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Abstract

Opacity is a generic framework expressing secret in discrete-event systems. Many notions of opacity have been discussed in the literature,
including current-state opacity (CSO), 𝑘-step opacity (𝑘-SO), and strong 𝑘-step opacity (𝑘-SSO). We design new algorithms for the
verification of 𝑘-SO and 𝑘-SSO based on reductions of 𝑘-SO to CSO and of 𝑘-SSO to 𝑘-SO, respectively, and experimentally compare
their performance with the existing algorithms. In particular, for CSO, we use the classical algorithm based on the observer construction
and an algorithm based on a reduction to the antichain-based language inclusion. For 𝑘-SO, we compare our algorithms with the two-way
observer of Yin and Lafortune, with the reduction-based algorithm of Wintenberg et al., and with our projected-automata-base algorithm.
For 𝑘-SSO, we compare our algorithms with the reduction-based algorithm of Wintenberg et al. and with the algorithm of Han et al.. For
the comparisons, we use extensive benchmarks with almost twelve thousand instances based on real data.
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1 Introduction

Opacity is a property asking whether a system prevents an
intruder from revealing system’s secret. The intruder is mod-
eled as a passive observer with complete knowledge of the
structure of the system, but with only limited observations of
its behavior. Based on observations, the intruder estimates
system’s behavior, and the system is opaque if the intruder
never reveals the secret; that is, for any secret behavior, there
is a non-secret behavior that looks the same to the intruder.
The secret is modeled either as a set of secret states or as
a set of secret behaviors. The former results in state-based
opacity of Bryans et al. (2004, 2008), the latter results in
language-based opacity of Badouel et al. (2007) and Dubreil
et al. (2008); see the overview by Jacob et al. (2016).

Several notions of opacity have been discussed in the lit-
erature, including current-state opacity (CSO), initial-state
opacity (ISO), language-based opacity (LBO), 𝑘-step opac-
ity (𝑘-SO), and strong 𝑘-step opacity (𝑘-SSO). Initial-state
opacity prevents the intruder from revealing whether the sys-
tem started in a secret state. Current-state opacity, on the
other hand, prevents the intruder from revealing whether the
current state of the system is secret. The intruder may, how-
ever, realize that the system was in a secret state in the past.
This problem led to the introduction of 𝑘-SO requiring that
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the intruder cannot ascertain the secret in the current and
𝑘 subsequent steps (Bryans et al., 2004; Saboori and Had-
jicostis, 2007, 2012). Nonetheless, 𝑘-SO still allows the in-
truder to realize that the system previously visited a secret
state, although it keeps the exact time when that happened
secret. This issue further motivated Falcone and Marchand
(2015) to introduce strong 𝑘-SO; a similar property was al-
ready mentioned by Saboori and Hadjicostis (2012) under
the name of trajectory-based 𝑘-step opacity.

Deciding opacity is a PSpace-complete problem, and the ex-
isting algorithms are exponential. Balun et al. (2023) showed
that, unless the strong exponential time hypothesis of Im-
pagliazzo and Paturi (2001) fails, there is no subexponen-
tial-time algorithm deciding opacity in time 𝑂∗ (2𝑛/(2+𝜀) ),
for any 𝜀 > 0, where 𝑛 is the number of states of the input
automaton.

In this paper, we design new algorithms to verify 𝑘-SO and
𝑘-SSO based on reductions of 𝑘-SO to CSO and of 𝑘-SSO
to 𝑘-SO. Since the worst-case time complexity is basically
the same for all the algorithms, we are interested in the ex-
perimental comparison of their performance. To this end, we
created benchmarks consisting of 11710 instances of non-
deterministic finite automata (NFAs) that are mostly based
on real data (see Section 3 for details). In our experiments,
every tool was given five minutes to solve each of the in-
stances.

To verify CSO, we compare the classical algorithm based on
the observer construction with an algorithm based on a re-
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duction to the antichain-based language inclusion algorithm
of Wulf et al. (2006). The experimental results show that,
within the five-minute time limit, both algorithms perform
very similarly, see Section 4.

For 𝑘-SO, we compare the two-way observer of Yin and
Lafortune (2017), the reduction-based algorithm of Winten-
berg et al. (2022), and the projected-automata-based algo-
rithm of Balun and Masopust (2023), with two new algo-
rithms based on a reduction of 𝑘-SO to CSO. We ran the ex-
periments for 𝑘 = 5, 𝑘 = 500, and 𝑘 = 50000. For 𝑘 = 500,
the algorithm of Wintenberg et al. (2022) timed out for
more than half of the instances, and therefore we excluded
it from further comparisons. For a similar reason, we fur-
ther excluded one of our new algorithms from comparisons
for 𝑘 = 50000. From 11710 instances of the 𝑘-step opacity
problem, the tools altogether solved more than 11600 in-
stances within the given time limit, for all three choices of
𝑘 . Our projected-automata-based algorithm was the fastest
for the most instances, and used the minimum total time for
𝑘 ∈ {500, 50000}. For 𝑘 = 5, our reduction-based algorithm
was the fastest and solved the most instances; in fact, our
new reduction-based algorithm was the fastest algorithm for
negative instances and all cases of 𝑘; see Section 5.4 for
more details.

For 𝑘-SSO, we first adjust the algorithm of Han et al. (2022)
so that it can verify 𝑘-SSO of Falcone and Marchand (2015).
We then compare this algorithm with an algorithm of Win-
tenberg et al. (2022) and with two new algorithms based on
our reduction of 𝑘-SSO to 𝑘-SO. We again ran the experi-
ments for 𝑘 ∈ {5, 500, 50000}. For small 𝑘 , the reduction-
based algorithm of Wintenberg et al. (2022) performs the
best. However, for larger 𝑘 , it takes too much time and is
outperformed by all the other algorithms. In these cases, the
algorithm of Han et al. (2022) and our new reduction-based
algorithm perform comparably well from the viewpoint of
solved instances, though our algorithm takes for more than
six hours less of total time, see Section 6.2 for details.

2 Preliminaries

We assume that the reader is familiar with automata theory
and discrete-event systems, see Hopcroft et al. (2006) and
Cassandras and Lafortune (2021). For a set 𝑆, |𝑆 | denotes
the cardinality of 𝑆, and 2𝑆 denotes the power set of 𝑆. An
alphabet Σ is a finite nonempty set of events. A string over Σ
is a sequence of events from Σ; the empty string is denoted
by 𝜀. The set of all finite strings over Σ is denoted by Σ∗. A
language 𝐿 over Σ is a subset of Σ∗. For a string 𝑢 ∈ Σ∗, |𝑢 |
denotes the length of 𝑢.

A nondeterministic finite automaton (NFA) over an alphabet
Σ is a quintuple 𝐺 = (𝑄, Σ, 𝛿, 𝐼, 𝐹), where 𝑄 is a finite set
of states, 𝐼 ⊆ 𝑄 is a nonempty set of initial states, 𝐹 ⊆ 𝑄

is a set of marked states, and 𝛿 : 𝑄 × Σ → 2𝑄 is a transition
function that can be extended to the domain 2𝑄 × Σ∗ by
induction. For any sets 𝑄0, 𝑄𝐹 ⊆ 𝑄, we define the language

𝐿𝑚 (𝐺,𝑄0, 𝑄𝐹) = {𝑤 ∈ Σ∗ | 𝛿(𝑄0, 𝑤) ∩𝑄𝐹 ≠ ∅} of strings
starting in a state of 𝑄0 and ending in a state of 𝑄𝐹 . Then,
the marked and generated languages of 𝐺 are 𝐿𝑚 (𝐺) =

𝐿𝑚 (𝐺, 𝐼, 𝐹) and 𝐿 (𝐺) = 𝐿𝑚 (𝐺, 𝐼, 𝑄), respectively.

An NFA 𝐺 = (𝑄, Σ, 𝛿, 𝐼, 𝐹) is deterministic (DFA) if |𝐼 | = 1
and |𝛿(𝑞, 𝑎) | ≤ 1 for every 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. In this case, we
identify the singleton 𝐼 = {𝑞0} with its element, and simply
write 𝐺 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) instead of 𝐺 = (𝑄, Σ, 𝛿, {𝑞0}, 𝐹).

A discrete-event system (DES) 𝐺 over Σ is an NFA over Σ
together with the partition of Σ into Σ𝑜 and Σ𝑢𝑜 of observ-
able and unobservable events, respectively. If 𝐺 is a DFA,
we say that the DES is deterministic. If the marked states
are irrelevant, we omit them and write 𝐺 = (𝑄, Σ, 𝛿, 𝐼).

