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Abstract— Coordination control for multi-level discrete-event
systems is generalized to supervisory control with partial
observations. The multi-level system architecture is in this
paper restricted to three levels, which include two levels of
coordination on the two highest levels. At Level 1 a coordinator
coordinates several coordinators of Level 2 and at Level 2 each
coordinator coordinates a set of subsystems of Level 3. The
problem is to synthesize a set of supervisors based on partial
observations and on top-down synthesis, which together achieve
the control objectives. A necessary and sufficient condition
for the existence of such supervisors is three-level conditional
controllability and three-level conditional observability. A pro-
cedure is formulated and proven (Theorem 16) to construct the
supremal three-level conditionally controllable and condition-
ally normal sublanguage of the specification language.

I. INTRODUCTION

Large-scale technological systems consist nowadays of
large networks of subsystems. A realistic model is then a
distributed system of a synchronous product of finite au-
tomata. Supervisory control synthesis of a distributed system
has to overcome the major research issues of complexity
and of nonblockingness. Coordination control of distributed
systems with synchronous communication has been devel-
oped by the authors, see [1] and the references therein, in
which a coordinator restricts the behavior of two or more
subsystems so that, after further control synthesis, safety and
nonblockingness of the distributed system are achieved.

To further limit the complexity of control synthesis,
a multi-level system architecture and multi-level control
synthesis have been developed. In the multi-level system
architecture, there are three levels. At Level 1 a coordinator
coordinates several coordinators of Level 2 and at Level 2
each coordinator coordinates a set of subsystem of Level 3,
see [2]. This architecture considerably limits the computa-
tional complexity due to relatively small event sets at the
various levels.

In [3], the authors have proven results on the existence of
a set of supervisors based on complete observations at the
various levels of a multi-level discrete-event system.

In this paper, supervisory control of multi-level discrete-
event systems is generalized to supremal supervisors based
on partial observations and for a prefixed-closed specifica-
tion. The concepts of three-level conditional observability
and of three-level conditional normality are introduced. It is
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proven that such supervisors based on partial observations
exist if and only if three-level conditional controllability and
three-level conditional observability both hold.

For supremal supervisors the concept of three-level con-
ditional normality is introduced. A procedure is formulated
and proven to be correct for the computation of the supre-
mal three-level conditionally controllable and conditionally
normal sublanguage. The formulations of the concepts are
uniform for all levels and use controllability and normality.

The literature on hierarchical approach to supervisory
control of a network of discrete-event systems is rather
limited. The hierarchical approach of K. Schmidt, cf. [4] is
restricted to two levels of hierarchy.

The content of the paper consists of a summary of coordi-
nation control in Section II, the main results on multi-level
coordination control of multi-level discrete-event systems in
Section III, and concluding remarks in the last section.

II. COORDINATION CONTROL OF PARTIALLY OBSERVED
MODULAR DES

In this section elementary notions of supervisory control
theory are first recalled. The reader is referred to [5] for more
details.

Let A be a finite nonempty set of events, and let A∗ denote
the set of all finite words over A. The empty word is denoted
by ε . Let |A| denote the cardinality of A.

A generator is a quintuple G = (Q,A, f ,q0,Qm), where
Q is the finite nonempty set of states, A is the event set,
f : Q×A→Q is the partial transition function, q0 ∈Q is the
initial state, and Qm ⊆ Q is the set of marked states. In the
usual way, the transition function f can be extended to the
domain Q×A∗ by induction. The behavior of G is described
in terms of languages. The language generated by G is the
set L(G) = {s ∈ A∗ | f (q0,s) ∈ Q} and the language marked
by G is the set Lm(G) = {s ∈ A∗ | f (q0,s) ∈ Qm} ⊆ L(G).

A (regular) language L over an event set A is a set L⊆ A∗

such that there exists a generator G with Lm(G) = L. The
prefix closure of L is the set L = {w ∈ A∗ | there exists u ∈
A∗ such that wu ∈ L}; L is prefix-closed if L = L. In this
paper it is assumed that all languages are prefix-closed.

