
A Bridge between Decentralized and Coordination Control

Jan Komenda and Tomáš Masopust

Abstract— In decentralized supervisory control, several local
control agents (supervisors) cooperate to achieve a common
goal, expressed by a safety specification and/or by nonblocking-
ness. It is well-known that coobservability is the key condition
to achieve the specification as the resulting language of the
controlled system. One of the most important problems is
to compute a coobservable sublanguage of the specification.
This paper shows how recent results in coordination control of
modular discrete-event systems help to construct a coobservable
sublanguage in a computationally cheap way. The impact of
coordination control on decentralized control is discussed in
detail.

I. INTRODUCTION

Decentralized supervisory control of discrete-event sys-
tems in the Ramadge-Wonham framework has been devel-
oped in [19]. It is based on distributing overall actuator and
sensor capabilities among several local control agents, called
supervisors, and motivated by the decrease of computational
complexity—the overall task is divided into local tasks for
individual supervisors, each of which reacts according to a
partial observation of the system’s moves. Each supervisor
can issue its own control decision on enabling or disabling an
event based on its observation of the system behavior, which
is formally given as a projection of the system behavior.
The global control action of the decentralized control archi-
tecture is then given by a fusion rule on the local control
actions. There are many different control policies that are
based on two elementary ones, namely the conjunctive and
permissive (C & P) policy, and the disjunctive and antiper-
missive (D & A) policy. For any such a decentralized control
architecture, a corresponding notion of coobservability has
been proposed, which together with controllability form the
necessary and sufficient conditions to achieve a specification
as the resulting behavior of the closed-loop system.

However, almost all results available in the literature
provide existential results. There are only a few papers
providing constructive results, namely, how to compute a
controllable and coobservable sublanguage of a specification
that fails to satisfy these properties. It is in general considered
as a computationally difficult problem, but the existence of a
set of local supervisors that enforce the safety specification
(the behavior of the controlled system is included in the
specification) is still decidable when nonblockingness is not
required unlike the general problem. Indeed, if the marked
language of the controlled system has to be included in the
specification so that the controlled system is nonblocking,

Institute of Mathematics, Academy of Sciences of the Czech Republic,
Žižkova 22, 616 62 Brno, Czech Republic. Emails: komenda@ipm.cz,
masopust@math.cas.cz

then the existence of such local supervisors has been shown
undecidable in [21], [22].

Another approach to ensure coobservability of a specifica-
tion is to extend locally observable events by communication
among local supervisors. There exist decentralized control
problems that cannot be solved without enriching locally
observable events via communication. Decentralized control
with communicating supervisors, where an occurrence of
transitions visible to one supervisor can be communicated to
other supervisors, has been studied in [1], [17]. Nowadays,
there exist more advanced architectures of decentralized
supervisory control, such as with conditional decision (in-
ferencing) [25] or even multi-level inferencing [14], [20].
A general approach consisting in several decentralized su-
pervisory control architectures running in parallel has been
proposed in [4]. Note that only the original C & P architecture
is considered in this paper, because it is closely related to
the coordination control architecture of [9], [12]. The other
decentralized control architectures would require a different
coordination control architecture of modular systems that
should be developed first so that it matches (can be applied
to) these architectures.

In this paper, we focus on the computation of a control-
lable and coobservable sublanguage using the coordination
control approach [9], [12], which can be seen as a modular
control with communication, where local supervisors com-
municate the occurrence of some events (called coordinator
events) via a coordinator.

Our study is limited to the original (C & P) control ar-
chitecture [19], [24], and is motivated by the relationship
between decentralized and more structured modular supervi-
sory control and their key concepts: (C & P) coobservability
and decomposability. This relationship has been investigated
in [8], where the decentralized supervisory control frame-
work is plugged into the supervisory control framework,
which makes it possible to benefit from richer construc-
tive results available in modular supervisory control. The
approach is based on the concurrent (decomposable) over-
approximation of the decentralized control plant, where no
concurrent structure is known. In decentralized supervisory
control, there is no assumption on the plant. In [8], both the
system and the specification are replaced with their infimal
decomposable superlanguages with respect to local obser-
vation alphabets. However, in the (likely) case where the
decentralized control specification fails to be decomposable,
one only computes a solution of the decentralized control
problem for this new specification, and the controllable and
coobservable sublanguage computed using modular control
often fails to be included in the specification. Otherwise



stated, the authors of [8] assume that the constructed sub-
language is included in the specification.

This is the point, where our coordination control comes
into the picture because we can benefit from the recent con-
structive results. Coordination control overcomes the prob-
lem of an indecomposable specification by making it decom-
posable using a coordinator (we then speak about conditional
decomposability). Moreover, the approach of [8] requires
mutual controllability among projected systems to ensure
coobservability of the decomposable over-approximation of
the specification. This can be omitted if constructive results
of coordination control are applied.

Decomposable over-approximations have also been con-
sidered in [7]. In that paper, however, decomposability of
the specification is an additional assumption, whereas in this
paper, coobservability is enforced by the construction as a
consequence of the coordination control theory [12].