A run of a DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼) from a state 𝑞0 under a
string 𝑤 = 𝑎1𝑎2 · · · 𝑎𝑛 ∈ Σ∗ is a sequence

𝑞0
𝑎1−−→ 𝑞1

𝑎2−−→ 𝑞2 · · · 𝑞𝑛−1
𝑎𝑛−−→ 𝑞𝑛

such that 𝑞𝑘 ∈ 𝛿(𝑞𝑘−1, 𝑎𝑘), for 𝑘 = 1, . . . , 𝑛. We abbreviate
the run as 𝑞0

𝑤−→ 𝑞𝑛, or simply as 𝑞0
𝑤−→ if 𝑞𝑛 is not

important. The run is non-secret with respect to a set𝑄𝑆 ⊆ 𝑄

of secret states if it does not contain any secret state, that is,
𝑞𝑖 ∈ 𝑄 −𝑄𝑆 for 𝑖 = 0, 1, . . . , 𝑛; otherwise, the run is secret.
The run is initial if 𝑞0 is an initial state. A subrun of the
run 𝑞0

𝑤−→ 𝑞𝑛 is the run 𝑞0
𝑎1−−→ 𝑞1

𝑎2−−→ 𝑞2 · · · 𝑞𝑖−1
𝑎𝑖−→ 𝑞𝑖 , for

some 𝑖 ≤ 𝑛.

The state estimation of a DES 𝐺 over Σ is modeled by
projection 𝑃 : Σ∗ → Σ∗

𝑜 from the alphabet of 𝐺 to the set of
observable events Σ𝑜, which is a morphism for concatenation
defined by 𝑃(𝑎) = 𝜀 if 𝑎 ∈ Σ𝑢𝑜, and 𝑃(𝑎) = 𝑎 if 𝑎 ∈ Σ𝑜. The
action of 𝑃 on a string 𝑎1𝑎2 · · · 𝑎𝑛 is to erase all unobservable
events, that is, 𝑃(𝑎1𝑎2 · · · 𝑎𝑛) = 𝑃(𝑎1)𝑃(𝑎2) · · · 𝑃(𝑎𝑛). The
definition can be readily extended to languages.

The observer of 𝐺 is a DFA obtained from 𝐺 by replacing
every transition (𝑝, 𝑎, 𝑞) by (𝑝, 𝑃(𝑎), 𝑞), and by the standard
subset construction, see Cassandras and Lafortune (2021).
The observer of 𝐺 has exponentially many states compared
with 𝐺, see Wong (1998), or Jirásková and Masopust (2012)
for more details.

3 Benchmarks

For experimental comparisons, we created extensive bench-
marks consisting of 11710 instances of nondeterministic fi-
nite automata (NFAs) that are suitable for the CSO, 𝑘-SO,
and 𝑘-SSO verification. Most of the automata are based on
real data: there are automata comming from abstract reg-
ular model-checking, 1 automata based on the elevator ex-
ample, 2 and automata based on our work on supervisory

1 https://github.com/ondrik/automata-benchmarks
2 https://fgdes.tf.fau.de/faudes/luafaudes/elevator_synthesis.html
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control of a patient table of an MRI scanner of Theunissen
et al. (2014). The dataset also includes hard instances for a
tool we use for language inclusion, and some random diffi-
cult instances. The instances are selected so that circa half
of them is positive and half of them is negative for all of
CSO, 𝑘-SO, and 𝑘-SSO properties.

To focus on the performance of the core of the algorithms,
we consider NFAs without unobservable events, which is
no restriction because every automaton with unobservable
events can be translated to an equivalent NFA without un-
observable events (although this needs to be done in a more
careful way than the standard elimination of 𝜀 transitions).
On the other hand, we include the parsing of the input au-
tomaton to the measurements. This time is basically the same
for all the tools, and hence it does not disqualify any algo-
rithm and, in fact, better corresponds to the time required
by the tool to solve the instance.

The instances have only two types of states: secret states,
modeled by marked states, and non-secret states, modeled
by non-marked states. In other words, the instances do not
consider neutral states; indeed, neutral states may be used in
reduction-based algorithms, which is, in fact, the case. The
number of states of the instances ranges from two to 278372,
with 2862,14 states in average, and the number of transitions
ranges from four to 95937444, with 82415 transitions in
average.

The instances are stored in a .gen format used by the C++ li-
brary libFAUDES, 3 which seems suitable, because the .gen
format is XML-based, and hence it is readable by humans as
well as by computers. We implemented all the algorithms us-
ing the C++ libraries libFAUDES3 and Limi 4 without addi-
tional optimizations. In particular, our implementation of the
two-way observer does not use the depth-first search of the
observer, but rather the search implemented in libFAUDES.
We do not know whether it has any impact on the perfor-
mance of the algorithm. Also, we restricted our implemen-
tations to work for our data, and hence they may not work
for automata with unobservable events or with states that are
neither secret nor non-secret.

The experiments were run on an Ubuntu 22.04.4 LTS vir-
tual machine with 30 Intel(R) Xeon(R) CPU E5-2660 v2
@ 2.20GHz processors and 250 GB memory, using the
parallel tool by Tange (2024). Every tool was given five
minutes to solve an instance. The benchmarks and the results
of our experiments are available at https://apollo.inf.
upol.cz:81/masopust/k-so-opacity-benchmarks.

4 Comparison of CSO-verifying algorithms

Current-state opacity (CSO) is the fundamental notion of
opacity. It prevents the intruder from revealing whether the

3 https://github.com/FGDES/libFAUDES
4 https://github.com/thorstent/Limi

current state of the system is secret.

Definition 1 (CSO). A DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼) is current-state
opaque (CSO) with respect to secret states 𝑄𝑆 ⊆ 𝑄, non-
secret states 𝑄𝑁𝑆 ⊆ 𝑄, and projection 𝑃 : Σ∗ → Σ∗

𝑜 if for
every 𝑠 ∈ 𝐿 (𝐺) with 𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 ≠ ∅, there is 𝑠′ ∈ 𝐿 (𝐺)
such that 𝑃(𝑠) = 𝑃(𝑠′) and 𝛿(𝐼, 𝑠′) ∩𝑄𝑁𝑆 ≠ ∅.

The classical algorithm to verify CSO is based on the con-
struction of the observer, see Algorithm 1. In our implemen-
tation, during the construction of the observer, the algorithm
verifies whether every state containing a secret state also
contains a non-secret state. If this condition is violated, the
algorithm returns false and terminates.

Algorithm 1. Classical verification of current-state opacity
Require: A DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼), 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄, Σ𝑜 ⊆ Σ.
Ensure: true if and only if 𝐺 is current-state opaque with

respect to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 : Σ∗ → Σ∗
𝑜.

1: Construct the observer 𝐺𝑜𝑏𝑠 of 𝐺 step by step.
2: for every newly generated state 𝑋 of 𝐺𝑜𝑏𝑠 do
3: if 𝑋 ∩𝑄𝑆 ≠ ∅ and 𝑋 ∩𝑄𝑁𝑆 = ∅ then
4: return false
5: end if
6: end for
7: return true

We implemented Algorithm 1 as the cso_obs tool and com-
pared it with the algorithm based on the reduction of CSO
to language inclusion of Wu and Lafortune (2013). Our
language-inclusion verification uses the antichain algorithm
of Wulf et al. (2006) implemented in the C++ library Limi
of Černý et al. (2017); we therefore call the tool cso_limi.

Within five minutes, cso_obs solved 11632 instances and
cso_limi solved 11604 instances. cso_obs was faster for
3168 instances, cso_limi was faster for 8391 instances; 78
instances took both tools the same time. Overall, both tools
solved 11637 instances in the given time limit. From the
solved instances, 33 were solved only by cso_obs and 6 were
solved only by cso_limi, whereas the other tool timed out.
Furthermore, 5826 of the solved instances were positive and
5811 negative. The results are summarized in Table 1; the
total time (rounded up to whole seconds) counts the time to
solve the instance or 300 if the tool timed out, while the total
time for positive/negative instances counts these times only
for instances that were solved at least by one of the tools.

5 K-step opacity

In this section, we design an algorithm to verify 𝑘-step opac-
ity (𝑘-SO) that is based on a reduction of 𝑘-SO to CSO.
Considering the cso_obs and cso_limi tools, we obtain
two tools, kso_obs and kso_limi, which we experimentally
compare with the two-way observer of Yin and Lafortune
(2017), one of the algorithms of Wintenberg et al. (2022),
and the algorithm of Balun and Masopust (2023).
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cso_obs cso_limi

# of instances solved 11632 11604
# of instances solved faster 3168 8391
# of instances solved only by 33 6
# of solved positive instances 5822 5795
# of solved negative instances 5810 5809
total time 29832 65820
total time positive solved 4776 42452
total time negative solved 2856 1168

Table 1
Comparing cso_obs and cso_limi within a five-minute time limit.

We first recall the definition of 𝑘-SO. To this end, we take
the set N of all non-negative integers, and extend it with its
limit to N∞ = N ∪ {∞}.