A (natural) projection P : A∗→ A∗o, for some Ao ⊆ A, is a
homomorphism defined so that P(a) = ε , for a ∈ A\Ao, and
P(a) = a, for a ∈ Ao. The inverse image of P, denoted by
P−1 : A∗o→ 2A∗ , is defined as P−1(s) = {w ∈ A∗ | P(w) = s}.
The definitions can naturally be extended to languages. The
projection of a generator G is a generator P(G) whose behav-
ior satisfies L(P(G)) = P(L(G)) and Lm(P(G)) = P(Lm(G)).

A controlled generator is a structure (G,Ac,P,Γ), where G
is a generator over A, Ac⊆A is the set of controllable events,



Au = A\Ac is the set of uncontrollable events, P : A∗→ A∗o is
the projection, and Γ = {γ ⊆ A | Au ⊆ γ} is the set of control
patterns.

A supervisor for the controlled generator (G,Ac,P,Γ) is a
map S : P(L(G))→ Γ. A closed-loop system associated with
the controlled generator (G,Ac,P,Γ) and the supervisor S is
defined as the smallest language L(S/G)⊆ A∗ such that

1) ε ∈ L(S/G) and
2) if s ∈ L(S/G), sa ∈ L(G), and a ∈ S(P(s)), then also

sa ∈ L(S/G).

Let G be a generator over A, and let K = K ⊆ Lm(G) be
a specification. The aim of supervisory control theory is to
find a supervisor S such that L(S/G) = K. It is known that
such a supervisor exists if and only if K is

1) controllable with respect to L(G) and Au;
that is, KAu∩L⊆ K, and

2) observable with respect to L(G), Ao, and Ac;
that is, for all s ∈ K and σ ∈ Ac, if sσ /∈ K and sσ ∈
L(G), then P−1[P(s)]σ ∩K = /0, where P : A∗→ A∗o.

The synchronous product (parallel composition) of lan-
guages L1 ⊆ A∗1 and L2 ⊆ A∗2 is defined by

L1‖L2 = P−1
1 (L1)∩P−1

2 (L2)⊆ A∗ ,

where Pi : A∗→ A∗i , for i = 1,2, are projections to local event
sets. In terms of generators, it is known that L(G1‖G2) =
L(G1)‖L(G2) and Lm(G1‖G2) = Lm(G1)‖Lm(G2), see [5] for
more details.

We need the following lemma, which should be obvious.
Lemma 1: For any language L ⊆ A∗ and projections P1 :

A∗ → B∗1 and P2 : A∗ → B∗2 with B2 ⊆ B1 ⊆ A, it holds that
P1(L)‖P2(L) = P1(L).

Let G be a generator over A, and let Q : A∗ → A∗o be a
natural projection. A language K ⊆ L(G) is normal with
respect to L(G) and Q if K = Q−1Q(K)∩L(G).

For prefix-closed languages that are exclusively considered
in this paper nonconflictness holds trivially, hence controlla-
bility is preserved by the synchronous product. It is easy to
show that the same holds for normality.

Lemma 2: For i = 1,2, . . . ,n, let Ki ⊆ Li be controllable
with respect to Li ⊆ A∗i and Ai,u, and normal with respect to
Li and Qi, where Qi : A∗i → A∗i,o are natural projections that
define partial observations in subsystems. Then ‖n

i=1Ki is con-
trollable with respect to ‖n

i=1Li and ∪n
i=1Ai,u and normal with

respect to ‖n
i=1Li and Q, where Q : (∪n

i=1Ai)
∗→ (∪n

i=1Ai,o)
∗

is the natural projection that describes partial observations
over the global alphabet.

