk = Gk

We can verify that for Σk = {a1,a2}, the specification K and its prefix closure K are conditionally de-
composable with respect to Σ1,Σ2, and Σk. The coordinator is then computed as Gk = Pk(G1)‖Pk(G2).
The projection Pk : Σ∗ → Σ∗k is a K-observer, but it is not an Lm(Gi)-observer for i = 1,2. However, the
projected generators Pk(Gi), i = 1,2, have only one state (Figure 4). Furthermore, it can be verified that
Pk(K) = {a1,a2}∗ is controllable with respect to L(Gk) = Pk(K) and Σk,u = /0. This does not hold for
Pi+k(K) because the language is not included in L(Gi)‖Pk(K), for i = 1,2. Moreover, Pk(K) is Lm(Gk)-
closed, but Pi+k(K) is not Lm(Gi)‖Pk(K)-closed, for i = 1,2. Thus, there do not exist supervisors that would
reach the specification K, cf. Komenda et al. (2014).

Thus, we compute supremal controllable sublanguages supCk (Figure 4) and supC1+k and supC2+k
depicted in Figure 5, which correspond to the supervisor for the coordinator, and local supervisors, re-
spectively. Then the assumptions of Theorem 2 are satisfied. As the language supCk is Lm(Gk)-closed and

1 2 3
r1

a2

a1

a2

e1

1 2 3
r2

a1

a2

a1

e2

Figure 5. Supervisors supC1+k and supC2+k .

supCi+k are Lm(Gi)‖supCk-closed, for i = 1,2, they form a solution for the database problem by Theo-
rem 2. Moreover, the language supC1+k‖supC2+k is nonblocking, hence we do not need a coordinator for
nonblockingness in this example. The solution is actually optimal, measured with respect to the monolithic

7
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solution, that is, the supremal conditionally-controllable sublanguage of K coincides with the supremal
controllable sublanguage of K. Independently on the size of the global plant, the local supervisors have
only three states. /

3.2 Coordination Control with Partial Observations

In this section, we study coordination control of modular DES, where both the coordinator supervisor and
the local supervisors have incomplete (partial) information about occurrences of their events and, hence,
they do not know the exact state of the coordinator and the local plants.

The contribution of this section is twofold. First, basic concepts of conditional observability and con-
ditional normality are simplified in a similar way as it has been done in Komenda et al. (2014). Then,
we propose new sufficient conditions for a distributed computation of the supremal conditionally normal
and conditionally controllable sublanguage. In particular, a weaker condition is presented that combines
the weaker condition for distributed computation of the supremal conditionally controllable sublanguage
presented in Section 3.1 with a similar condition for computation of the supremal conditionally normal
sublanguage. Furthermore, a stronger condition is presented that is easy to check and that works also for
non-prefix-closed specifications.

3.2.1 Conditional Observability

For coordination control with partial observations, the notion of conditional observability is of the same
importance as observability for monolithic supervisory control theory with partial observations.

Definition 2: Let G1 and G2 be generators over Σ1 and Σ2, respectively, and let Gk be a coordinator over
Σk. A language K ⊆ Lm(G1‖G2‖Gk) is conditionally observable with respect to generators G1, G2, Gk,
controllable sets Σ1,c, Σ2,c, Σk,c, and projections Q1+k, Q2+k, Qk, where Qi : Σ∗i → Σ∗i,o, for i = 1+k,2+k,k,
if

(1) Pk(K) is observable with respect to L(Gk), Σk,c, Qk,
(2) P1+k(K) is observable with respect to L(G1) ‖ Pk(K), Σ1+k,c, Q1+k,
(3) P2+k(K) is observable with respect to L(G2) ‖ Pk(K), Σ2+k,c, Q2+k,

where Σi+k,c = Σc∩ (Σi∪Σk), for i = 1,2.

Analogously to the notion of Lm(G)-closed languages, we recall the notion of conditionally-closed lan-
guages defined in Komenda et al. (2011a). A nonempty language K over Σ is conditionally closed with
respect to generators G1, G2, Gk if

(1) Pk(K) is Lm(Gk)-closed,
(2) P1+k(K) is Lm(G1) ‖ Pk(K)-closed,
(3) P2+k(K) is Lm(G2) ‖ Pk(K)-closed.

We can now formulate the main result for coordination control with partial observation. This is a gener-
alization of a similar result for prefix-closed languages given in Komenda et al. (2011b) stated moreover
with the above defined simplified (but equivalent) form of conditional observability.