Definition 2 (𝑘-SO). Given a DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼) and a
number 𝑘 ∈ N∞. We say that 𝐺 is 𝑘-step opaque (𝑘-SO) with
respect to secret states 𝑄𝑆 ⊆ 𝑄, non-secret states 𝑄𝑁𝑆 ⊆ 𝑄,
and projection 𝑃 : Σ∗ → Σ∗

𝑜 if for every string 𝑠𝑡 ∈ 𝐿 (𝐺)
with |𝑃(𝑡) | ≤ 𝑘 and 𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅, there exists
𝑠′𝑡′ ∈ 𝐿 (𝐺) such that 𝑃(𝑠) = 𝑃(𝑠′), 𝑃(𝑡) = 𝑃(𝑡′), and
𝛿(𝛿(𝐼, 𝑠′) ∩𝑄𝑁𝑆 , 𝑡

′) ≠ ∅.

Intuitively, for every secret-revealing string 𝑠, and its exten-
sion 𝑡 with at most 𝑘 observable events, there is a string 𝑠′

and its extension 𝑡′ such that the intruder cannot distinguish
between 𝑠 and 𝑠′ in the current and 𝑘 subsequent steps.

Note that CSO coincides with 0-SO, and that ∞-SO is known
as infinite-step opacity (INSO) in the literature, see, e.g.,
Saboori and Hadjicostis (2012). Moreover, Yin and Lafor-
tune (2017) have shown that, for an 𝑛-state DES, infinite-
step opacity coincides with (2𝑛 − 2)-step opacity; therefore,
without loss of generality, we may consider 𝑘-SO only for
𝑘 ≤ 2𝑛 − 2 (however, we do not implement it in the tools).

5.1 Reducing 𝑘-SO to CSO: the first step

We now discuss, in two steps, our reduction of 𝑘-SO to CSO.
In the first step, we reduce INSO to CSO.

Construction 3 (INSO to CSO). For a DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼)
with secret states 𝑄𝑆 , non-secret states 𝑄𝑁𝑆 , and observable
events Σ𝑜, we construct the DES

𝐺′ = (𝑄 ∪𝑄+ ∪𝑄− , Σ ∪ {@}, 𝛿′, 𝐼)

by creating two disjoint copies of 𝐺, denoted by 𝐺+ and
𝐺− , with the corresponding state sets 𝑄+ = {𝑞+ | 𝑞 ∈ 𝑄}
and 𝑄− = {𝑞− | 𝑞 ∈ 𝑄}. The new event @ connects 𝐺 to
𝐺+ and 𝐺− via transitions

• (𝑞,@, 𝑞+), for every 𝑞 ∈ 𝑄𝑆 , and
• (𝑞,@, 𝑞−), for every 𝑞 ∈ 𝑄𝑁𝑆 .
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Figure 1. First step of the reduction of 𝑘-SO to CSO.

The set of secret states of 𝐺′ is 𝑄+, and the set of non-secret
states is 𝑄 ∪𝑄− , see Figure 1. The set of observable events
of 𝐺′ is Σ𝑜 ∪ {@}. ⋄

The following result shows that we can verify INSO of 𝐺
by checking CSO of 𝐺′.

Theorem 4. A DES 𝐺 is INSO with respect to 𝑄𝑆 , 𝑄𝑁𝑆 ,
and 𝑃 if and only if 𝐺′ obtained from 𝐺 by Construction 3
is CSO with respect to 𝑄′

𝑆
= 𝑄+, 𝑄′

𝑁𝑆
= 𝑄 ∪ 𝑄− , and

𝑃′ : (Σ ∪ {@})∗ → (Σ𝑜 ∪ {@})∗.

Proof. Assume that 𝐺 is INSO. To show that 𝐺′ is CSO,
let 𝑤 ∈ 𝐿 (𝐺′) be such that 𝛿′ (𝐼, 𝑤) ∩ 𝑄′

𝑆
≠ ∅. Since the

set of secret states of 𝐺′ is 𝑄+, the string 𝑤 is of the form
𝑤1@𝑤2, and there is a state 𝑞 ∈ 𝛿(𝐼, 𝑤1) ∩ 𝑄𝑆 in 𝐺 such
that its copy 𝑞+ belongs to 𝛿′ (𝐼, 𝑤1@) ∩𝑄′

𝑆
in 𝐺′, and the

suffix 𝑤2 is generated from 𝑞+. Then 𝑤2 can be generated
from 𝑞 in 𝐺, and hence 𝛿(𝛿(𝐼, 𝑤1) ∩ 𝑄𝑆 , 𝑤2) ≠ ∅. The
INSO property of 𝐺 implies that there is 𝑤′

1𝑤
′
2 ∈ 𝐿 (𝐺) such

that 𝑃(𝑤1) = 𝑃(𝑤′
1), 𝑃(𝑤2) = 𝑃(𝑤′

2), and 𝛿(𝛿(𝐼, 𝑤′
1) ∩

𝑄𝑁𝑆 , 𝑤
′
2) = 𝑋 ≠ ∅. Let 𝑤′ = 𝑤′

1@𝑤′
2. Then, 𝑃′ (𝑤) =

𝑃′ (𝑤′) and 𝛿′ (𝛿′ (𝐼, 𝑤′
1@) ∩𝑄′

𝑁𝑆
, 𝑤′

2) = {𝑥− | 𝑥 ∈ 𝑋} ≠ ∅,
which was to be shown.

On the other hand, if 𝐺 is not INSO, then there is a string
𝑠𝑡 ∈ 𝐿 (𝐺) and a state 𝑞 such that 𝑞 ∈ 𝛿(𝛿(𝐼, 𝑠) ∩𝑄𝑆 , 𝑡) and,
for every string 𝑠′𝑡′ ∈ 𝐿 (𝐺) with 𝑃(𝑠) = 𝑃(𝑠′) and 𝑃(𝑡) =
𝑃(𝑡′), 𝛿(𝛿(𝐼, 𝑠′) ∩𝑄𝑁𝑆 , 𝑡

′) = ∅. Then, for 𝑠@𝑡 ∈ 𝐿 (𝐺′), the
secret state 𝑞+ ∈ 𝛿′ (𝛿′ (𝐼, 𝑠@) ∩𝑄′

𝑆
, 𝑡) ⊆ 𝛿′ (𝐼, 𝑠@𝑡) and, for

every 𝑠′@𝑡′ ∈ 𝐿 (𝐺′) with 𝑃′ (𝑠@𝑡) = 𝑃′ (𝑠′@𝑡′), we have
𝛿′ (𝐼, 𝑠′@𝑡′) ∩ 𝑄′

𝑁𝑆
= 𝛿′ (𝛿′ (𝐼, 𝑠′@) ∩ 𝑄′

𝑁𝑆
, 𝑡′) = ∅, and

hence 𝐺′ is not CSO. □

To use 𝐺′ to verify 𝑘-SO, we need to extend Construction 3
with a counter of observable events made from a secret state.
However, rather than to use a 𝑘-state automaton to model the
counter, as was done in the literature (Saboori, 2011; Balun
and Masopust, 2021; Wintenberg et al., 2022), we use an
automaton with 𝑂 (log 𝑘) states described below.

5.2 Counter automaton

The counter automaton described in this section is a revised
and simplified version of the counter automaton presented
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Figure 2. The NFA A𝑘 of Lemma 5.

in Balun and Masopust (2022).

Lemma 5. For every integer 𝑘 ≥ 1, there is an NFA A𝑘

with 𝑛 = ⌈log2 (𝑘 +1)⌉ events and 2𝑛+1 states, such that A𝑘

marks all strings except for a unique string 𝑊𝑘 of length 𝑘

and all its prefixes.

Proof. Let 𝑘 ≥ 1, and let 𝑛 = ⌈log2 (𝑘 + 1)⌉. We consider
Zimin words 𝑍𝑛 over Σ𝑛 = {𝑎0, 𝑎1, . . . , 𝑎𝑛−1} defined by

𝑍1 = 𝑎0 and 𝑍𝑖 = 𝑍𝑖−1𝑎𝑖−1𝑍𝑖−1 for 1 < 𝑖 ≤ 𝑛

e.g., 𝑍3 = 𝑍2𝑎2𝑍2 = 𝑍1𝑎1𝑍1𝑎2𝑍1𝑎1𝑍1 = 𝑎0𝑎1𝑎0𝑎2𝑎0𝑎1𝑎0.
The length of 𝑍𝑛 is 2𝑛 − 1 (Sloan, a), and the event on the
ℓth position of 𝑍𝑛 is 𝑎 𝑗 , where 𝑗 is the number of trailing
zeros in the binary representation of ℓ (Sloan, b). Since 𝑍𝑛

is a palindrome, the same event appears on positions ℓ and
2𝑛 − 1 − ℓ. We denote the suffix of 𝑍𝑛 of length 𝑘 by 𝑊𝑘 ,
which is the desired string from the statement of the lemma.