Now we recall the basic notions of coordination con-
trol [1]. A language K over ∪n

i=1Ai is conditionally decom-
posable with respect to alphabets (Ai)

n
i=1 and Ak, where

∪i6= j
1≤i, j≤n(Ai∩A j)⊆ Ak ⊆ ∪n

i=1A j, if

K = ‖n
i=1 Pi+k(K) ,

for projections Pi+k from ∪n
j=1A j to Ai∪Ak, for i= 1,2, . . . ,n.

The alphabet Ak is referred to as a coordinator alphabet and

satisfies the conditional independence property, that is, Ak
includes all shared events:

Ash = ∪i6= j
1≤i, j≤n(Ai∩A j)⊆ Ak .

This has the following well-known impact.
Lemma 3 ([6]): Let Pk : A∗→ A∗k be a projection, and let

Li be a language over Ai, for i= 1,2, . . . ,n, and ∪i 6= j
1≤i, j≤n(Ai∩

A j)⊆ Ak. Then Pk(‖n
i=1Li) = ‖n

i=1Pk(Li).
The problem of coordination control synthesis is now

recalled.
Problem 4: Let Gi, for i = 1,2, . . . ,n, be local generators

over the event sets Ai of a modular plant G = ‖n
i=1Gi, and

let Gk be a coordinator over an alphabet Ak. Consider a
prefix-closed specification language K ⊆ L(G‖Gk). Assume
that Ak ⊇ Ash and that the specification language K is
conditionally decomposable with respect to event sets (Ai)

n
i=1

and Ak.
The global specification is divided into the local subtasks

and the coordinator subtask as in [7]. The coordinator
takes care of its “part” of the specification, namely Pk(K),
i.e., L(Sk/Gk) ⊆ Pk(K). Similarly, the supervisors Si take
care of their corresponding “parts” of the specification,
namely Pi+k(K), i.e., L(Si/[Gi‖(Sk/Gk)])⊆ Pi+k(K), for i =
1,2, . . . ,n.

The aim is to determine the supervisors S1,S2, . . . ,Sn,
and Sk for the respective generators so that the closed-loop
system with the coordinator is such that

‖n
i=1 L(Si/[Gi‖(Sk/Gk)]) = K . /

Conditional controllability along with conditional observ-
ability form an equivalent condition for a language to be
achieved by the closed-loop system within our coordination
control architecture, see below.

A language K ⊆ L(G1‖G2‖ . . .‖Gn‖Gk) is conditionally
controllable for generators G1,G2, . . . ,Gn and a coordinator
Gk and uncontrollable alphabets Ai,u, i = 1,2, . . . ,n, and Ak,u
if

1) Pk(K) is controllable with respect to L(Gk) and Ak,u,
and

2) Pi+k(K) is controllable with respect to L(Gi) ‖ Pk(K)
and Ai+k,u = (Ai∪Ak)∩Au, for i = 1,2, . . . ,n.

For coordination control with partial observations, the
notion of conditional observability is of the same importance
as observability for monolithic supervisory control theory
with partial observations. We recall that the supervisors Si,
i = 1,2, . . . ,n, are supervisors based on partial observations,
because they have only information about observable events
from Ai,o and observable coordinator events Ak,o, but do not
observe events from Ai+k \ (Ai,o∪Ak,o).

Let Gi be generators over the event sets Ai, i = 1,2, . . . ,n,
and let Gk be a coordinator over Ak. A language K ⊆
L(G1‖G2‖ . . .‖Gn‖Gk) is conditionally observable with re-
spect to the generators Gi and Gk, controllable sets Ai,c and
Ak,c, and projections Qi+k : A∗i+k → A∗i+k,o, for i = 1,2, . . . ,n
and Qk : A∗k → A∗k,o, if

1) Pk(K) is observable with respect to L(Gk), Ak,c, Qk,



2) Pi+k(K) is observable with respect to L(Gi) ‖ Pk(K),
Ai+k,c = Ac∩ (Ai∪Ak), and Qi+k, for i = 1,2, . . . ,n.