In this paper, we summarize how decentralized supervisory
control can benefit from constructive results of modular and
coordination control. A procedure to compute a control-
lable and coobservable sublanguage of a specification with
respect to possibly extended local observations (enriched
by communication) is presented. The paper is organized as
follows. Section II recalls the Ramadge-Wonham supervisory
control framework, Section III presents the decentralized
supervisory control problem, and Section IV gives a brief
summary of constructive results of coordination control.
Section V shows how decentralized supervisory control can
benefit from recent results of coordination control using the
decomposable over-approximation of the plant. Concluding
remarks together with hints on future extensions of the
proposed approach can be found in Section VI.

II. CONTROL OF DISCRETE-EVENT SYSTEMS

Before the technical development, basic notations of su-
pervisory control needed in this paper are recalled, see [3],
[23]. An alphabet, A, is a finite nonempty set. The set of all
finite words over A is denoted by A∗. The empty string is
denoted by ε. A language over A is a subset of A∗.

A generator is a quintuple

G = (Q,A, f, q0, Qm) ,

where Q is a finite set of states, A is an alphabet (of events),
f : Q×A→ Q is a partial transition function, q0 ∈ Q is the
initial state, and Qm ⊆ Q is a set of marked states. As usual,
f is extended to f : Q×A∗ → Q. The language generated
by G is defined as the set L(G) = {s ∈ A∗ | f(q0, s) ∈ Q},
and the marked language of G as the set Lm(G) = {s ∈
A∗ | f(q0, s) ∈ Qm}.

For alphabets A0 ⊆ A, a projection P : A∗ → A∗0 is a
morphism defined by

P (a) =

{
ε, if a ∈ A \A0

a, if a ∈ A0 .

The inverse image of P is defined as

P−1(a) = {s ∈ A∗ | P (s) = a} .

These definitions can naturally be extended to languages. We
use the notation Ai+j = Ai ∪Aj to denote the union of the
corresponding alphabets, and

P i+k
j : A∗i+k → A∗j

to denote the projection from A∗i+k to A∗j . Similarly, notation
Pi+k : A∗ → A∗i+k stands for the projection from A∗ to
A∗i+k.

A synchronous product of languages Li ⊆ A∗i , for i =
1, 2, . . . , n, is defined as

nn

i=1

Li =

n⋂
i=1

P−1i (Li) ⊆ A∗ = (

n⋃
i=1

Ai)
∗ ,

where Pi : A∗ → A∗i is a projection. For two generators G1

and G2, the synchronous product of generators is defined
in [3], which satisfies L(G1‖G2) = L(G1)‖L(G2) and
Lm(G1‖G2) = Lm(G1)‖Lm(G2).

The prefix closure L of a language L is the set of all
prefixes of all its words; L is prefix-closed if L = L.

Let L be a prefix-closed language over A, and let Au ⊆ A
be the set of uncontrollable events. A language K ⊆ L is
controllable with respect to L and Au if

KAu ∩ L ⊆ K .

For uncontrollable languages, controllable sublanguages are
considered. The notation sup C(K,L,Au) denotes the supre-
mal controllable sublanguage of K with respect to L and
Au, which always exists and equals to the union of all
controllable sublanguages of K, see [3].

The distributed control synthesis of a modular discrete-
event system is a procedure where the control synthesis is
carried out separately for each local supervisor. The global
supervisor then formally consists of the synchronous product
of local supervisors, although it is not computed in practice.
In terms of behaviors, the optimal global control synthesis
is represented by the closed-loop language

sup C(K,L,Au) = sup C(‖ni=1Ki, ‖ni=1Li, Au) .

In the decentralized control synthesis, the specification K is
replaced by Ki = K ∩ P−1i (Li) and the synthesis is done
as for local specifications or by using the notion of partial
controllability [6]. Notice the difference with decentralized
control of monolithic plants studied in [24], where several
control agents have different observations, but the system
has no modular structure consisting of subsystems running in
parallel. The purely modular control synthesis is not always
possible, which motivated the study of coordination control.

Finally, we recall two important properties used in our
approach. Let P : A∗ → A∗k, where Ak ⊆ A, be a pro-
jection. This projection will later correspond to abstraction
of the plant on the high-level coordinator alphabet. Since
coordination control combines decentralized and hierarchical
control, we make use of two major properties of hierarchical
control stated below.

(i) Projection P is an L-observer for a language L ⊆ A∗
if for all s ∈ L, if P (s)t ∈ P (L), then there exists u ∈ A∗
such that su ∈ L and P (u) = t, see Fig. 1.



P(L)

L

P(s) t

s

P P

u

Fig. 1. Illustration of the observer property.

Observer property states that if a projection P (s) (ab-
straction to the high-level) of a string s ∈ L belongs to
the prefix-closure of the projected language then for any
extension P (s)t to the projected language, there must exist
an extension u of the string s to language L itself that is
projection compatible, i.e., P (su) = P (s)t (meaning also
P (u) = t).

(ii) Projection P is output control consistent (OCC) for
a language L ⊆ A∗ if for every s ∈ L of the form s =
σ1σ2 . . . σ` or s = s′σ0σ1 . . . σ`, for ` ≥ 1, where σ0, σ` ∈
Ak and σi ∈ A \ Ak, for i = 1, 2, . . . , ` − 1, if σ` ∈ Au,
then σi ∈ Au, for all i = 1, 2, . . . , `− 1.