Let 𝑏𝑛−1𝑏𝑛−2 · · · 𝑏0 be the binary representation of 𝑘 , where
the leftmost bit is the most significant; in particular, 𝑏𝑛−1 =

1. We construct the NFA A𝑘 = (𝑄, Σ𝑛, 𝛿, 𝐼, 𝐹) with the state
set 𝑄 = {𝑞} ∪ {𝑞1

𝑖
, 𝑞0

𝑖
| 𝑖 = 0, . . . , 𝑛 − 1} consisting of two

states, 𝑞1
𝑖

and 𝑞0
𝑖
, for every bit 𝑏𝑖 of the binary representation

of 𝑘 , and one additional state, 𝑞, which is the only marked
state, that is, 𝐹 = {𝑞}. The initial states form the set 𝐼 =

{𝑞𝑏𝑛−1
𝑛−1 , 𝑞

𝑏𝑛−2
𝑛−2 , . . . , 𝑞

𝑏0
0 }. The transition function 𝛿 is defined

as follows, see Figure 2 and Example 7 for an illustration:

(1) For every 𝑎 ∈ Σ𝑛, (𝑞, 𝑎, 𝑞) ∈ 𝛿;
(2) For every state 𝑞1

𝑖
,

(a) (𝑞1
𝑖
, 𝑎𝑖 , 𝑞

0
𝑖
) ∈ 𝛿;

(b) (𝑞1
𝑖
, 𝑎 𝑗 , 𝑞

1
𝑖
) ∈ 𝛿, for 0 ≤ 𝑗 ≤ 𝑖 − 1;

(c) (𝑞1
𝑖
, 𝑎𝑖 , 𝑞

1
𝑗
) ∈ 𝛿, for 0 ≤ 𝑗 ≤ 𝑖 − 1;

(d) (𝑞1
𝑖
, 𝑎 𝑗 , 𝑞) ∈ 𝛿, for 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 − 1;

(3) For every state 𝑞0
𝑖
,

(a) (𝑞0
𝑖
, 𝑎𝑖 , 𝑞) ∈ 𝛿;

(b) (𝑞0
𝑖
, 𝑎 𝑗 , 𝑞

0
𝑖
) ∈ 𝛿, for 0 ≤ 𝑗 ≤ 𝑖 − 1;

(c) the other transitions are undefined.

It remains to show that A𝑘 marks all strings except for
prefixes of 𝑊𝑘 . To this end, we first show that A𝑘 does not

mark any prefix of 𝑊𝑘 , and then we show that A𝑘 marks all
strings that do not form a prefix of 𝑊𝑘 .

To show that A𝑘 does not mark any prefix of 𝑊𝑘 , we prove
the following claim that we further implicitly use in the rest
of the proof.

Claim 6. After generating the prefix of 𝑍𝑛 of length ℓ ≤ 2𝑛−
1, the observer of A2𝑛−1 is in state {𝑞𝑟𝑛−1

𝑛−1 , 𝑞
𝑟𝑛−2
𝑛−2 , . . . , 𝑞

𝑟0
0 },

where 𝑟𝑛−1𝑟𝑛−2 · · · 𝑟0 is the number 2𝑛 − 1 − ℓ in binary.

Proof. By induction on ℓ. For ℓ = 0, the number 2𝑛 − 1
is 11 · · · 1 in binary, which corresponds to the initial state
{𝑞1

𝑛−1, 𝑞
1
𝑛−2, . . . , 𝑞

1
0} of the observer of A2𝑛−1. Assume

that the claim holds for ℓ < 2𝑛 − 1, that is, the ob-
server of A2𝑛−1 is in state {𝑞𝑟𝑛−1

𝑛−1 , 𝑞
𝑟𝑛−2
𝑛−2 , . . . , 𝑞

𝑟0
0 }, where

𝑟𝑛−1𝑟𝑛−2 · · · 𝑟0 is 2𝑛 − 1 − ℓ in binary. To prove the
claim for ℓ + 1, let 𝑟𝑡 be the rightmost non-zero bit of
𝑟𝑛−1𝑟𝑛−2 · · · 𝑟0. Then, there are 𝑡 trailing zeros, and hence
the event of 𝑍𝑛 at position ℓ + 1 is 𝑎𝑡 . By the definition
of A2𝑛−1, the transition under 𝑎𝑡 is undefined in states
𝑞0
𝑡−1, . . . , 𝑞

0
0, and it is a self-loop in 𝑞

𝑟𝑛−1
𝑛−1 , . . . , 𝑞

𝑟𝑡+1
𝑡+1 . The

transitions from 𝑞1
𝑡 under 𝑎𝑡 lead to states 𝑞1

𝑡−1, . . . , 𝑞
1
0 and

to 𝑞0
𝑡 . Thus, generating 𝑎𝑡 in the next step, the observer

of A2𝑛−1 moves from state {𝑞𝑟𝑛−1
𝑛−1 , 𝑞

𝑟𝑛−2
𝑛−2 , . . . , 𝑞

𝑟0
0 } to state

{𝑞𝑟𝑛−1
𝑛−1 , 𝑞

𝑟𝑛−2
𝑛−2 , . . . , 𝑞

𝑟𝑡+1
𝑡+1 , 𝑞

0
𝑡 , 𝑞

1
𝑡−1, . . . , 𝑞

1
0}, which is a state bi-

nary representing the number 2𝑛−1−ℓ−1 = 2𝑛−1− (ℓ+1),
which proves the claim. □

Claim 6 implies that the automaton A𝑘 corresponds to the
automaton A2𝑛−1 having generated the prefix of 𝑍𝑛 of length
2𝑛 − 1 − 𝑘 = |𝑍𝑛 | − |𝑊𝑘 |; indeed, in this case, A2𝑛−1 is
in states encoding the number 2𝑛 − 1 − (2𝑛 − 1 − 𝑘) = 𝑘

in binary. Consequently, the observer of A𝑘 generating 𝑊𝑘

event by event goes through the respective states representing
the numbers 𝑘 , 𝑘 − 1, . . . , 0 in binary. These states are not
marked because they do not contain state 𝑞, and hence A𝑘

does not mark any prefix of 𝑊𝑘 .

To show that A𝑘 marks all strings that do not form a prefix of
𝑊𝑘 , assume that the observer of A𝑘 is in a state of the form
{𝑞𝑟𝑛−1

𝑛−1 , 𝑞
𝑟𝑛−2
𝑛−2 , . . . , 𝑞

𝑟0
0 } reached by a prefix 𝑤 of 𝑊𝑘 . If 𝑤 =

𝑊𝑘 , then 𝑟𝑛−1 = 𝑟𝑛−2 = · · · = 𝑟0 = 0, and any move of A𝑘

introduces 𝑞 to the state of the observer of A𝑘 . Otherwise,
let 𝑟𝑡 be the rightmost non-zero bit of 𝑟𝑛−1𝑟𝑛−2 · · · 𝑟0. Then,
𝑊𝑘 = 𝑤𝑎𝑡𝑤

′. Assume that A𝑘 now generates an event 𝑎𝑖 ≠
𝑞𝑡 . If 𝑖 > 𝑡, the transition (𝑞1

𝑡 , 𝑎𝑖 , 𝑞) is applied, and if 𝑖 < 𝑡,
the transition (𝑞0

𝑖
, 𝑎𝑖 , 𝑞) is applied. Since 𝑞 is never removed

from a state of the observer of A𝑘 , all states reachable from
now on are marked, which completes the proof. □

Example 7. For an illustration, take 𝑘 = 6. Then 𝑛 = 3 and
the binary encoding of 6 is 110. For 𝑍3 = 𝑎0𝑎1𝑎0𝑎2𝑎0𝑎1𝑎0,
the suffix of length 6 is 𝑊6 = 𝑎1𝑎0𝑎2𝑎0𝑎1𝑎0. The automaton
A6 is depicted in Figure 3, where the initial states are 𝑞1

2, 𝑞1
1,

and 𝑞0
0 corresponding to the bits of 110. The computation

5



q10

q00

q11

q01

q12

q02

q

a0a1a2

a1

a2 a1 a0

{a0, a1, a2}

a0

a0, a1

a0, a1 a0

a2

a2

a2 a 1
, a

2

Figure 3. The NFA A6 with initial states of a diamond shape.

of A6 on 𝑊6 = 𝑎1𝑎0𝑎2𝑎0𝑎1𝑎0 is depicted in Figure 6, from
which it should be clear that A6 does not mark any prefix of
𝑊6 = 𝑎1𝑎0𝑎2𝑎0𝑎1𝑎0, and that it marks all strings different
from 𝑊6. ⋄

5.3 Reducing 𝑘-SO to CSO: the second step

Based on the reduction of INSO to CSO above, we are now
ready to provide a reduction of 𝑘-SO to CSO by adding a
counter. The idea behind the counter is to use the automaton
A𝑘 working along a string 𝑊𝑘 that walks the automaton A𝑘

through non-marked states along a path of length 𝑘 .