Theorem 5: Consider the setting of Problem 1. There exist nonblocking supervisors S1, S2, Sk such that

Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)]) = K (1)

if and only if K is (i) conditionally controllable with respect generators G1, G2, Gk and Σ1,u, Σ2,u, Σk,u, (ii)
conditionally closed with respect to generators G1, G2, Gk, and (iii) conditionally observable with respect
to G1, G2, Gk, event sets Σ1,c, Σ2,c, Σk,c, and projections Q1+k, Q2+k, Qk from Σ∗i to Σ∗i,o, for i= 1+k,2+k,k.

8
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Proof. (If) Since the language K ⊆ Lm(G1‖G2‖Gk), we have Pk(K) ⊆ Lm(Gk) is controllable with re-
spect to L(Gk) and Σk,u, Lm(Gk)-closed, and observable with respect to L(Gk), Σk,c, and Qk. It fol-
lows, see Cassandras and Lafortune (2008), that there exists a nonblocking supervisor Sk such that
Lm(Sk/Gk) = Pk(K). Similarly, we have P1+k(K) ⊆ Lm(G1) ‖ Lm(Gk) and P1+k(K) ⊆ (P1+k

k )−1Pk(K),
hence P1+k(K) ⊆ Lm(G1) ‖ Lm(Gk) ‖ Pk(K) = Lm(G1) ‖ Pk(K) = Lm(G1) ‖ Lm(Sk/Gk). This, together
with the assumption that K is conditionally controllable, conditionally closed, and conditionally ob-
servable imply, see Cassandras and Lafortune (2008), that there exists a nonblocking supervisor S1
such that Lm(S1/[G1‖(Sk/Gk)]) = P1+k(K). A similar argument shows that there exists a nonblock-
ing supervisor S2 such that Lm(S2/[G2‖(Sk/Gk)]) = P2+k(K). Since K is conditionally decomposable,
Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)]) = P1+k(K) ‖ P2+k(K) = K.

(Only if) To prove this direction, projections Pk, P1+k, P2+k are applied to (1). The closed-loop lan-
guages can be written as synchronous products, thus (1) can be written as K = Lm(S1) ‖ Lm(G1) ‖ Lm(Sk) ‖
Lm(Gk) ‖ Lm(S2) ‖ Lm(G2) ‖ Lm(Sk) ‖ Lm(Gk), which gives Pk(K)⊆ Lm(Sk) ‖ Lm(Gk) = Lm(Sk/Gk). On the
other hand, Lm(Sk/Gk)⊆ Pk(K), see Problem 1, hence Lm(Sk/Gk) = Pk(K), which means, according to the
basic theorem of supervisory control Cassandras and Lafortune (2008), that Pk(K) is controllable with re-
spect to L(Gk) and Σk,u, Lm(Gk)-closed, and observable with respect to L(Gk), Σk,c, and Qk. Now, the appli-
cation of P1+k to (1) gives P1+k(K)⊆ Lm(S1/[G1‖(Sk/Gk)])⊆ P1+k(K). According to the basic theorem of
supervisory control, P1+k(K) is controllable with respect to L(G1‖(Sk/Gk)) and Σ1+k,u, Lm(G1‖(Sk/Gk))-
closed, and observable with respect to L(G1‖(Sk/Gk)), Σ1+k,c, and Q1+k. Similarly, P2+k(K) is control-
lable with respect to L(G2‖(Sk/Gk)) and Σ2+k,u, Lm(G2‖(Sk/Gk))-closed, and observable with respect to
L(G2‖(Sk/Gk)), Σ2+k,c, and Q2+k, which was to be shown.

3.2.2 Conditional normality

It is well known that supremal observable sublanguages do not exist in general and it is also the case
of conditionally observable sublanguages. Therefore, a stronger concept of language normality has been
introduced.

Let G be a generator over Σ, and let P : Σ∗→ Σ∗o be a projection. A language K ⊆ Lm(G) is normal with
respect to L(G) and P if K = P−1P(K)∩L(G). It is known that normality implies observability Cassandras
and Lafortune (2008).

Definition 3: Let G1 and G2 be generators over Σ1 and Σ2, respectively, and let Gk be a coordinator over
Σk. A language K ⊆ Lm(G1‖G2‖Gk) is conditionally normal with respect to generators G1,G2,Gk and
projections Q1+k,Q2+k, Qk, where Qi : Σ∗i → Σ∗i,o, for i = 1+ k,2+ k,k, if

(1) Pk(K) is normal with respect to L(Gk) and Qk,
(2) P1+k(K) is normal with respect to L(G1) ‖ Pk(K) and Q1+k,
(3) P2+k(K) is normal with respect to L(G2) ‖ Pk(K) and Q2+k.