We can now formulate the main existential result for
coordination control with partial observation.

Theorem 5: Consider the setting of Problem 4. There exist
supervisors S1,S2, . . . ,Sn and Sk based on partial observations
such that

‖n
i=1 L(Si/[Gi‖(Sk/Gk)]) = K (1)

if and only if K is
1) conditionally controllable with respect to the genera-

tors Gi and Gk and the uncontrollable sets Ai,u and
Ak,u, for i = 1,2, . . . ,n, and

2) conditionally observable with respect to Gi and Gk,
event sets Ai,c and Ak,c, and projections Qi+k and Qk,
for i = 1,2, . . . ,n.

III. MULTI-LEVEL COORDINATION CONTROL WITH
PARTIAL OBSERVATIONS

In this section coordination control of DES with partial
observations recalled in the previous section is generalized
to the multi-level setting. Similarly as in the complete ob-
servation case [3], [2], the subsystems are organized into
groups on the lowest level of the hierarchy and a low-level
coordinator will be assigned to each group. The high-level
coordinator ensures communication among these groups.

A. Existential results of three-level coordination control

We first recall existential results for the three-level co-
ordination control with complete observations from [2] and
constructive results from [3].

It is assumed that G=G1‖G2‖ . . .‖Gn and that the subsys-
tems are organized into m≤ n groups I j, for j = 1,2, . . . ,m.
The multi-level structure of the subsystems and their coor-
dinators is displayed on Fig. 1. The notation

AIr =
⋃

i∈Ir
Ai

is used in the paper. Here PIr denotes the projection PIr :
A∗→ A∗Ir . The notation PIr+k : A∗→ (AIr ∪Ak)

∗ is then used
for the projection to group events extended by the high-level
coordinator events. Similarly, Pj+kr+k : A∗→ (A j∪Akr ∪Ak)

∗

denotes the projection to the event set A j of an automaton G j
belonging to the group Ir extended by the event set Akr of the
group coordinator for the low-level group Ir and by the event
set Ak of the high-level coordinator. We have introduced the
corresponding notion of conditional decomposability in [2].

Definition 6 (three-level conditional decomposability):
A language K ⊆A∗ is called three-level conditionally decom-
posable with respect to the alphabets A1,A2, . . . ,An, the high-
level coordinator alphabet Ak, and the low-level coordinator
alphabets Ak1 ,Ak2 , . . .Akm if

K = ‖m
r=1 PIr+k(K) and PIr+k(K) = ‖ j∈Ir Pj+kr+k(K)

for r = 1,2, . . . ,m. /
It should be noted that on the right-hand side of the

second equation in Definition 6, the natural projection in-
cludes events from both the group coordinator Akr and the

high-level coordinator Ak. Note that on the left-hand side
there can be events outside the group Ir, because the high-
level coordinator alphabet includes shared events between
different low-level groups. Therefore, these events should
also be included on the right-hand side.

Problem 7 (three-level coordination control problem):
Consider the modular system G = G1‖G2‖ . . .‖Gn along
with the three-level hierarchical structure of the subsystems
organized into groups I j, j = 1,2, . . . ,m ≤ n, on the low
level. The synchronous products ‖i∈I j Gi, j = 1,2, . . . ,m,
then represent the m high-level systems. The coordinators
Gk j are associated to groups of subsystems {Gi | i ∈ I j},
j = 1,2, . . . ,m. The three-level coordination control problem
consists in synthesizing the supervisor Si for each low-level
system Gi, i = 1,2, . . . ,n, and the high-level supervisor Sk j

supervising the group coordinator Gk j , j = 1,2, . . . ,m, such
that the specification K = K̄⊆ L(G) is met by the closed-loop
system, i.e.,

‖m
j=1‖i∈I j L(Si/[Gi ‖ (Sk j/Gk j)]) = K . /

In this paper the distinguishing feature is that all supervi-
sors have only partial observations of their respective event
sets. Moreover, we will present a generalization of sufficient
conditions in the constructive part of the paper and it is at
the same time a generalization of sufficient conditions in the
complete-observations case presented in [3].