Construction 8. Given a DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼) and a 𝑘 ∈
N∞, we consider the automata 𝐺+ and 𝐺− obtained from
𝐺 by Construction 3, and the counter automaton Ak =

(𝑄𝑛, Σ𝑛, 𝛿𝑛, 𝐼𝑛, {𝑞}) constructed in Section 5.2. We now
connect 𝐺, 𝐺+, 𝐺− , and Ak to a single NFA. However, be-
fore doing so, notice that 𝐺, 𝐺+, and 𝐺− are over the al-
phabet Σ, while A𝑘 is over Σ𝑛, which is disjoint from Σ.
Therefore, we first change the alphabets of the automata to
Σ ∪ (Σ𝑜 × Σ𝑛) as follows.

(1) In 𝐺+ and 𝐺− , we replace every observable transition
(𝑝, 𝜎, 𝑞) by (𝑝, (𝜎, 𝛾), 𝑞), for every 𝛾 ∈ Σ𝑛, and we
denote the results by �̃�+ and �̃�− .

(2) Similarly, in Ak, we replace every transition (𝑝, 𝛾, 𝑞)
by (𝑝, (𝜎, 𝛾), 𝑞), for every 𝜎 ∈ Σ𝑜, and we denote the
result by Ãk.

We now consider the automata as a single automaton 𝐺′ =
(𝑄′, Σ′, 𝛿′, 𝐼), where the set of states 𝑄′ = 𝑄∪𝑄+∪𝑄−∪𝑄𝑛,
the alphabet Σ′ = Σ ∪ (Σ𝑜 × Σ𝑛) ∪ {@}, where @ is a new
observable event, and the transition function 𝛿′ = 𝛿 ∪ 𝛿+ ∪
𝛿− ∪ 𝛿𝑛. In addition, we connect the automata by transitions

• (𝑞,@, 𝑞+) and (𝑞,@, 𝑞0), for every secret state 𝑞 ∈ 𝑄𝑆

and every initial state 𝑞0 ∈ 𝐼𝑛 of Ã𝑘 , and
• (𝑞,@, 𝑞−), for every non-secret state 𝑞 ∈ 𝑄𝑁𝑆 .

The set of secret states of 𝐺′ is 𝑄+, the set of non-secret
states is 𝑄− ∪ {𝑞}, and the set of observable events is Σ𝑜 ∪
{@} ∪ Σ𝑜 × Σ𝑛. ⋄

1 2 3 4 5 6 7 8
a a a a a a a

Figure 4. The DES 𝐺 of the reduction of 6-SO to CSO; the secret
state is marked and the non-secret state is squared.

1

2

1+

2−

3

2+

3−

4

4− 5− 6− 7− 8−

5 6 7 8

3+ 4+ 5+ 6+ 7+ 8+

q10

q00

q11

q01

q12

q02

q
a

@

@

a

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

a

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

a a a a

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

(a, a0)
(a, a1)
(a, a2)

(a, a0)(a, a1)(a, a2)

(a, a1)

(a, a2)
(a, a1)

(a,
a0)

{(a, a0), (a, a1), (a, a2)}

(a, a0)

(a, a0)
(a, a1)

(a, a0)
(a, a1) (a, a0)

(a, a2)

(a, a2)

(a, a2)

(a,
a1)

(a,
a2)

@
@

@

Figure 5. The DES 𝐺′ of the reduction of 6-SO to CSO; secret
states are marked and non-secret states are squared.

To illustrate the construction, we consider the 6-step opacity
of 𝐺 = ({1, . . . , 8}, {𝑎}, 𝛿, {1, 2}) with 𝛿(𝑖, 𝑎) = {𝑖 + 1},
for 1 ≤ 𝑖 ≤ 7, depicted in Figure 4, where the event 𝑎 is
observable, state 1 is secret, and state 2 is non-secret. To
encode 𝑘 = 6, the construction uses the counter automaton
A6 of Figure 3, and results in the automaton 𝐺′ of Figure 5,
where all non-secret states are squared.

In the sequel, we denote strings consisting of events over
Σ𝑜×Σ𝑛, e.g., (𝑎, 𝑏) (𝑐, 𝑑), simply as a pair of corresponding
concatenated strings of the components, e.g., (𝑎𝑐, 𝑏𝑑).

Theorem 9. A DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼) is 𝑘-SO with respect to
𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 : Σ∗ → Σ∗

𝑜 if and only if 𝐺′ obtained from
𝐺 by Construction 8 is CSO with respect to𝑄′

𝑆
= 𝑄+,𝑄′

𝑁𝑆
=

𝑄− ∪{𝑞}, where 𝑞 is the marked state of the automaton A𝑘 ,
and 𝑃′ : (Σ′ ∪ {@})∗ → (Σ𝑜 ∪ {@} ∪ Σ𝑜 × Σ𝑛)∗.

Proof. Assume that 𝐺 is 𝑘-SO. To show that 𝐺′ is CSO, let
𝑤 ∈ 𝐿 (𝐺′) be such that 𝛿′ (𝐼, 𝑤) ∩𝑄′

𝑆
≠ ∅. Since the set of

secret states of 𝐺′ is 𝑄+, the string 𝑤 is of the form 𝑤1@𝑤2,
and hence 𝛿(𝐼, 𝑤1) contains a secret state of 𝐺, from which
𝑤2 can be generated.

If |𝑃(𝑤2) | ≤ 𝑘 , then the 𝑘-SO property of 𝐺 implies the ex-
istence of a string 𝑤′

1𝑤
′
2 ∈ 𝐿 (𝐺) such that 𝑃(𝑤′

1) = 𝑃(𝑤1),
𝑃(𝑤′

2) = 𝑃(𝑤2), and 𝛿(𝛿(𝐼, 𝑤′
1) ∩ 𝑄𝑁𝑆 , 𝑤

′
2) ≠ ∅; that is,

there is a non-secret state 𝑝 ∈ 𝛿(𝐼, 𝑤′
1) from which 𝑤′

2 can
be generated, reaching a state 𝑟 . Then, for 𝑤′ = 𝑤′

1@(𝑤′
2, 𝑥),

where 𝑥 is the prefix of length |𝑃(𝑤′
2) | of the unique string

𝑊𝑘 not marked by A𝑘 , we have 𝛿′ (𝐼, 𝑤′) ∩𝑄′
𝑁𝑆

≠ ∅, since
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Figure 7. The minimized observer of 𝐺′ of Figure 5.

the non-secret state 𝑟− ∈ 𝑄− is reachable from state 𝑝− in
𝐺′ by (𝑤′

2, 𝑥). Thus, the automaton 𝐺′ is CSO.

If |𝑃(𝑤2) | > 𝑘 , then every string 𝑤′
1@(𝑤′

2, 𝑦) ∈ Σ′∗ is
such that 𝑦 is marked by A𝑘 , because A𝑘 marks all strings
longer than 𝑘 . Therefore, (𝑤′

2, 𝑦) is marked by Ã𝑘 , and hence
𝑞 ∈ 𝛿′ (𝐼, 𝑤′

1@(𝑤′
2, 𝑦)) ∩𝑄′

𝑁𝑆
, which shows that 𝐺′ is CSO.

On the other hand, assume that 𝐺 is not 𝑘-SO. Then, there
is 𝑠𝑡 ∈ 𝐿 (𝐺) such that |𝑃(𝑡) | ≤ 𝑘 , 𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠

∅, and, for every 𝑠′ ∈ 𝑃−1𝑃(𝑠) and every 𝑡′ ∈ 𝑃−1𝑃(𝑡),
𝛿(𝛿(𝐼, 𝑠′)∩𝑄𝑁𝑆 , 𝑡

′) = ∅. Then, in 𝐺′, 𝛿′ (𝐼, 𝑠@)∩𝑄′
𝑆
≠ ∅. If

𝛿(𝐼, 𝑠′) ∩𝑄𝑁𝑆 = ∅, then 𝛿′ (𝐼, 𝑠′@) ∩𝑄′
𝑁𝑆

= ∅. If 𝛿(𝐼, 𝑠′) ∩
𝑄𝑁𝑆 = 𝑍 ≠ ∅, we consider any string 𝑠′@(𝑡′, 𝑦) ∈ 𝐿 (𝐺′),
where 𝑦 is a prefix of the unique string𝑊𝑘 that is not marked
by A𝑘 , which exists because |𝑦 | = |𝑃(𝑡′) | ≤ 𝑘 . Then, (𝑡′, 𝑦)
is not marked by Ã𝑘 , and hence 𝛿′ (𝐼, 𝑠′@(𝑡′, 𝑦)) ∩𝑄′

𝑁𝑆
=

𝛿′ ( [𝛿′ (𝐼, 𝑠′@) ∩ 𝑄−], (𝑡′, 𝑦)) = 𝛿′ (𝑍− , (𝑡′, 𝑦)) = ∅, where
𝑍− = {𝑧− | 𝑧 ∈ 𝑍}; indeed, (𝑡′, 𝑦) is not generated in 𝐺′

from a state of 𝑍− , because 𝑡′ is not generated in 𝐺 from a
state of 𝑧 ∈ 𝑍 . Therefore, 𝐺′ is not CSO. □

For an illustration, the state-minimal observer of 𝐺′ is de-
picted in Figure 7, where every state containing a non-secret
state of 𝐺′ is squared. Since every state of the observer,
reachable by a string containing @, contains a non-secret
state of 𝐺′, the automaton 𝐺′ is CSO. Indeed, the automa-
ton 𝐺 of Figure 4 is 6-SO, since we can make six steps from
both states 1 and 2.