OCC property states that there is enough controllable
events on the high level (from Ak) in the sense that if we
need to forbid a high level uncontrollable event then the
nearest upstream controllable events must be a high level
event. Otherwise stated, all upstream low level events must
be uncontrollable and therefore even if these events would
be in the high level it would not change anything as no
supervisor can disable them. Indeed, it follows from the
intuition that if one of these low level events is controllable
then on the high level we loose the control power on this
event and hence we need to disable a high-level upstream
controllable event, which may obviously lead to a loss
of optimality of the hierarchical supervisory control with
respect to the low level supervisor.

If L is represented by a generator with n states, then the
complexity to verify the properties is O(n2) as shown in [2],
[5].

III. DECENTRALIZED SUPERVISORY CONTROL:
THE SYNTHESIS PROBLEM

In decentralized supervisory control, two or more lo-
cal supervisors receive different partial observations of the
system. Since communication of all local observations is
either not possible or too costly, the partial observations
of the local supervisors differ. Decentralized supervisory
control consists in considering local supervisors (Si)

n
i=1

and distributing the alphabet of controllable and observable
events into locally controllable and locally observable events,
denoted by (Ac,i)

n
i=1 and (Ao,i)

n
i=1, respectively. Projections

to locally observable events are denoted by Pi : A∗ → A∗o,i.
The action of Pi is to delete events that are not observable
by supervisor Si. Furthermore, we denote Ac = ∪ni=1Ac,i,
Ao = ∪ni=1Ao,i, Au = A \Ac, and Auo = A \Ao.

Let G be a generator. A local supervisor Si is represented
by a mapping Si : Pi(L(G)) → Γi, where Γi = {γ ⊆
A : γ ⊇ (A \ Ac,i)} is the set of local control patterns,
and Si(s) represents the set of locally enabled events when
Si observes a string s ∈ A∗o,i. The associated control law
of the local supervisor Si is Si(s) = (A \ Ac,i) ∪ {a ∈
Ac,i : there exists s′ ∈ K with Pi(s

′) = Pi(s) and s′a ∈
K}. The global control law S is then the conjunction of
local supervisors Si given by S(w) = ∩ni=1Si(Pi(w)), where
w ∈ A∗.

The necessary and sufficient conditions for a given specifi-
cation K to be achieved by a joint action of local supervisors
are controllability and coobservability. The definition of
coobservability from [19] can be extended from two to n ≥ 2
supervisors.

Definition 1 (C &P coobservability): Let L be a prefix-
closed language. A language K ⊆ L is C &P coobservable
with respect to L and (Ao,i)

n
i=1 if for all s ∈ K, a ∈ Ac, and

sa ∈ L\K, there exists i ∈ {1, 2, . . . , n} such that a ∈ Ac,i

and (P−1i (Pi(s)){a} ∩K = ∅.
The intuition behind C &P coobservability is as follows.

If after a given string s from the specification the contin-
uation by an event a is illegal, i.e., it does not exist in
the specification while remaining within the plant language,
then there must exist at least one local supervisor that has
control power on this event (a ∈ Ac,i) that can issue
the decision ”disable the event a” without ambiguity (all
observation equivalent strings are illegal as well). This is
because in the conjunctive architecture an event is enabled
if and only if all local supervisors enable this event, hence
the local disabling decision must be made unambiguously.
Coobservability, which is decidable in polynomial time [18]
in the number of states of the plant and the specification
(but in exponential time in the number of local supervisors!),
is needed for the existence of local supervisors that jointly
achieve the specification. In some cases where the structure
of the intersection between locally observable alphabets is
simple (e.g., it is empty, or the intersection of all pairs
of locally observable alphabets is always the same), coob-
servability is strongly related to conditional decomposability
defined below and, thus, can be decided in polynomial time
in the number of local agents [11].

The control law of local supervisors associated to the
C & P architecture is called permissive, since the default
action is to enable an event whenever a local supervisor has
an ambiguity what to do with it. With the permissive local
policy we always achieve all strings in the specification. The
only concern is then safety, expressed by C & P coobservabil-
ity, which states that there always exists a local supervisor
that is sure to disable an event resulting in an illegal
string, which is the motivation for Definition 1. As shown
in [19], coobservability with controllability are the necessary
and sufficient conditions to achieve the specification as the
resulting closed-loop language, whence the interest in the
computation of controllable and coobservable sublanguages.

There is a natural counterpart of the C & P control archi-
tecture, called D & A (disjunctive and antipermissive), with



a corresponding notion of coobservability, but this is not
studied in this paper. Thus, we call a C & P coobservable
sublanguage simply coobservable.

A conceptually simpler condition than coobservability is
known as decomposability.

Definition 2: A language K is decomposable with respect
to alphabets (Ai)

n
i=1 and L if K = ‖ni=1Pi(K) ∩ L.

Note that the inclusion K ⊆ ‖ni=1Pi(K) ∩ L holds true
whenever K ⊆ L. Intuitively, K is decomposable with
respect to (Ai)

n
i=1 and L whenever one can infer s ∈ K from

Pi(s) ∈ Pi(K) and s ∈ L. Otherwise stated, the language
K can be recovered from its projections Pi(K) and L.