Remark 8: In [2] we have proposed a simplification. We
increase the low-level coordinator alphabets Ak j that con-
tain shared events among subsystems of the group I j, j =
1,2, . . . ,m, by making its union with the high-level coordi-
nator alphabet Ak, i.e., we put Ak j := Ak j ∪Ak, j = 1,2, . . . ,m.
We recall that Ak contains only events shared between differ-
ent groups of subsystems, that is, Ak ⊇

⋃k 6=`
k,`∈{1,2,...,m}(AIk ∩

AI`), which is typically a much smaller set than the set of
shared events (between two or more subsystems). Otherwise
stated, we include into the alphabets Ak j of the group
coordinators also events from the global coordinator set (if
this is nonempty). We recall that we first construct Ak by
extending the set of events that are shared among the low-
level groups. i.e.,

Ash =
⋃k 6=l

k,`∈{1,2,...,m}(AIk ∩AI`) .

This set is typically much smaller than the set of all shared
events, because many events are shared only among sub-
systems belonging to a given low-level group and these do
not count for Ash. We find Ak as an extension of Ash using
a method described in [8] such that the first equation of
Definition 6 holds true.

We recall that in the prefix-closed case the coordinators
(both the high-level and the group coordinators) are actually
determined by the corresponding alphabets from Definition 6
as projections of the plant to these alphabets. The simpli-
fication described above enables us to use only the group
coordinators Gk j in all definitions below, which is more
concise than using Gk j‖Gk, but we have to bear in mind
that Gk j may also contain the high-level coordinator events
belonging to other groups than I j. /
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Fig. 1. The multi-level control architecture under consideration.

Formally, the group coordinators Gk j , j = 1,2, . . . ,m, are
computed using Algorithm 1 below. We emphasize that Gk j

Algorithm 1 Computation of the group coordinators.
For a specification K, the coordinator Gk j of the j-th group
of subsystems {Gi | i ∈ I j} is computed as follows.

1) Set Ak j =
⋃k 6=`

k,`∈I j
(Ak ∩A`) to be the set of all shared

events of systems from the group I j.
2) Extend Ak j so that PIr+k(K) is conditional decompos-

able with respect to (Ai)i∈I j and Ak j , for instance using
a method described in [8].

3) Let coordinator Gk j = ‖n
i=1Pk j(Gi).

are computed in a distributed way and Ak j might be extended
further so that Pk j have the observer property [6], which
makes Pk j(Gi) smaller than Gi. We recall that with the defi-
nition that Ak ⊆ Ak j described in Remark 8, we can simplify
L(Gk)‖L(Gk j) of [2] to L(Gk j). Indeed, by our choice of
the coordinators, L(Gk)‖L(Gk j) = Pk(L)‖Pk j(L) = Pk j(L) =
L(Gk j), where L= ‖n

i=1L(Gi) is the global plant language and
the second equality holds by Lemma 1. Therefore, instead of
the low-level coordinators Gk j , j = 1,2, . . . ,m, for subsystems
belonging to the individual groups {Gi | i∈ I j} and the high-
level coordinators Gk that coordinate the different groups,
we are using only the low-level (group) coordinators Gk j ,
but over larger alphabets compared to [2].

Since the only known condition ensuring that the projected
generator is smaller than the original one is the observer
property [9] we might need to further extend the alphabets
Ak j so that the projection Pk j is an L(Gi)-observer, for all
i ∈ I j.