The following result is an immediate application of conditional normality in coordination control.

Theorem 6: Consider the setting of Problem 1. If the specification K is conditionally controllable with
respect to G1,G2,Gk and Σ1,u,Σ2,u,Σk,u, conditionally closed with respect to G1,G2, Gk, and conditionally
normal with respect to G1,G2,Gk and projections Q1+k,Q2+k,Qk from Σ∗i to Σ∗i,o, for i = 1+k,2+k,k, then
there exist nonblocking supervisors S1, S2, Sk such that Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)]) =K .

Proof. As normality implies observability, the proof follows immediately from Theorem 5.

The following result was proved for prefix-closed languages in Komenda et al. (2011b). Here we gener-
alize it for not necessarily prefix-closed languages.

Theorem 7: The supremal conditionally normal sublanguage always exists and equals to the union of all
conditionally normal sublanguages.
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Proof. We show that conditional normality is preserved under union. Let I be an index set, and let Ki
be conditionally normal sublanguages of K ⊆ Lm(G1‖G2‖Gk) with respect to generators G1, G2, Gk and
projections Q1+k, Q2+k, Qk to local observable event sets, for i ∈ I. We prove that

⋃
i∈I Ki is conditionally

normal with respect to those generators and natural projections.
i) The language Pk(

⋃
i∈I Ki) is normal with respect to L(Gk) and Qk because Q−1

k QkPk(
⋃

i∈I Ki)∩L(Gk) =⋃
i∈I(Q

−1
k QkPk(Ki)∩ L(Gk)) =

⋃
i∈I Pk(Ki) = Pk(

⋃
i∈I Ki) = Pk(

⋃
i∈I Ki), where the second equality is by

normality of Pk(Ki) with respect to L(Gk) and Qk, for i ∈ I.
ii) Note that it holds that Q−1

1+kQ1+kP1+k(∪i∈IKi) ∩ L(G1)‖Pk(∪i∈IKi) = ∪i∈I(Q−1
1+kQ1+kP1+k(Ki)) ∩

∪i∈I(L(G1)‖Pk(Ki))=∪i∈I∪ j∈I (Q−1
1+kQ1+kP1+k(Ki)∩L(G1)‖Pk(K j)) and that the language P1+k(∪i∈IKi)⊆

Q−1
1+kQ1+kP1+k(∪i∈IKi)∩L(G1)‖Pk(∪i∈IKi). For the sake of contradiction, assume that there exist indexes

i 6= j in I such that Q−1
1+kQ1+kP1+k(Ki)∩ L(G1)‖Pk(K j) 6⊆ P1+k(∪i∈IKi). Then the left-hand side must be

nonempty, which implies that there exists x ∈ Q−1
1+kQ1+kP1+k(Ki)∩ L(G1)‖Pk(K j) and x /∈ P1+k(∪i∈IKi).

As x ∈ Q−1
1+kQ1+kP1+k(Ki), there exists w ∈ Ki such that Q1+k(x) = Q1+kP1+k(w). Applying the projection

P′k : Σ∗1+k,o→ Σ∗k,o, we get that P′kQ1+k(x) = P′kQ1+kP1+k(w). As QkP1+k
k = P′kQ1+k and QkPk = P′kQ1+kP1+k

(see Figure 6), we have QkP1+k
k (x) = QkPk(w), that is, P1+k

k (x) ∈ Q−1
k QkPk(Ki). Since P1+k

k (x) ∈ Pk(K j)⊆

Σ∗ Σ∗1+k Σ∗1+k,o

Σ∗k Σ∗k,o

P1+k

Pk

Q1+k

P′kP1+k
k

Qk

Figure 6. A commutative diagram of the natural projections.

L(Gk), the normality of Pk(Ki) with respect to L(Gk) and Qk gives that P1+k
k (x) ∈ Pk(Ki). But then

x ∈ L(G1)‖Pk(Ki), and normality of P1+k(Ki) implies that x ∈ P1+k(Ki) ⊆ P1+k(∪i∈IKi), which is a con-
tradiction.

iii) As the last item of the definition is proven in the same way, the theorem holds.

Given generators G1, G2, and Gk, let

supcCN(K,L,(Σ1,u,Σ2,u,Σk,u),(Q1+k,Q2+k,Qk))

denote the supremal conditionally controllable and conditionally normal sublanguage of the specification
language K with respect to the plant language L = L(G1‖G2‖Gk), the sets of uncontrollable events Σ1,u,
Σ2,u, Σk,u, and projections Q1+k, Q2+k, Qk, where Qi : Σ∗i → Σ∗i,o, for i = 1+ k,2+ k,k.