We recall from Proposition 4.3 in [19] that under mild
(and reasonable) assumptions on the structure of locally
controllable and locally observable events, decomposability
implies coobservability. Since the result in [19] is only for
two control agents, and it turns out that for this implication a
weaker condition is needed than for the equivalence of both
properties studied in [19], we state the following auxiliary
result.

Proposition 3: Assume that K is decomposable with re-
spect to (Ao,i)

n
i=1 and L, and that for i = 1, 2, . . . , n,

Ao,i ∩Ac ⊆ Ac,i. Then K is coobservable with respect to L
and (Ao,i)

n
i=1.

Proof: We prove it by contradiction. Assume that K
is decomposable with respect to (Ao,i)

n
i=1 and L, but not

coobservable with respect to L and (Ao,i)
n
i=1. Let s ∈ K,

a ∈ Ac, and sa ∈ L \ K as in Definition 1. Then, by the
assumption, for each i ∈ {1, 2, . . . , n} for which a ∈ Ac,i,
there exists si ∈ K such that sia ∈ K and Pi(si) = Pi(s).
That is, Pi(sa) = Pi(sia) ∈ Pi(K), hence sa ∈ P−1i Pi(K).
Similarly for each i ∈ {1, 2, . . . , n} for which a /∈ Ac,i,
we have that a 6∈ Ao,i ∩ Ac. However, a ∈ Ac, hence
a 6∈ Ao,i, which means that Pi(a) = ε. This means that
Pi(sa) = Pi(s) ∈ Pi(K), that is, sa ∈ P−1i Pi(K). Since
sa ∈ L, we have altogether that sa ∈ ∩ni=1P

−1
i Pi(K) ∩ L.

Then decomposability of K with respect to (Ao,i)
n
i=1 and L

implies that sa ∈ K as well, which is a contradiction.
Lemma 4: The property Ao,i ∩ Ac ⊆ Ac,i, for i =

1, 2, . . . , n, is equivalent to Ao,i ∩ Ac,j ⊆ Ac,i, for i, j =
1, 2, . . . , n.

Proof: Notice that Ao,i ∩ Ac = Ao,i ∩ (∪nj=1Ac,j) =
∪nj=1(Ao,i ∩ Ac,j). Now, ∪nj=1(Ao,i ∩ Ac,j) ⊆ Ac,i if and
only if Ao,i ∩Ac,j ⊆ Ac,i, for all i, j = 1, 2, . . . , n.

Finally, we need the following special instance of decom-
posability for L = A∗, which is known in the literature as
separability [6].

Definition 5: A language K is separable with respect to
alphabets (Ai)

n
i=1 if K = ‖ni=1Pi(K).

The following simple lemma states that language K is
separable if and only if it is given as a parallel composition
of n languages (over the required alphabets).

Lemma 6: A language K ⊆ (A1 ∪ A2 ∪ . . . ∪ An)∗ is
separable with respect to alphabets A1, A2,. . . , An, if and
only if there exist languages Mi ⊆ A∗i , i = 1, 2, . . . , n, such
that K =‖ni=1 Mi.

Proof: If K = ‖ni=1Pi(K), define Mi = Pi(K), for
i = 1, 2, . . . , n.

On the other hand, assume that there exist languages
Mi ⊆ A∗i , i = 1, 2, . . . , n, such that K =‖ni=1 Mi.
Obviously, Pi(K) ⊆Mi, i = 1, 2, . . . , n, which implies that
‖ni=1 Pi(K) ⊆ K. As it always holds that K ⊆ P−1i [Pi(K)],
definition of the synchronous product implies that K ⊆ ‖ni=1

Pi(K).
Separability is equivalent to the inclusion ‖ni=1Pi(K) ⊆

K, while decomposability with respect to L is equivalent to
‖ni=1Pi(K) ∩ L ⊆ K only if K ⊆ L. This is, however, not
such a big issue, because in the case K 6⊆ L the refined
specification K ∩ L is used. More precisely, the following
statement holds true.

Proposition 7 ([8]): If K is separable, then K ∩ L is
decomposable with respect to (Ao,i)

n
i=1 and L, that is,

K ∩ L = ‖ni=1Pi(K ∩ L) ∩ L.
The following theorem follows from Propositions 3 and 7.
Theorem 8: Assume that Ao,i ∩ Ac ⊆ Ac,i, for i =

1, 2, . . . , n. If K is separable with respect to (Ao,i)
n
i=1, then

K ∩ L is coobservable with respect to (Ao,i)
n
i=1 and L.

IV. COORDINATION CONTROL SYNTHESIS:
CONSTRUCTIVE RESULTS

Recall that the main constructive result of coordination
control enables in particular the computation of the supremal
controllable sublanguage in a distributed way. It relies on the
concept of conditional decomposability.

To later distinguish between decentralized and coordina-
tion control approaches, we use A to denote alphabets in
decentralized control and E to denote alphabets in coordi-
nation control. Let us recall that the main distinguishing
feature of our coordination control approach is that the
plant generator over the alphabet E has an explicit modular
(concurrent) structure in the form of synchronous product of
local automata over the alphabets (Ei)

n
i=1 with E = ∪ni=1Ei.