If we remove state 8 and the corresponding transitions from
𝐺, then 𝐺 is no longer 6-SO: six steps can be made from
the secret state 1, but only five steps is possible from the
non-secret state 2. Our reduction results in 𝐺′ coinciding
with the automaton of Figure 5 without states 8, 8+, 8− , and
the corresponding transitions. The state-minimal observer is
depicted in Figure 8, where the unique secret state (marked)
denoting the state {7+, 𝑞0

2, 𝑞
0
1, 𝑞

0
0} is reachable by the string

@(𝑎, 𝑎1) (𝑎, 𝑎0) (𝑎, 𝑎2) (𝑎, 𝑎0) (𝑎, 𝑎1) (𝑎, 𝑎0), and hence the
automaton 𝐺′ is not CSO.

5.4 Algorithms and experimental results

We implemented five algorithms to verify 𝑘-SO: the two-way
observer of Yin and Lafortune (2017), called tw_obs, the

@
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Figure 8. The minimized observer of 𝐺′ of Figure 5 without states
8, 8+, 8− , and corresponding transitions.

algorithm of Balun and Masopust (2023) based on projected
automata, called bm_kso, the reduction of 𝑘-SO to the secret
observer of Wintenberg et al. (2022), called w-kso, and our
reduction of 𝑘-SO to CSO of Construction 8, which results
in two algorithms based on the two algorithms verifying
CSO; namely, kso_limi and kso_obs.

As already pointed out above, we implemented the two-way
observer with a slight modification—rather than to use the
dept-first search, we used the graph search implemented in
libFAUDES. We also interrupt the algorithm as soon as a
counterexample is found. The impact of the former choice
on the performance of the two-way observer algorithm is
not known to us.

Notice that Wintenberg et al. (2022) have, in fact, proposed
several algorithms for 𝑘-SO verification. However, according
to their investigation, the fastest was the reduction of 𝑘-SO to
the secret observer, and therefore we selected this algorithm
for comparisons. We have not implemented neither tested
the other algorithms.

Combining our reduction of 𝑘-SO to CSO with the two al-
gorithms for CSO verification results in two algorithms for
𝑘-SO verification: kso_obs and kso_limi. We implemented
kso_obs so that the instance of 𝑘-SO is reduced to an in-
stance of CSO, and the observer-based algorithm is adjusted
to never investigate a set containing the marked state 𝑞 of the
counter automaton A𝑘 ; indeed, every state of the observer
reachable from a state containing state 𝑞 also contains state
𝑞, and hence such a path in the observer never violates CSO.
This method is formalized as Algorithm 2.

We have run experiments for three choices of 𝑘 ranging from
small to large; namely, for 𝑘 = 5, 𝑘 = 500, and 𝑘 = 50000.
For 𝑘 = 500, the algorithm of Wintenberg et al. (2022)
timed out for 6433 instances, which is more than half of the
instances, and therefore we excluded it from comparisons.
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Algorithm 2. kso_obs
Require: A DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼), 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄, Σ𝑜 ⊆ Σ,

and 𝑘 ∈ N∞.
Ensure: true if and only if 𝐺 is 𝑘-step opaque with respect

to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 : Σ∗ → Σ∗
𝑜.

1: Compute the instance 𝐺′ of CSO (with the counter au-
tomaton A𝑘) by applying Construction 8 to 𝐺

2: Construct the observer 𝐺′𝑜𝑏𝑠 of 𝐺′ step by step.
3: for every newly generated state 𝑋 of 𝐺′𝑜𝑏𝑠 do
4: if 𝑋 contains the marked state 𝑞 of A𝑘 then
5: do not add 𝑋 to the observer of 𝐺′, and continue
6: end if
7: if 𝑋 ∩𝑄𝑆 ≠ ∅ and 𝑋 ∩𝑄𝑁𝑆 = ∅ then
8: return false
9: end if

10: end for
11: return true

For 𝑘 = 50000, both the algorithm of Wintenberg et al.
(2022) and our inclusion-based algorithm reducing 𝑘-SO to
CSO timed out for basically all instances, and therefore we
excluded them from comparisons.

The results for 𝑘 = 5 are summarized in Table 3. All the
tools together solved 11615 instances. Although bm_kso
was the fastest for the most instances, kso_obs based on our
reduction of 𝑘-SO to CSO used the minimum total time and
solved the most instances of all the tools.

The total time is the sum of the times to solve an instance, or
300 if the tool timed out when solving the instance, over all
11710 instances. On the other hand, the total time to solve
positive/negative instances counts only the times over the
instances that were solved by at least one of the tools.

The results for 𝑘 = 500 and 𝑘 = 50000 are summarized in
Table 3 and Table 2, respectively. In both cases, the tools
together solved 11601 instances. Again, bm_kso was the
fastest for the most instances, and this time it also took the
minimum total time. For 𝑘 = 500, kso_obs used the second
minimum total time, whereas for 𝑘 = 50000, it was the slow-
est. However, kso_obs was extremely fast to solve negative
instances, and solved the most negative instances of all the
tools. In these cases, the two-way observer solved the most
instances within the given time limit.

6 Strong K-step opacity

In this section, we discuss a reduction of 𝑘-SSO to 𝑘-SO, and
use it to design new algorithms to verify 𝑘-SSO. From all
algorithms resulting from the combinations of our reduction
with the algorithms verifying 𝑘-SO, we consider two, using
our algorithms verifying 𝑘-SO, and compare them with the
secret-observer-based algorithm of Wintenberg et al. (2022)
and with the algorithm of Han et al. (2022).

Before that, we review the notions of 𝑘-SSO discussed in the

literature. Falcone and Marchand (2015) introduced strong
𝑘-SO for deterministic DES in the following form.

Given a projection 𝑃 : Σ∗ → Σ∗
𝑜 and 𝑘 ∈ N∞, we say that a

prefix 𝑤′ of 𝑤 is 𝑘-short if |𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 𝑘 .

Definition 10 (𝑘-SSO-DFA). For 𝑘 ∈ N∞, a deterministic
DES 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) is 𝑘-SSO-DFA with respect to the set
of secret states 𝑄𝑆 ⊆ 𝑄 and projection 𝑃 : Σ∗ → Σ∗

𝑜 if for
every 𝑠 ∈ 𝐿 (𝐺), there is 𝑤 ∈ 𝐿 (𝐺) such that 𝑃(𝑠) = 𝑃(𝑤)
and 𝛿(𝑞0, 𝑤

′) ∉ 𝑄𝑆 for every 𝑘-short prefix 𝑤′ of 𝑤 .

Recently, Han et al. (2022) tried to generalize it to NFAs.

Definition 11 (𝑘-SSO-HZL). For 𝑘 ∈ N∞, a DES 𝐺 =

(𝑄, Σ, 𝛿, 𝐼) is 𝑘-SSO-HZL with respect to the set of secret
states 𝑄𝑆 ⊆ 𝑄 and projection 𝑃 : Σ∗ → Σ∗

𝑜 if for every run
𝑞0

𝑠−→ 𝑞𝑠
𝑡−→ 𝑞𝑡 with 𝑞0 ∈ 𝐼, 𝑞𝑠 ∈ 𝑄𝑆 , and |𝑃(𝑡) | ≤ 𝑘 , there

is a run 𝑝0
𝑠1−→ 𝑝𝑠

𝑡1−→ 𝑝𝑡 such that 𝑝0 ∈ 𝐼, 𝑃(𝑠1) = 𝑃(𝑠),
𝑃(𝑡1) = 𝑃(𝑡), and the run 𝑝𝑠

𝑡1−→ 𝑝𝑡 is non-secret.