In the sequel, the computation of the supremal conditionally controllable and conditionally normal sub-
language is investigated. In the same way as in Komenda et al. (2011b), the following notation is adopted.

Consider the setting of Problem 1 and define the languages

supCNk = supCN(Pk(K),L(Gk),Σk,u,Qk)

supCN1+k = supCN(P1+k(K),L(G1)‖supCNk,Σ1+k,u,Q1+k)

supCN2+k = supCN(P2+k(K),L(G2)‖supCNk,Σ2+k,u,Q2+k)

(2)

where the notation supCN(K,L,Σu,Q) denotes the supremal controllable and normal sublanguage of K
with respect to L, Σu, and Q. We recall that the supremal controllable and normal sublanguage always
exists and equals the union of all controllable and normal sublanguages of K, cf. Cassandras and Lafortune
(2008).
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Theorem 8: Komenda et al. (2011b) Consider the setting of Problem 1 with a prefix-closed specification
K and the languages defined in (2). Let Pi+k

k be an (Pi+k
i )−1L(Gi)-observer and OCC (resp. LCC) for

(Pi+k
i )−1L(Gi), for i = 1,2. Assume that the language P1+k

k (supCN1+k)∩P2+k
k (supCN2+k) is normal with

respect to L(Gk) and Qk. Then supCN1+k ‖ supCN2+k = supcCN(K,L,(Σ1,u,Σ2,u,Σk,u),(Q1+k,Q2+k,Qk)) ,
where L = L(G1‖G2‖Gk).

We can now further improve the above result as follows.

Theorem 9: Consider the setting of Problem 1 and the languages defined in (2). Assume that the languages
supCN1+k and supCN2+k are nonconflicting and that P1+k

k (supCN1+k)∩P2+k
k (supCN2+k) is controllable

and normal with respect to L(Gk), Σk,u, and Qk. Then the parallel composition supCN1+k ‖ supCN2+k =
supcCN(K,L,(Σ1,u,Σ2,u,Σk,u),(Q1+k,Q2+k,Qk)) , where L = L(G1‖G2‖Gk).

Proof. To simplify the notation, let supcCN = supcCN(K,L,(E1+k,u,E2+k,u,Ek,u),(Q1+k,Q2+k,Qk)) and
M = supCN1+k ‖ supCN2+k.

To prove M ⊆ supcCN, we show that M ⊆ P1+k(K) ‖ P2+k(K) = K (by conditional decomposabil-
ity) is conditionally controllable with respect to L and Σ1,u,Σ2,u,Σk,u (which follows from Theorem 2),
and conditionally normal with respect to L and Q1+k,Q2+k,Qk (which needs to be shown). However,
Pk(M) = P1+k

k (supCN1+k)∩ P2+k
k (supCN2+k) is normal with respect to L(Gk) and Qk by the assump-

tion. Furthermore, P1+k(M) = supCN1+k ‖ P2+k
k (supCN2+k). Since P1+k(M) ⊆ supCN1+k and Pk(M) ⊆

supCNk (by the assumption), x∈Q−1
1+kQ1+k(P1+k(M))∩L(G1) ‖Pk(M)⊆Q−1

1+kQ1+k(supCN1+k)∩L(G1) ‖
supCNk = supCN1+k (by normality of supCN1+k). In addition, P1+k

k (x) ∈ Pk(M) ⊆ P2+k
k (supCN2+k).

Thus, x ∈ supCN1+k ‖ P2+k
k (supCN2+k) = P1+k(M) by the nonconflictingness of the supervisors. The case

for P2+k(M) is analogous, hence M ⊆ supcCN.
To prove supcCN ⊆ M, it is sufficient by Lemma 6 to show that Pi+k(supcCN) ⊆ supCNi+k, for

i = 1,2. To do this, note that P1+k(supcCN) ⊆ P1+k(K) is controllable and normal with respect to
L(G1) ‖ Pk(supcCN), Σ1+k,u, and Q1+k by definition. Since Pk(supcCN) is controllable and normal with
respect to L(Gk), Ek,u, and Qk, it is also controllable and normal with respect to supCNk ⊆ L(Gk) be-
cause Pk(supcCN)⊆ supCNk. As P1+k(supcCN) is controllable with respect to L(G1) ‖ Pk(supcCN), and
L(G1) ‖Pk(supcCN) is controllable with respect to L(G1) ‖ supCNk by Lemma 2, the transitivity of control-
lability (Lemma 4) implies that P1+k(supcCN) is controllable with respect to L(G1) ‖ supCNk and Σ1+k,u.
Similarly, as P1+k(supcCN) is normal with respect to L(G1) ‖ Pk(supcCN), and L(G1) ‖ Pk(supcCN)
is normal with respect to L(G1) ‖ supCNk by Lemma 9, transitivity of normality (Lemma 8) implies
that P1+k(supcCN) is normal with respect to L(G1) ‖ supCNk and Q1+k. Thus, we have shown that
P1+k(supcCN) ⊆ supCN1+k. The case of P2+k(M) is analogous, hence supcCN ⊆ M and the proof is
complete.