Coordination control is then a generalization of the purely
modular synthesis. It is based on the concept of conditional
decomposability that generalizes language separability by
using the so-called coordinator alphabet Ek.

Definition 9: A language K is conditionally decompos-
able with respect to alphabets (Ei)

n
i=1 and Ek, where

∪i6=j(Ei ∩ Ej) ⊆ Ek if

K = ‖ni=1Pi+k(K) ,

where Pi+k : (∪ni=1Ei)
∗ → E∗i+k, for Ei+k = Ei ∪ Ek.

Recall that there always exists Ek that makes language
K conditionally decomposable with respect to (Ei)

n
i=1 and

Ek [11]. Moreover, K is conditionally decomposable if and
only if there exist Mi ⊆ E∗i+k such that K = ‖ni=1Mi. In that
case, Pi+k(K) ⊆Mi, which means that even though several
tuples of (local) languages Mi may exist, (Pi+k(K))ni=1

form the smallest decomposition. Actually, ‖ni=1Pi+k(K)
is the infimal superlanguage of K that is conditionally
decomposable with respect to (Ei)

n
i=1 and Ek.



Let K ⊆ L = ‖ni=1Li be languages over ∪ni=1Ei, where
Li ⊆ E∗i . Assume that K is conditionally decomposable
with respect to (Ei)

n
i=1 and Ek, and define the languages

Lk = ‖ni=1Pk(Li),

sup Ck = sup C(Pk(K), Lk, Ek,u) ,

sup Ci+k = sup C(Pi+k(K), Li‖sup Ck, Ei+k,u) .

(1)

Below the main result of [12] is recalled.
Theorem 10: Consider languages as defined in (1) with

K and L being prefix-closed. Let the projection P i+k
k be an

(P i+k
i )−1(Li)-observer and OCC for (P i+k

i )−1(Li), for i =
1, 2, . . . , n. Then, ‖ni=1sup Ci+k is controllable with respect
to L and Eu.

It is equal to the supremal controllable sublanguage in
some cases provided in [12], but it does not play a role in
this paper because it is known that supremal coobservable
sublanguages do not exist anyway.

Recently, we have shown in [10], [13] the following. Note
that K need not be prefix-closed in this case.

Theorem 11: Consider languages as defined in (1) with
L prefix-closed. If sup Ck ⊆ Pk(sup Ci+k), for i =
1, 2, . . . , n, then ‖ni=1sup Ci+k is controllable with respect
to L and Eu.

V. APPLICATION OF COORDINATION AND MODULAR
CONTROL TO DECENTRALIZED CONTROL

Return to the setting of decentralized control, that is, given
sets of local observable events (Ao,i)

n
i=1 and local control-

lable events (Ac,i)
n
i=1. Unlike [8] we do not need to assume

that Ac ⊆ Ao. This was not needed in Proposition 3, because
this inclusion is only needed for the converse implication that
we do not need in this paper. Another difference with [8] is
that we do not use the additional module based on projection
on unobservable events, where this condition has been used.

We now present three different possibilities of computing
the controllable and coobservable sublanguage based on the
over-approximation of the plant language L by separable
superlanguages and by making the specification K condition-
ally decomposable. To transform the decentralized problem
to the coordination control problem, we set

Ei = Ao,i and Ec,i = Ao,i ∩Ac,i .

We over-approximate the plant language L by the new
modular plant ‖ni=1Pi(L), that is, by the parallel composition
of projections to events observable by local control agents.
Next, we need to find an extension Ek of local alphabets so
that K is conditionally decomposable with respect to (Ei)

n
i=1

and Ek. Similarly as above, Pi+k denotes the projection from
E∗ = (∪ni=1Ei ∪ Auo)∗ to Ei+k = (Ei ∪ Ek)∗, and Pi the
projection from E∗ to E∗i .

In coordination control [12] it is assumed that shared
events have the same controllability status in all components.
We need to assume that Ao,i ∩ Ac,j ⊆ Ac,i, for i, j =
1, 2, . . . , n, for two different reasons.

First, due to Lemma 4, it is equivalent to Ao,i∩Ac ⊆ Ac,i,
for i = 1, 2, . . . , n, which is a condition that ensures that
separability implies coobservability (cf. Theorem 8). Let us
point out that Theorem 8 is the core of our approach: the
computation based on coordination control will naturally lead
to a separable controllable sublanguage of the specification,
hence coobservability of the original will automatically hold
by our construction.

The second reason why we need the event set assumption
from decentralized control is that it automatically ensures
the shared-event status condition needed in modular and
coordination control. More precisely, the following lemma
holds true.

Lemma 12: If Ao,i ∩ Ac,j ⊆ Ac,i, for i, j = 1, 2, . . . , n,
then (Ei)

n
i=1 and (Ec,i)

n
i=1 defined above satisfy Ei∩Ec,j ⊆

Ec,i, for all i, j = 1, 2, . . . , n.
Proof: The assumption implies that for all i, j =

1, 2, . . . , n, Ei∩Ec,j = Ao,i∩ (Ao,j ∩Ac,j) ⊆ Ao,i∩Ac,j ⊆
Ac,i and, trivially, Ei ∩Ec,j = Ao,i ∩ (Ao,j ∩Ac,j) ⊆ Ao,i,
hence Ei ∩ Ec,j ⊆ Ac,i ∩ Ao,i = Ec,i, which was to be
shown.