However, we show that 𝑘-SSO-HZL suffers from a similar
problem as 𝑘-SO. Namely, the observer may infer that the
system was in a secret state, though it cannot say when. For
an example, consider the automaton in Figure 9 with state
1 secret, event 𝑎 observable, and event 𝑢 unobservable. For
any 𝑘 ∈ N∞, the system is not 𝑘-SSO-DFA, because for 𝑎𝑘 ∈
𝐿 (𝐺), any 𝑤 ∈ 𝐿 (𝐺) such that 𝑃(𝑤) = 𝑃(𝑎𝑘) = 𝑎𝑘 belongs
to {𝑎𝑘 , 𝑢𝑎𝑘}, but for the prefix 𝜀 of 𝑤 ∈ {𝑎𝑘 , 𝑢𝑎𝑘}, we have
|𝑃(𝑤) | − |𝑃(𝜀) | = 𝑘 and 𝛿(1, 𝜀) ∈ 𝑄𝑆 , which contradicts
𝑘-SSO-DFA. On the other hand, the system is 𝑘-SSO-HZL,
because for any run 1

𝑠−→ 1
𝑡−→ 𝑟 with 𝑟 ∈ {1, 2, 3, 4} such

that |𝑃(𝑡) | ≤ 𝑘 , we have 𝑠 = 𝜀 and there are two choices for
𝑡: either 𝑃(𝑡) = 𝜀, or 𝑃(𝑡) = 𝑎ℓ with 1 ≤ ℓ ≤ 𝑘 . But then
the run 1

𝑢−→ 3
𝑡 ′−→ 𝑝, where 𝑝 = 3 if 𝑃(𝑡) = 𝜀, and 𝑝 = 4 if

𝑃(𝑡) = 𝑎ℓ = 𝑡′, satisfies 𝑃(𝑢) = 𝑃(𝜀), 𝑃(𝑡′) = 𝑃(𝑡), and the
run 3

𝑡 ′−→ 𝑝 is non-secret.

This problem led us to the following generalization of the
definition of 𝑘-SSO-DFA.

Definition 12 (𝑘-SSO-NFA). For 𝑘 ∈ N∞, a DES 𝐺 =

(𝑄, Σ, 𝛿, 𝐼) is 𝑘-SSO-NFA with respect to the set of secret

bm_kso kso_obs tw_obs

Solved 11454 10899 11512
Fastest for 10918 123 438
Solved only by 5 65 81
Solved true inst. 5710 5090 5781
Solved false inst. 5744 5809 5731
Total time 88159 656378 154448
Time true solved 32623 618046 73718
Time false solved 22836 5632 48030

Table 2
Comparing bm_kso, kso_obs, and tw_obs for 𝑘 = 50000 within
a five-minute time limit.
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𝑘 = 5 𝑘 = 500

bm_kso kso_limi kso_obs tw_obs w-kso bm_kso kso_limi kso_obs tw_obs

Solved 11500 11558 11597 11590 11577 11448 11127 11467 11509
Fastest for 5889 1936 3147 340 24 10068 15 817 587
Solved only by 0 3 2 14 0 2 3 25 80
Solved true inst. 5756 5774 5785 5796 5769 5707 5370 5658 5778
Solved false inst. 5744 5784 5812 5794 5808 5741 5757 5809 5731
Total time 74798 77654 43664 112141 64133 89848 314533 104333 164968
Time true solved 22040 37584 11169 58386 26159 32935 231684 66304 79470
Time false solved 24257 11570 3995 25256 9473 24213 50149 5330 52798

Table 3
Comparing bm_kso, kso_limi, kso_obs, tw_obs, and w-kso for 𝑘 = 5 within a five-minute time limit, and bm_kso, kso_limi, kso_obs,
and tw_obs for 𝑘 = 500 within a five-minute time limit.

1 2

3 4

a

u

a

a

a

Figure 9. A deterministic DES that is 𝑘-SSO-HZL but not
𝑘-SSO-DFA, for any 𝑘 ∈ N∞. The secret state is marked; the event
𝑎 is observable, and 𝑢 is unobservable.

states 𝑄𝑆 ⊆ 𝑄 and projection 𝑃 : Σ∗ → Σ∗
𝑜 if for every

𝑠 ∈ 𝐿 (𝐺), there is a run 𝑖
𝑤−→ , for some initial state 𝑖, such

that 𝑃(𝑠) = 𝑃(𝑤) and for every 𝑘-short prefix 𝑤′ of 𝑤 the
subrun 𝑖

𝑤′
−−→ 𝑗 satisfies 𝑗 ∉ 𝑄𝑆 .

The notions of 𝑘-SSO-DFA and 𝑘-SSO-NFA coincide for de-
terministic DES. Indeed, if 𝐺 is a DFA, then 𝛿(𝑖, 𝑤) defines
a unique run 𝑖

𝑤−→ , and vice versa, and therefore 𝑘-SSO-NFA
states that for every 𝑠 ∈ 𝐿 (𝐺), there is a string 𝑤 ∈ 𝐿 (𝐺)
whose every 𝑘-short prefix 𝑤′ satisfies 𝛿(𝑖, 𝑤′) ∉ 𝑄𝑆 .

We now clarify the relationship between 𝑘-SSO-NFA and
𝑘-SSO-HZL by showing that these definitions coincide for
systems that do not have unobservable transitions from secret
states to non-secret states. We call such systems normal.

Theorem 13. Let 𝐺 be a normal DES, and let 𝑘 ∈ N∞.
Then, 𝐺 is 𝑘-SSO-HZL with respect to 𝑄𝑆 and 𝑃 if and only
if 𝐺 is 𝑘-SSO-NFA with respect to 𝑄𝑆 and 𝑃.

Proof. Consider an initial run 𝑞0
𝑠−→ 𝑞𝑠

𝑡−→ 𝑞𝑡 such that
𝑞𝑠 ∈ 𝑄𝑠 and |𝑃(𝑡) | ≤ 𝑘 . If 𝐺 is 𝑘-SSO-NFA, then there is
an initial run 𝑖

𝑤−→ such that 𝑃(𝑤) = 𝑃(𝑠𝑡), and for every
𝑘-short prefix 𝑤1 of 𝑤, the subrun 𝑖

𝑤1−−→ 𝑗 has 𝑗 ∉ 𝑄𝑆 . Let
𝑤 = 𝑠′𝑡′ with 𝑃(𝑠′) = 𝑃(𝑠) and 𝑃(𝑡′) = 𝑃(𝑡), and observe
that for any prefix 𝑡′′ of 𝑡′, the string 𝑠′𝑡′′ is a 𝑘-short prefix
of 𝑤 (recall |𝑃(𝑡′) | = |𝑃(𝑡) | ≤ 𝑘), and hence the subrun
𝑖

𝑠′𝑡 ′′−−−→ 𝑗 has 𝑗 ∉ 𝑄𝑆 . Consequently, taking 𝑡′′ = 𝜖 shows that
the subrun 𝑗1

𝑡 ′−→ 𝑗2 of 𝑖
𝑠′−→ 𝑗1

𝑡 ′−→ 𝑗2 is non-secret, verifying
that 𝐺 is 𝑘-SSO-HZL.

On the other hand, for 𝑠 ∈ 𝐿 (𝐺), let 𝑞0
𝑠−→= 𝑞0

𝑡−→ 𝑞𝑡
𝑣−→ 𝑞𝑣

be an initial run with 𝑞𝑡 ∈ 𝑄𝑆 and 𝑣 being the longest suffix
of 𝑠 such that |𝑃(𝑣) | ≤ 𝑘 . If 𝐺 is 𝑘-SSO-HZL, then there
is an initial run 𝑝0

𝑡 ′−→ 𝑝′
𝑣′−→ 𝑝′′ such that 𝑝′

𝑣′−→ 𝑝′′ is
non-secret, 𝑃(𝑡′) = 𝑃(𝑡), and 𝑃(𝑣′) = 𝑃(𝑣). Let 𝑢 be the
longest suffix of 𝑡′ consisting of unobservable events, and let
𝑡′ = 𝑡′′𝑢. Taking 𝑝0

𝑡 ′′−−→ 𝑝1, the normality of 𝐺 implies that
𝑝1

𝑢−→ 𝑝′
𝑣′−→ 𝑝′′ is nonsecret (𝑝′

𝑣−→ 𝑝′′ is nonsecret and no
unobservable event takes a secret state to a nonsecret one).
Moreover, 𝑡′′ is a prefix of any 𝑘-short prefix 𝑤 of 𝑡′′𝑢𝑣′

(recall |𝑃(𝑣′) | = |𝑃(𝑣) | ≤ 𝑘), and hence 𝑝0
𝑤−→ 𝑗 satisfies

𝑗 ∉ 𝑄𝑆 . This verifies 𝑘-SSO-NFA. □

If a system is not normal, we can normalize it as shown
below without affecting the strong 𝑘-step opacity property. In
particular, the normalization allows us to use the verification
algorithms for 𝑘-SSO-HZL to verify both 𝑘-SSO-DFA and
𝑘-SSO-NFA.