Note that the sufficient condition in Theorem 9 is not practical for verification, although the intersec-
tion is only over the coordinator alphabet that is hopefully small. Unlike controllability, normality is not
preserved by natural projections under observer and OCC assumptions. This would require results on hi-
erarchical control under partial observations that are not known so far. Therefore, we propose a condition
that is (similarly as in the case of complete observations) stronger than the one of Theorem 9, but is easy
to check and, moreover, is sufficient for a distributed computation of the supremal conditionally control-
lable and conditionally normal sublanguage even in the case of non-prefix-closed specifications. Namely,
we observe that controllability and normality conditions of Theorem 9 are weaker than to require that
supCNk ⊆ Pk(supCNi+k), for i = 1,2. The intuition behind the condition supCNk ⊆ Pk(supCNi+k), for
i = 1,2, is that local supervisors (given by supCNi+k) do not need to improve the action by the supervi-
sor for the coordinator on the coordinator alphabet. In this case, the intuition is the same as if the three
supervisors (the supervisor for the coordinator and local supervisors) would operate on disjoint alphabets
(namely Σk, Σ1 \Σk and Σ2 \Σk) and it is well known that there is no problem with blocking and maximal
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permissiveness in this case, because nonconflictness and mutual controllability of modular control are then
trivially satisfied.

Proposition 2: Consider the setting of Problem 1 and the languages defined in (2). If supCNk ⊆
Pk(supCNi+k), for i = 1,2, then Pk(supCN1+k)∩Pk(supCN2+k) is controllable and normal with respect
to L(Gk), Σk,u, and Qk.

Proof. First of all, we have shown that the inclusion supCNk ⊇ Pk(supCNi+k), for i = 1,2, always holds
true. From its definition, Pk(supCNi+k) ⊆ Pk(L(Gi)‖supCNk) ⊆ supCNk and, clearly, Pk(supCNi+k) ⊆
Pk(K) as well. In order to show that Pk(supCNi+k) ⊆ supCNk, it suffices to show that supCNk ∩Pk(K) ⊆
supCNk. This can be proven by showing that supCNk ∩Pk(K) is controllable and normal with respect to
L(Gk), Σk,u, and Qk.

For controllability, let s ∈ supCNk∩Pk(K), u ∈ Σk,u with su ∈ L(Gk). Since there exists t ∈ Σ∗k such that
st ∈ supCNk ∩Pk(K) ⊆ supCNk, we have that s ∈ supCNk as well. Since supCNk is controllable with
respect to L(Gk) and Σk,u, su ∈ supCNk ⊆ Pk(K). Hence, there exists v ∈ Σ∗k such that suv ∈ supCNk ⊆
Pk(K). Altogether, suv ∈ supCNk∩Pk(K), i.e., su ∈ supCNk∩Pk(K).

For normality, let s ∈ supCNk∩Pk(K) and s′ ∈ L(Gk) with Qk(s) = Qk(s′). Recall that s ∈ supCNk as
well. Again, normality of supCNk with respect to L(Gk) and Qk implies that s′ ∈ supCNk. Thus, there exists
v ∈ Σ∗k such that s′v ∈ supCNk ⊆ Pk(K). This implies that s′v ∈ supCNk∩Pk(K), i.e., s′ ∈ supCNk∩Pk(K),
which completes the proof of the inclusion supCNk ⊇ Pk(supCNi+k), for i = 1,2.

According to the assumption that the other inclusions also hold, we have the equalities supCNk =
Pk(supCNi+k), for i = 1,2. Therefore, Pk(supCN1+k)∩Pk(supCN2+k) = supCNk, which is controllable
and normal with respect to L(Gk), Σk,u, and Qk by definition of supCNk.

Now, combining Proposition 2 and Theorem 9 we obtain the corollary below.

Corollary 2: Consider the setting of Problem 1 and the languages defined in (2). If the inclusions
supCNk ⊆ Pk(supCNi+k) hold true for i = 1,2, then we obtain that the parallel composition supCN1+k ‖
supCN2+k = supcCN(K,L,(Σ1,u,Σ2,u,Σk,u),(Q1+k,Q2+k,Qk)) , where L = L(G1‖G2‖Gk).