A. Coordination Control with Observer and OCC

An important feature of our coordination control approach
is that by computing the controllable sublanguage according
to Theorem 10, we automatically obtain a decomposable
(that is, coobservable) sublanguage. More precisely, we have
the following result; here Ei+k,u = Ei+k ∩Au.

Theorem 13: Let K ⊆ L be prefix-closed languages, and
let K be conditionally decomposable with respect to (Ei)

n
i=1

and Ek. Let P i+k
k be an (P i+k

i )−1(Pi(L))-observer and
OCC for (P i+k

i )−1(Pi(L)), for i = 1, 2, . . . , n. Then the
language

M = ‖ni=1sup C(Pi+k(K), Pi(L)‖sup Ck, Ei+k,u)

is a sublanguage of K controllable with respect to L and
Eu, and coobservable with respect to L and (Ei+k)ni=1.

Proof: By Theorem 10, replacing Li with Pi(L) in
(1), M is a controllable sublanguage of K with respect to
‖ni=1Pi(L) and Eu. Since L ⊆ ‖ni=1Pi(L), M is controllable
with respect to L and Eu.

By the note below Definition 9, M is also conditionally
decomposable, that is, separable with respect to (Ei+k)ni=1.
Since Ei ∩ Ec,j ⊆ Ec,i, Theorem 8 shows that M is
coobservable with respect to L and (Ei+k)ni=1.

Although decomposability, observer, and OCC conditions
might seem strong, there always exists Ek such that these
conditions are all satisfied. In some exceptional cases, it
might be needed to take the whole alphabet Ek = E, which
amounts to the need to communicate all events. This is not a
surprise because there are small examples, where all events
must be communicated between local supervisors to achieve
the specification, but this is not a typical situation.

B. Coordination Control without Observer and OCC

In some cases, where observer and OCC properties are
expensive to impose (in the sense that too many events must



be communicated via the coordinator for the properties to
hold) we can benefit from another result of coordination
control.

Theorem 14: Let K ⊆ L = L be languages, and let K be
conditionally decomposable with respect to (Ei)

n
i=1 and Ek.

If sup Ck ⊆ Pk(sup Ci+k), for i = 1, 2, . . . , n, computed as
in (1), then ‖ni=1sup C(Pi+k(K), Pi(L)‖sup Ck, Ei+k,u) is
a sublanguage of K controllable with respect to L and Eu,
and coobservable with respect to L and (Ei+k)ni=1.

Proof: If sup Ck ⊆ Pk(sup Ci+k), for i = 1, 2, . . . , n,
then ‖ni=1sup C(Pi+k(K), Pi(L)‖sup Ck, Ei+k,u) is a con-
trollable sublanguage of K by Theorem 11. The rest of the
proof is the same as in the previous theorem.

Hence, it might be more advantageous in certain cases
to check if sup Ck ⊆ Pk(sup Ci+k) instead of checking
observer and OCC conditions that are not necessary in
Theorem 11.

C. Modular Control with Mutual Controllability

Finally, we present an approach which uses modular
control and conditional decomposability of K. This approach
has been partially presented in [8] in the case, where no
information exchange is allowed. In this case, we over-
approximate the plant language by ‖ni=1Pi+k(L), where
Ek is computed so that K = ‖ni=1Pi+k(K), i.e., K is
conditionally decomposable.

Les us recall the concept of mutual controllability of [16].
Definition 15: Prefix-closed languages Li ⊆ A∗i , where

i = 1, 2, . . . , n, are mutually controllable if for all i, j =
1, 2, . . . , n, Lj(Aj,u ∩Ai) ∩ Pj(Pi)

−1(Li) ⊆ Lj .
The following result on the compatibility between supre-

mal controllable sublanguages and the synchronous compo-
sition operator has been first shown in [16].

Proposition 16: Assume that Ao,i ∩ Ac,j ⊆ Ac,i. If the
prefix-closed languages Li ⊆ A∗i , for i = 1, 2, . . . , n, are
mutually controllable, then for any decomposable specifica-
tion K ⊆ L,

‖ni=1sup C(Ki, Li, Ai,u) = sup C(‖ni=1Ki, ‖ni=1Li, Au)

holds.
Although it is restrictive to require that Pi(L) and Pj(L)

are mutually controllable, it may well be that Pi+k(L)
and Pj+k(L) are mutually controllable for a fairly small
coordinator alphabet Ek. However, if we do not require K
to be conditionally decomposable, we cannot guarantee that
the resulting supremal controllable sublanguage is included
in K, which is the main issue with the approach of [8]. Thus,
we also require that K is conditionally decomposable with
respect to (Ei)

n
i=1 and Ek (note that Ek must be the same

in both assumptions) to apply Proposition 16 in the context
of a conditionally decomposable specification.