The key concept is the following.
Definition 9 ([2]): Consider the setting and notations of

Problem 7, and let Gk be a coordinator. A language K ⊆
L(‖n

i=1Gi) is three-level conditionally controllable with re-
spect to the generators G1, G2, . . . , Gn, the local alphabets
A1, A2, . . . , An, the low-level coordinator alphabets Ak1 ,

Ak2 , . . . , Akm , and the uncontrollable alphabet Au if for all
j = 1,2, . . . ,m

1) Pk j(K) is controllable with respect to L(Gk j) and Ak j ,u,
2) Pi+k j(K) is controllable with respect to L(Gi) ‖ Pk j(K)

and Ai+k j ,u, for all i ∈ I j. /

The original version of three-level conditional controlla-
bility from [2] is simplified by replacing the composition
L(Gk) ‖ L(Gk j) by L(Gk j) as discussed in Remark 8. For
the sake of brevity K will be called three-level conditionally
controllable with respect to Gi, i ∈ I`, and Gk` , where some
sets are not referenced.

For modular DES with partial observations and three level
hierarchy the following concept is needed.

Definition 10: A language K ⊆ L(‖n
i=1Gi) is three-level

conditionally observable with respect to the generators G1,
G2, . . . , Gn, the local alphabets A1, A2, . . . , An, the low-level
coordinator alphabets Ak1 , Ak2 , . . . , Akm , and the correspond-
ing natural projections if for j = 1,2, . . . ,m

1) Pk j(K) is observable with respect to L(Gk j) and Qk j ,
2) Pi+k j(K) is observable with respect to L(Gi) ‖ Pk j(K)

and Qi+k j , for i ∈ I j. /

The main existential result of multi-level coordination
control stated below is a generalization of the one from [2].

Theorem 11: Let K be three-level conditionally decom-
posable with respect to the local alphabets A1, A2, . . . , An,
the high-level coordinator alphabet Ak, and the low-level
coordinator alphabets Ak1 , Ak2 , . . . , Akm , and let the multi-
level structure of the groups of subsystems, coordinators and
corresponding supervisors under partial observations be as
described in Problem 7. There exist supervisors Si, i ∈ I j,
for the low-level systems within any group of low-level
systems {Gi | i ∈ I j}, j = 1,2, . . . ,m, and supervisors Sk j ,
j = 1,2, . . . ,m, for the low-level coordinators such that

‖m
j=1‖i∈I j L(Si/Gi ‖ (Sk j/Gk j)) = K (1)

if and only if K is three-level conditionally controllable and
three-level conditionally observable.



B. Generalized constructive results

If the specification fails to satisfy the necessary and suffi-
cient conditions for being achievable then it is customary in
supervisory control theory to construct a maximal achievable
sublanguage. This applies also to the multi-level coordination
control architecture for modular DES. We recall from [3] that
in the case specification K fails to be three-level conditionally
controllable, the supremal three-level conditionally control-
lable sublanguage always exists and can be computed in a
distributive way.

It is not surprising that three-level conditional observabil-
ity is not closed under language unions as it is the case of
(one-level) conditional observability as well as observability
in the monolithic framework. Therefore, we propose three-
level conditional normality that is stronger, but closed under
language unions.

Definition 12: A language K ⊆ L(‖n
i=1Gi) is three-level

conditionally normal with respect to the generators G1, G2,
. . . , Gn, the local alphabets A1, A2, . . . , An, the low-level co-
ordinator alphabets Ak1 , Ak2 , . . . , Akm , and the corresponding
natural projections if for all j = 1,2, . . . ,m

1) Pk j(K) is normal with respect to L(Gk j) and Qk j ,
2) Pi+k j(K) is normal with respect to L(Gi) ‖ Pk j(K) and

Qi+k j , for all i ∈ I j. /

Theorem 13: Three-level conditional normality is pre-
served under arbitrary unions, hence the supremal three-level
conditionally normal language always exists.

The computation of conditionally controllable and con-
ditionally normal sublanguages is an important issue if the
specification fails to satisfy these conditions. By Theorem 13,
the supremal three-level conditionally normal sublanguage
of a specification K always exists. Below we propose a
procedure to compute the supremal three-level conditionally
controllable and conditionally normal sublanguage of K with
respect to the three level hierarchical structure of the system,
denoted by sup2cCN(K,L,A,Q) that always exists as well,
since the three-level conditional-controllability is already
known to preserve language unions [3].