Proof. Let supcCN = supcCN(K,L,(Σ1,u,Σ2,u,Σk,u), (Q1+k,Q2+k,Qk)) and M = supCN1+k ‖ supCN2+k.
To prove that M is a subset of supcCN, we show that (i) M is a subset of K, (ii) M is conditionally con-
trollable with respect to generators G1, G2, Gk and uncontrollable event sets Σ1,u, Σ2,u, Σk,u, and (iii) M is
conditionally normal with respect to generators G1, G2, Gk and projections Q1+k, Q2+k, Qk. To this aim,
notice that M is a subset of P1+k(K) ‖ P2+k(K) = K, because K is conditionally decomposable. Moreover,
by Lemma 5 and the fact shown in the proof of Proposition 2 that supCNk ⊇ Pk(supCNi+k), for i = 1,2, the
language Pk(M) = Pk(supCN1+k)∩Pk(supCN2+k) = supCNk is controllable and normal with respect to
L(Gk), Σk,u, and Qk. Similarly, Pi+k(M) = supCNi+k ‖ Pk(supCN j+k) = supCNi+k ‖ supCNk = supCNi+k,
for j 6= i, which is controllable and normal with respect to L(Gi) ‖ Pk(M). Hence, M is a subset of supcCN.

The opposite inclusion is shown in Theorem 9, because nonconflictingness is not needed in this direction
of the proof.

4. A posteriori supervisor for the coordinator

In this section we will show that the controllability and normality assumptions of the previous section
can be left out. It is actually natural to impose these properties by a new supervisor that we call an a
posteriori supervisor. We will prove that the use of these supervisors do not alter maximal permissiveness
for nonconflicting supervisors (e.g. in the prefix-closed case), which means that the supremal conditionally
controllable and conditionally normal sublanguage can always be computed in a distributed way.

12
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Consider the setting of Problem 1 and the languages defined in (2). To simplify the notation of this
section, we denote

supcCN = supcCN(K,L,(Σ1+k,u,Σ2+k,u,Σk,u),(Q1+k,Q2+k))

for L = L(G1 ‖ G2 ‖ Gk), and

supCN′k = supCN(Pk(supCN1+k)∩Pk(supCN2+k),L(Gk),Σk,u,Qk) .

Note that supCN′k, the a posteriori supervisor for the coordinator, can be computed in parallel, that is, we
can compute supCN′k = supCN(Pk(supCN1+k),Lk,Σk,u) ∩ supCN(Pk(supCN2+k),Lk,Σk,u) or, in the full
observation case, supC′k = supC(Pk(supC1+k),L(Gk),Σk,u) ∩ supC(Pk(supC1+k),L(Gk),Σk,u). This par-
allel computation is possible because the plant language, L(Gk), is the same in both components of the
intersection, and L(Gk) is trivially mutually controllable with respect to itself, cf. Komenda, van Schuppen,
Gaudin, and Marchand (2008). Such a distributed computation is also important from the complexity view-
point, because instead of computing the supervisor for the projection of composition of local supervisors,
separate supervisors are computed for projection of individual local supervisors. Similarly as in modular
control, their composition (here intersection) is never computed and they operate locally in conjunction with
local supervisors supCNi+k, for i = 1,2, provided the languages on the right-hand sides are nonconflicting
(e.g., prefix-closed). Thus, in the following, we assume that

supCN′k = supCN(Pk(supCN1+k),Lk,Σk,u) ∩ supCN(Pk(supCN2+k),Lk,Σk,u)

= supCN(Pk(supCN1+k),Lk,Σk,u) ∩ supCN(Pk(supCN2+k),Lk,Σk,u) .

and similarly for supC′k.

Theorem 10: Consider the setting of Problem 1 and the languages defined in (2). Let supCN′k be defined
as above. If the languages supCNi+k and supCN′k are synchronously nonconflicting (e.g., prefix-closed) for
i = 1,2, then supCN′k ‖ supCN1+k ‖ supCN2+k = supcCN is the supremal conditionally controllable and
conditionally normal sublanguage of K.