Proposition 17: Let K ⊆ L be prefix-closed languages,
and let K be conditionally decomposable with respect to
(Ei)

n
i=1 and Ek. If Pi+k(L) and Pj+k(L) are mutually

controllable, for i, j = 1, 2, . . . , n, then the language

‖ni=1sup C(Pi+k(K), Pi+k(L), Ei+k,u)

is a sublanguage of K controllable with respect to L and
Eu, and coobservable with respect to L and (Ei+k)ni=1.

Proof: Let M denote the language

‖ni=1sup C(Pi+k(K), Pi+k(L), Ei+k,u) .

Since sup C(Pi+k(K), Pi+k(L), Ei+k,u) ⊆ Pi+k(K) we
have that M ⊆ ‖ni=1Pi+k(K) ⊆ K due to conditional
decomposability. Again, by Theorem 10, M is a controllable
sublanguage of K with respect to ‖ni=1Pi(L) and Eu. Since
L ⊆ ‖ni=1Pi(L), M is controllable with respect to L and Eu

as well.
Let us notice that M is separable with respect to extended

alphabets (Ei+k)ni=1 (cf. Lemma 6) because it can be com-
puted in a modular way under the assumption of mutual
controllability of local plants. Hence, according to Theorem
8, M ∩ L = M is coobservable with respect to L and
(Ei+k)ni=1. Similarly as in the previous sections, it is not
needed that L is conditionally decomposable with respect to
the same alphabets as K, because L ⊆ ‖ni=1Pi+k(L) guaran-
tees that controllability of M with respect to ‖ni=1Pi+k(L)
implies controllability with respect to L. Altogether, M is
a sublanguage of K controllable with respect to L and Eu,
and coobservable with respect to L and (Ei+k)ni=1.

Note that mutual controllability holds true if all shared
events are controllable, which can be written in our setting as
Ao,i∩Ao,j ⊆ Ac, but this is quite a strong assumption. Note
that if Pi+k(L) and Pj+k(L) are not mutually controllable,
we can use the technique of [15] to modify the plant so that
the resulting plant is mutually controllable.

D. Example

Let K = {aa, ba, bbd, abc}, L = {aac, abc, bac, bbd},
Ao,1 = Ac,1 = {a, c}, and Ao,2 = Ac,2 = {b, d}. Then K is
not coobservable with respect to L and (Ao,i)

2
i=1, because

none of the two supervisors is able to distinguish between
the strings s = ab and s′ = ba, and the continuation of ba
by c within the plant leads outside the specification while
the continuation of ab by c remains within the specification.

We will proceed according to results in Section V-C,
namely Proposition 17 will be applied. Thus, we set Ei =
Ao,i, i = 1, 2. Note that E1 ∩ E2 = ∅. We need to find
Ek ⊇ ∅ such that K becomes conditionally decomposable
with respect to projections to E1+k and E2+k. It is sufficient
to take Ek = {b}, which says that each occurrence of
b must be communicated between the two supervisors via
a coordinator. Furthermore, the only shared event between
E1+k and E2+k, namely b, is controllable. Hence, P1+k(L)
and P2+k(L) are mutually controllable.
• sup C(P1+k(K), P1+k(L), E1+k,u) = {aa, ba, bb, ab},
• sup C(P2+k(K), P2+k(L), E2+k,u) = {bbd}.

It is now easy to see that K =
‖ni=1sup C(Pi+k(K), Pi+k(L), Ei+k,u) is coobservable
with respect to L and the extended alphabets {a, b, c} and
{b, d}, because now control agent 1 that exerts the control
power over the event c is able to distinguish between the
strings s = ab after which c should be allowed and s′ = ba
after which c should be disabled.



VI. CONCLUSION AND DISCUSSION

In this paper, we have shown how to construct a solution
of the decentralized control problem (that is, a controllable
and coobservable sublanguage of a safety specification) using
the results of coordination control. Our approach relies on
the notion of conditional decomposability that has recently
been studied by the authors. Both modular and coordination
control can be applied. Three different sets of conditions are
provided that enable to compute a controllable sublanguage
of the plant that is coobservable by construction with respect
to the observations enriched by communicating coordinator
events.

Based on coordination control, we simply compute a
controllable sublanguage in a distributed way using the
coordinator and the language is by construction condition-
ally decomposable, hence coobservable with respect to the
enriched observable alphabets. This shows a close relation-
ship between coordination control and decentralized control
with communication. Recently, we have shown that unlike
decomposability and coobservability, conditional decompos-
ability [11] with respect to a large number of local agents
(alphabets) can be checked in linear time in the number of
agents, although one could expect exponential complexity
in the number of agents. This is because the verification of
conditional decomposability with respect to n agents can be
reduced to n executions of the verification of conditional
decomposability with respect to only two agents.

We point out that the influence in the opposite direction is
also possible. Coordination control may benefit from decen-
tralized control with communication: individual transitions
can be communicated rather than all transitions labeled by an
event, which may save space in the communication channel.

Among open directions, it would be nice to develop a more
sophisticated approach that would benefit from multilevel
hierarchical control. Indeed, although the verification of
conditional decomposability is computationally cheap even
for a large number of components, the actual size of the co-
ordinator (and its alphabet) might be high and the multilevel
hierarchy of coordinators could help. A corresponding ap-
proach for the computation of controllable and coobservable
sublanguages should then be developed.