Similarly as in the centralized coordination control we
introduce the following notation. For all j = 1,2, . . . ,m and
i ∈ I j,

supCNk j
= supCN(Pk j(K),L(Gk j),Ak j ,u,Qk j) (2)

supCNi+k j
= supCN(Pi+k j(K),L(Gi)‖supCNk j

,Ai+k j ,u,Qi+k j)

where supCN(K,L,Au,Q) denotes the supremal sublanguage
of K controllable with respect to L and Au and normal with
respect to L and the natural projection Q, see [5].

As in the centralized coordination, the following inclusion
always holds true.

Lemma 14: For all j = 1,2, . . . ,m and for all i ∈ I j, we
have that P

i+k j
k j

(supCNi+k j
)⊆ supCNk j

.
Transitivity of controllability and normality is needed later.
Lemma 15 ([1]): Let K ⊆ L ⊆ M be languages over A

such that K is controllable with respect to L and Au and
normal with respect to L and Q, and L is controllable with

respect to M and Au and normal with respect to M and Q.
Then K is controllable with respect to M and Au and normal
with respect to M and Q.

The notation supcCN j = ‖i∈I j supCNi+k j
is chosen for the

resulting language of the (centralized) coordination control
applied in the low-level group I j. Then we have the following
result.

Theorem 16: Consider Problem 7 and the languages de-
fined in (2). For j = 1,2, . . . ,m and i ∈ I j, let the languages
P

i+k j
k j

(supCNi+k j
) be controllable with respect to L(Gk j) and

Ak j ,u, and normal with respect to L(Gk j) and Qk j , and let

P
I j
k (supcCN j) be controllable with respect to L(Gk) and Ak,u,

and normal with respect to L(Gk) and Qk. Then

sup2cCN(K,L,A,Q) = ‖m
j=1‖i∈I j supCNi+k j

.

Remark 17: (i) In Theorem 16, sufficient conditions im-
posed on the interaction between the Levels 1 and 2 and
Levels 2 and 3 are made homogeneous, which generalizes
the corresponding results [3, Theorem 14] in the complete
observation case in two ways at the same time. On one hand
it is a generalization to partial observations, but the observer
and OCC or LCC sufficient conditions have been weakened,
which has an important impact discussed in point (ii) be-
low. Moreover, the uniformity of the weakened conditions
(namely, for both levels of interfaces, they are formulated
in terms of controllability and normality of supervisors with
respect to coordinators) makes the generalization to arbitrary
number of levels easy.

(ii) There is a natural way how to impose controllability
and normality conditions of supervisors with respect to coor-
dinators on the next higher level. It suffices to synthesize new
supervisors under partial observations, where supervisors
on different levels will play the role of (uncontrollable)
specifications and plant languages will be the corresponding
coordinators on the next higher level.

(iii) Note that controllability and normality conditions on
both levels are not suitable conditions for verification. We
have shown in [3] that for the low-level controllability con-
dition there exist two stronger checkable conditions recalled
below. In this paper, we have weakened the (stronger) high-
level checkable condition formulated in terms of observer
and LCC properties to the controllability condition. There
exist similar stronger conditions that imply normality, based
on local observational consistency of [10], but it is not clear
yet whether this condition is decidable at all. However, as we
have mentioned in (ii), if normality at one or both interfaces
does not hold, it can be imposed by a new supervisor.
More formally, we define a posteriori supervisors on both
high-level and all low-level coordinator alphabets given by
languages

supCN′k = supCN(Pk(supcCN j),L(Gk),Ak,u,Qk)

for imposing controllability and normality with respect to
L(Gk) and

supCN′k j
=‖i∈I j supCN(Pk j(supCNi+k j

),L(Gk j),Ak j ,u,Qk j)



for imposing controllability and normality with respect to
L(Gk). It can be shown that ‖m

j=1‖i∈I j supCNi+k j
further

restricted by these supervisors will always satisfy all con-
trollability and normality conditions required in Theorem 16.
Moreover, it is easy to check that supCN′k can be computed
in the modular way as follows:

supCN′k = supCN(Pk(‖i∈I j supCNi+k j
),L(Gk),Ak,u,Qk)

= ∩i∈I j supCN(Pk(supCNi+k j
),L(Gk),Ak,u,Qk) .