Proof. Let M′ = supCN′k ‖ supCN1+k ‖ supCN2+k and M = supCN1+k ‖ supCN2+k. Then the projection
Pk(M′) = supCN′k ‖ Pk(M) = supCN′k is controllable and normal with respect to L(Gk). Similarly, the
projection Pi+k(M′) = supCNi+k ‖ Pk(supCN j+k) ‖ supCN′k = supCNi+k ‖ supCN′k, for i = 1,2 and j 6= i.
Combining Lemmas 2 and 4, we obtain that Pi+k(M) is controllable with respect to L(Gi) ‖ supCNk ‖
L(Gk) = L(Gi) ‖ supCNk, hence it is also controllable with respect to L(Gi) ‖ supCN′k, for i = 1,2, because
supCN′k ⊆ Pk(supCNi+k)⊆ supCNk. Similarly, using Lemmas 3 and 8, the language is normal with respect
to the same languages and Qi+k. Therefore, M ⊆ supcCN.

To prove the other direction, we need to show that Pi+k(supcCN)⊆ (Pi+k
k )−1(supCN′k), that is, to show

that Pk(supcCN) ⊆ supCN′k. Since Pk(supcCN) is, by definition, controllable and normal with respect to
L(Gk), it means to show that Pk(supcCN)⊆Pk(supCN1+k)∩Pk(supCN2+k). However, note that supcCN⊆
supCN1+k ‖ supCN2+k, since Pi+k(supcCN)⊆ supCNi+k, for i = 1,2, which completes the proof.

An immediate consequence for systems with full observations follows.

Corollary 3: Consider the setting of Problem 1 and the languages defined in (1). Let supC′k be defined as
above. Then supC′k ‖ supC1+k ‖ supC2+k = supcC is the supremal conditionally controllable sublanguage
of K.

In the following example, we illustrate the above results, namely that of Corollary 3, on a simple example.
This example also demonstrates the case where a solution exists, but the sufficient conditions of Theorem 2

13
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Figure 7. Generators G1 and G2

Figure 8. The specification K

Figure 9. The coordinator Gk

Figure 10. Supervisors supCk , supC1+k and supC2+k

are not satisfied. A deeper discussion on this topic can be found in Komenda, Masopust, and van Schuppen
(2015).

Example 4: Consider the generators G1 and G2 shown in Figure 7, where the set of controllable events is
Σc = {a,b,c}. The shared (synchronization) events are a and d. It can be verified that for the choice of Σk =
{x1,x2,a,d}, the specification K shown in Figure 8 is conditionally decomposable. Using the method from
the paper, we compute a coordinator Gk depicted in Figure 9 and three supervisors supCk, supC1+k and
supC2+k depicted in Figure 10. Then the language supC1+k‖supC2+k coincides with the optimal solution
of the monolithic case, even though the parallel composition is not conditionally controllable. Moreover,
it does not satisfy the conditions of Theorem 2, because Pk(supC1+k)∩Pk(supC2+k) coincides with Gk
without the last uncontrollable transition d. The missing event d is the reason why the intersection of
projected local supervisors is not controllable with respect to L(Gk).

Thus, we use Corollary 3 and compute the a-posteriori supervisor supC′k depicted in Figure 11. By

14
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Figure 11. The a-posteriori supervisor supC′k

Corollary 3, the parallel composition supC1+k‖supC2+k‖supC′k coincides with the supremal conditionally
controllable sublanguage of the specification K. However, one can notice that this solution does not coincide
with the optimal solution from the centralized (monolithic) case. /

Note that in the non-prefix-closed case, the assumptions that the languages are synchronously noncon-
flicting are required. For instance, these assumptions are trivially satisfied for prefix-closed languages. If
general, non-prefix-closed languages are considered, it is known that to verify whether a synchronous prod-
uct (of an unspecified number) of generators is synchronously nonconflicting is a PSPACE-complete prob-
lem Rohloff and Lafortune (2005). However, it is the worst case and some optimization techniques could
be found in the literature, see e.g. Flordal and Malik (2006), or a maximal nonconflicting sublanguage
can be computed, cf. Chen and Lafortune (1991). Moreover, the good news of the PSPACE-completeness
is that it is computable in polynomial space. For the general case with non-prefix-closed languages we
have proposed in Komenda et al. (2014)a procedure based on abstraction for computing coordinators for
nonblockingness, which are needed if local supervisors supCNi+k are conflicting.

5. Conclusion

In this paper, we have further generalized several results of coordination control of concurrent automata
with both complete and partial observations. We have presented weaker sufficient conditions for the com-
putation of supremal conditionally controllable sublanguages and supremal conditionally controllable and
conditionally normal sublanguages with simplified concepts of conditional observability and conditional
normality. It has been proven that for prefix-closed languages supremal conditionally controllable and con-
ditionally normal sublanguages can always be computed in a distributed way. It follows that supremal
conditionally controllable and conditionally normal sublanguages are always conditionally decomposable
unlike what we have believed so far.