We also plan to develop an extension of coordination con-
trol that would yield a conditional architecture when applying
this extension to inference based decentralized supervisory
control. This will require more sophisticated concepts of
decomposability and conditional decomposability related to
conditional coobservability.

ACKNOWLEDGMENT

This work has been supported by the GAČR grants no.
P103/11/0517 and P202/11/P028, by MŠMT grant LH13012
(MUSIC), and by RVO: 67985840.

REFERENCES

[1] G. Barrett and S. Lafortune. Decentralized supervisory control with
communicating controllers. IEEE Trans. Automat. Control, 45:1620–
1638, 2000.

[2] H. J. Bravo, Antonio E. C. da Cunha, P. N. Pena, R. Malik, and
J. E. R. Cury. Generalised verification of the observer property in
discrete event systems. In Proc. of WODES 2012, pages 337–342,
2012.

[3] C. G. Cassandras and S. Lafortune. Introduction to discrete event
systems. Springer, 2nd edition, 2008.

[4] H. Chakib and A. Khoumsi. Multi-decision supervisory control:
Parallel decentralized architectures cooperating for controlling discrete
event systems. IEEE Trans. Automat. Control, 56(11):2608–2622,
2011.

[5] L. Feng. Computationally Efficient Supervisor Design for Discrete-
Event Systems. PhD thesis, University of Toronto, 2007. [Online].
Available at http://www.kth.se/polopoly fs/1.24026!thesis.zip.

[6] B. Gaudin and H. Marchand. Supervisory control of product and
hierarchical discrete event systems. Eur. J. Control, 10(2):131–145,
2004.

[7] S. Jiang and R. Kumar. Decentralized control of discrete event systems
with specializations to local control and concurrent systems. IEEE
Trans. Syst., Man, Cybern. B, 30(5):653–660, 2000.

[8] J. Komenda, H. Marchand, and S. Pinchinat. A constructive approach
to decentralized supervisory control problems. In Proc. of DESDes,
pages 111–116, 2006.

[9] J. Komenda, T. Masopust, and J. H. van Schuppen. Synthesis of
controllable and normal sublanguages for discrete-event systems using
a coordinator. Systems Control Lett., 60(7):492–502, 2011.

[10] J. Komenda, T. Masopust, and J. H. van Schuppen. On algorithms
and extensions of coordination control of discrete-event systems. In
Proc. of WODES 2012, pages 245–250, 2012.

[11] J. Komenda, T. Masopust, and J. H. van Schuppen. On conditional
decomposability. Systems Control Lett., 61:1260–1268, 2012.

[12] J. Komenda, T. Masopust, and J. H. van Schuppen. Supervisory control
synthesis of discrete-event systems using a coordination scheme.
Automatica, 48(2):247–254, 2012.

[13] J. Komenda, T. Masopust, and J. H. van Schuppen. Coordination con-
trol of discrete-event systems revisited. http://arxiv.org/abs/1307.4332,
2013.

[14] R. Kumar and S. Takai. Inference-based ambiguity management in
decentralized decision-making: Decentralized control of discrete event
systems. IEEE Trans. Automat. Control, 52(10):1783–1794, 2007.

[15] S.-H. Lee. Decentralized Control of Concurrent Discrete-Event
Systems. PhD thesis, The Australian National University, Canberra,
Australia, 1998.

[16] S.-H. Lee and K. C. Wong. Structural decentralized control of
concurrent discrete-event systems. Eur. J. Control, 8:477–491, 2002.

[17] S. L. Ricker and K. Rudie. Know means no: Incorporating knowledge
into discrete-event control systems. IEEE Trans. Automat. Control,
45(9):1656–1668, 2000.

[18] K. Rudie and J. C. Willems. The computational complexity of
decentralized discrete-event control problems. IEEE Trans. Automat.
Control, 40(7):1313–1319, 1995.

[19] K. Rudie and W. M. Wonham. Think globally, act locally: Decentral-
ized supervisory control. IEEE Trans. Automat. Control, 37(11):1692–
1708, 1992.

[20] S. Takai and R. Kumar. Synthesis of inference-based decentralized
control for discrete event systems. IEEE Trans. Automat. Control,
53(2):522–534, 2008.

[21] J. G. Thistle. Undecidability in decentralized supervision. Systems
Control Lett., 54(5):503–509, 2005.

[22] S. Tripakis. Undecidable problems of decentralized observation and
control on regular languages. Inform. Process. Lett., 90(1):21–28,
2004.

[23] W. M. Wonham. Supervisory control of discrete-event systems.
Lecture notes, Department of electrical and computer engineering,
University of Toronto, 2012.

[24] T. S. Yoo and S. Lafortune. A general architecture for decentralized
supervisory control of discrete-event systems. Discrete Event Dyn.
Syst., 12(3):335–377, 2002.

[25] T. S. Yoo and S. Lafortune. Decentralized supervisory control with
conditional decisions: Supervisor existence. IEEE Trans. Automat.
Control, 49(11):1886–1904, 2004.