This is because it is a special case of modular control with
multiple prefix-closed specifications for a single plant Gk.

/

We note that the equality in Lemma 14 implies the suffi-
cient conditions of Theorem 16. Indeed, if Pk j(supCNi+k j

)⊆
supCNk j

, for all j = 1,2, . . . ,m and i ∈ I j, then in particu-
lar Pk j(supCNi+k j

) is controllable and normal with respect
to L(Gk j). Hence, ∩i∈I j Pk j(supCNi+k j

) is controllable and
normal with respect to L(Gk j), for all j = 1,2, . . . ,m.

Similarly, there is a sufficient condition for controllability
in terms of observer and OCC conditions (that can also be
weakened to LCC of [4]). These conditions are well known
in hierarchical supervisory control and an interested reader
can find the definitions of these conditions in [3].

Proposition 18: [3] Consider the setting in the case of
complete observations with supCNi+k j

replaced by supCi+k j
.

If for all j = 1,2, . . . ,m, P
k j
k is an L(Gk j)-observer and OCC

for L(Gk j), and for all i∈ I j, P
i+k j
k j

(supCi+k j
) = supCk j

, then
sup2cC(K,L,Ai+k j) = ‖m

j=1 ‖i∈I j supCi+k j
.

Finally, we emphasize that even without the above suffi-
cient conditions ‖m

j=1‖i∈I j supCNi+k j
is controllable and nor-

mal with respect to L(G), but we cannot prove that it is three-
level conditionally controllable and conditionally normal.
These conditions are, however, necessary for the language
‖m

j=1‖i∈I j supCNi+k j
to be achievable in our multi-level coor-

dination control architecture under partial observations as we
have shown in Theorem 11. Similarly, we cannot guarantee
the maximal permissiveness with respect to the three-level
coordination control architecture. Therefore, in the case these
conditions are not satisfied, it is reasonable to synthesize
supervisors that make them hold, which is a natural approach
knowing that these conditions are formulated in terms of
controllability and observability for both level interfaces.

IV. CONCLUDING REMARKS

We have extended multi-level coordination control to par-
tially observed modular discrete-event systems. A construc-
tive algorithm for the computation of the supremal three-level
conditionally controllable and conditionally normal sublan-
guages have been presented. Moreover, we have generalized
the sufficient condition for the computation of the supremal
three-level conditionally controllable language that has now
the same form for both high-level and low-level coordinators.
It should be noted that recently a weaker condition than
normality, called relative observability, has been proposed for

monolithic partially observed DES, cf. [11]. It is then possi-
ble to introduce a distributed version of relative observability,
conditional relative observability [12].

This work opens the way to combine top-down and
bottom-up approach. It turns out that bottom-up approach
is better suited for handling nonblockingness, because non-
blocking is best to be guaranteed first within low-level
groups and then in the higher level between different groups.
Moreover, it follows from the main constructive theorem that
the sufficient conditions on normality between the different
levels of the hierarchy can be naturally met by computing
the appropriate supervisors that will guarantee the normality
conditions. It appears that the best way to do it is in the
bottom-up way: first a supervisor on low-level coordinator
alphabets are computed and then the supervisors on the
high-level coordinator alphabet is computed. Unlike previous
approaches this means that we do not need to extend the
respective coordinator alphabets to meet the sufficient con-
ditions, but we can design supervisors to meet the conditions
on the current coordinator alphabets.
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