Our plan is to generalize all these new results into a multi-level coordination control framework in order
to make them applicable for large scale systems consisting of a large number of components. A single
(centralized) coordinator would then include too many events for such large systems, hence it should be
replaced by a multi-level hierarchical structure of coordinators for different groups of systems at all levels
of the hierarchy. In another future work we would like to extend our results to timed systems based on
approximate projections of (max,+) and interval automata and apply our coordination control framework
to DES models of engineering systems.
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Appendix A. Auxiliary results

In this section, we list the auxiliary results.

Lemma 2 (Proposition 4.6 in Feng (2007)): Let Li ⊆ Σ∗i , for i = 1,2, be prefix-closed languages, and
let Ki ⊆ Li be controllable with respect to Li and Σi,u. Let Σ = Σ1 ∪Σ2. If K1 and K2 are synchronously
nonconflicting, then K1 ‖ K2 is controllable with respect to L1 ‖ L2 and Σu.

Lemma 3: Let K1⊆ L1 over Σ1 and K2⊆ L2 over Σ2 be languages such that K1 is normal with respect to L1
and Q1 : Σ∗1→ Σ∗1,o and K2 is normal with respect to L2 and Q2 : Σ∗2→ Σ∗2,o. If K1 and K2 are synchronously
nonconflicting, then K1 ‖ K2 is normal with respect to L1 ‖ L2 and Q : (Σ1∪Σ2)

∗→ (Σ1,o∪Σ2,o)
∗.

16



August 1, 2015 International Journal of Control intjcont

Proof. Q−1Q(K1 ‖ K2)∩L1 ‖ L2 ⊆ Q−1
1 Q1(K1) ‖ Q−1

2 Q2(K2) ‖ L1 ‖ L2 = K1 ‖ K2 = K1 ‖ K2. As the other
inclusion always holds, the proof is complete.

Lemma 4: Komenda et al. (2012b) Let K ⊆ L ⊆M be languages over Σ such that K is controllable with
respect to L and Σu, and L is controllable with respect to M and Σu. Then K is controllable with respect to
M and Σu.

Lemma 5: Wonham (2009) Let Pk : Σ∗→ Σ∗k be a projection, and let Li ⊆ Σ∗i , where Σi ⊆ Σ, for i = 1,2,
and Σ1∩Σ2 ⊆ Σk. Then Pk(L1 ‖ L2) = Pk(L1) ‖ Pk(L2).

Lemma 6: Komenda et al. (2012b) Let Li ⊆ Σ∗i , for i = 1,2, and let Pi : (Σ1∪Σ2)
∗→ Σ∗i be a projection.

Let A⊆ (Σ1∪Σ2)
∗ such that P1(A)⊆ L1 and P2(A)⊆ L2. Then A⊆ L1 ‖ L2.

Lemma 7: Pena, Cury, and Lafortune (2009) Let Li⊆ Σ∗i , for i∈ J, be languages, and let ∪k 6=`
k,`∈J(Σk∩Σ`)⊆

Σ0 ⊆ (∪i∈JΣi)
∗. If Pi,0 : Σ∗i → (Σi∩Σ0)

∗ is an Li-observer, for i ∈ J, then P0 : (∪i∈JΣi)
∗→ Σ∗0 is an (‖i∈J Li)-

observer.

Lemma 8: Let K ⊆ L ⊆M be languages such that K is normal with respect to L and Q, and L is normal
with respect to M and Q. Then, K is normal with respect to M and Q.

Proof. Q−1Q(K)∩ L = K and Q−1Q(L)∩M = L, hence Q−1Q(K)∩M ⊆ Q−1Q(L)∩M = L. It implies
Q−1Q(K)∩M = Q−1Q(K)∩M∩L = K∩M = K.

Lemma 9: Let K1 ⊆ L1 over Σ1 and K2 ⊆ L2 over Σ2 be nonconflicting languages such that K1 is normal
with respect to L1 and Q1 : Σ∗1→ Σ∗1,o and K2 is normal with respect to L2 and Q2 : Σ∗2→ Σ∗2,o. Then K1‖K2

is normal with respect to L1‖L2 and Q : (Σ1∪Σ2)
∗→ (Σ1,o∪Σ2,o)

∗.

Proof. Q−1Q(K1 ‖ K2)∩L1 ‖ L2 ⊆ Q−1
1 Q1(K1) ‖ Q−1

2 Q2(K2) ‖ L1 ‖ L2 = K1 ‖ K2 = K1 ‖ K2. As the other
inclusion always holds, the proof is complete.
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