Construction 14. Let 𝐺 = (𝑄, Σ, 𝛿, 𝐼) be a DES, 𝑘 ∈ N∞,
𝑄𝑆 ⊆ 𝑄 be the set of secret states, and 𝑃 : Σ∗ → Σ∗

𝑜 be the
projection to observable events. From 𝐺, we construct the
DES 𝐺𝑛𝑜𝑟𝑚 = (𝑄, Σ, 𝛿𝑛, 𝐼), where 𝛿𝑛 is initialized as 𝛿 and
further modified in the following two steps:

(1) From 𝛿𝑛, we remove all transitions (𝑞𝑠 , 𝑢, 𝑞𝑛𝑠) ∈ 𝛿𝑛
where 𝑞𝑠 ∈ 𝑄𝑆 is secret, 𝑞𝑛𝑠 ∈ 𝑄𝑁𝑆 is non-secret, and
𝑢 ∈ Σ𝑢𝑜 is unobservable.

(2) For every secret state 𝑞𝑠 ∈ 𝑄𝑆 and every observable
event 𝑎 ∈ Σ𝑜, if there is a non-secret state 𝑞𝑛𝑠 ∈
𝛿(𝑞𝑠 , 𝑃−1 (𝜀)) such that (𝑞𝑛𝑠 , 𝑎, 𝑝) ∈ 𝛿, then we add
the transition (𝑞𝑠 , 𝑎, 𝑝) to 𝛿𝑛.

The secret states and observable events of 𝐺𝑛𝑜𝑟𝑚 coincide
with those of 𝐺. See Figure 10 for an illustration. ⋄

The automaton 𝐺𝑛𝑜𝑟𝑚 is the normalization of 𝐺. Obviously,
in 𝐺𝑛𝑜𝑟𝑚, no non-secret state is reachable from a secret state
by a sequence of unobservable events. Indeed, 𝐺 is normal
if 𝐺 and 𝐺𝑛𝑜𝑟𝑚 coincide.
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Figure 10. The normalization of a DES.

The following lemma is obvious by Construction 14.

Lemma 15. Let 𝐺𝑛𝑜𝑟𝑚 be the normalization of a DES 𝐺 by
Construction 14. Then, for every run 𝑖

𝑤−→ in 𝐺𝑛𝑜𝑟𝑚, there
is a run 𝑖

𝑣−→ in 𝐺 such that 𝑃(𝑤) = 𝑃(𝑣). □

The following result is useful.

Lemma 16. For a DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼) with secret states
𝑄𝑆 and projection 𝑃 : Σ∗ → Σ∗

𝑜, let 𝐺𝑛𝑜𝑟𝑚 be the normal-
ization of 𝐺 by Construction 14. Then, for every run 𝑖

𝑤−→ 𝑗

in 𝐺, there is a run 𝑖
𝑣−→ 𝑗 ′ in 𝐺𝑛𝑜𝑟𝑚 such that 𝑃(𝑤) = 𝑃(𝑣),

and for every decomposition 𝑖
𝑤−→ 𝑗 = 𝑖

𝑤1−−→ 𝑞
𝑤2−−→ 𝑗 , there

is a decomposition 𝑖
𝑣−→ 𝑗 ′ = 𝑖

𝑣1−→ 𝑞′
𝑣2−→ 𝑗 ′ such that

(1) 𝑃(𝑤1) = 𝑃(𝑣1),
(2) if 𝑞 ∈ 𝑄𝑆 , then 𝑞′ ∈ 𝑄𝑆 , and
(3) if 𝑤1 = 𝑤3𝑎, for some 𝑎 ∈ Σ𝑜, then 𝑞′ = 𝑞.

Proof. By induction on the length of 𝑤. For 𝑤 = 𝜖 , the claim
holds. Thus, assume that 𝑤 ≠ 𝜀, and consider a decompo-
sition of 𝑖

𝑤−→ 𝑗 of the form 𝑖
𝑤1−−→ 𝑞𝑠

𝑢−→ 𝑞𝑛𝑠
𝑤2−−→ 𝑗 where

𝑞𝑠 ∈ 𝑄𝑆 , 𝑞𝑛𝑠 ∈ 𝑄𝑁𝑆 , 𝑢 ∈ Σ∗
𝑢𝑜, and 𝑤2 does not start with

an unobservable event. If there is no such decomposition,
𝑖

𝑤−→ 𝑗 is a run in 𝐺𝑛𝑜𝑟𝑚 that satisfies the lemma.

If there is at least one such decomposition, we pick one
where the subrun 𝑖

𝑤1−−→ 𝑞𝑠 is not further decomposable in
the prescribed way. The lemma holds for 𝑖

𝑤1−−→ 𝑞𝑠 by the
previous paragraph, and if 𝑤2 = 𝜖 , it also holds for 𝑖

𝑤−→ 𝑗 .
If 𝑤2 = 𝑎𝑥, for some observable event 𝑎 ∈ Σ𝑜, then the run
𝑖

𝑤−→ 𝑗 = 𝑖
𝑤1−−→ 𝑞𝑠

𝑢−→ 𝑞𝑛𝑠
𝑎−→ 𝑞1

𝑥−→ 𝑗 . By Construction 14,
𝑖

𝑤1−−→ 𝑞𝑠
𝑎−→ 𝑞1 is a run in 𝐺𝑛𝑜𝑟𝑚 that satisfies the lemma

for the run 𝑖
𝑤1−−→ 𝑞𝑠

𝑢−→ 𝑞𝑛𝑠
𝑎−→ 𝑞1 in 𝐺. By the induction

hypothesis, for the run 𝑞1
𝑥−→ 𝑗 in 𝐺, there is a run 𝑞1

𝑦
−→ 𝑗 ′

in 𝐺𝑛𝑜𝑟𝑚 satisfying the lemma. Therefore, for the run 𝑖
𝑤−→ 𝑗

in 𝐺, 𝑖
𝑤1𝑎−−−→ 𝑞1

𝑦
−→ 𝑗 ′ is a run in 𝐺𝑛𝑜𝑟𝑚 that satisfies the

lemma. □

We can now show the following result.

Theorem 17. Let 𝑘 ∈ N∞. A DES 𝐺 is 𝑘-SSO-NFA with
respect to 𝑄𝑆 and 𝑃 if and only if the normalization 𝐺𝑛𝑜𝑟𝑚

of𝐺 obtained by Construction 14 is 𝑘-SSO-NFA with respect
to 𝑄𝑆 and 𝑃.
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Figure 11. Construction 18 reducing 𝑘-SSO to 𝑘-SO.

Proof. Assume that 𝐺 is 𝑘-SSO-NFA with respect to 𝑄𝑆

and 𝑃 and consider any 𝑥 ∈ 𝐿 (𝐺𝑛𝑜𝑟𝑚). By Lemma 15, there
is 𝑠 ∈ 𝐿 (𝐺) such that 𝑃(𝑥) = 𝑃(𝑠), and by 𝑘-SSO-NFA of
𝐺, there is an initial run 𝑖

𝑤−→ in 𝐺 such that 𝑃(𝑠) = 𝑃(𝑤)
and, for every 𝑘-short prefix 𝑤1 of 𝑤 the subrun 𝑖

𝑤1−−→ 𝑗

has 𝑗 ∉ 𝑄𝑆 . Let 𝑤 = 𝑤𝑝𝑧, where 𝑤𝑝 is the shortest 𝑘-short
prefix of 𝑤. If 𝑤𝑝 = 𝜀, the run 𝑖

𝑤−→ is non-secret. If 𝑤𝑝 = 𝑣𝑎,
for some 𝑎 ∈ Σ𝑜, then 𝑖

𝑤−→= 𝑖
𝑣𝑎−−→ 𝑞𝑛𝑠,1

𝑧−→ 𝑞𝑛𝑠,2 where
𝑞𝑛𝑠,1

𝑧−→ 𝑞𝑛𝑠,2 is non-secret. By Lemma 16, for 𝑖
𝑣𝑎−−→ 𝑞𝑛𝑠,1

in 𝐺, there is a run 𝑖
𝑦𝑎
−−→ 𝑞𝑛𝑠,1 in 𝐺𝑛𝑜𝑟𝑚 such that 𝑃(𝑦𝑎) =

𝑃(𝑣𝑎). Therefore, 𝑖
𝑦𝑎
−−→ 𝑞𝑛𝑠,1

𝑧−→ 𝑞𝑛𝑠,2 is a run in 𝐺𝑛𝑜𝑟𝑚

such that 𝑃(𝑥) = 𝑃(𝑦𝑎𝑧) and since every 𝑘-short prefix 𝑤1

of 𝑦𝑎𝑧 has prefix 𝑦𝑎, the subrun 𝑖
𝑤1−−→ 𝑗 has 𝑗 ∉ 𝑄𝑆 . Thus,

𝐺𝑛𝑜𝑟𝑚 is 𝑘-SSO-NFA with respect to 𝑄𝑆 and 𝑃.

Now, assume that 𝐺 is not 𝑘-SSO-NFA with respect to 𝑄𝑆

and 𝑃, and let 𝑠 ∈ 𝐿 (𝐺) be a string that violates the property.
Consider any initial run 𝑖

𝑣−→ in𝐺𝑛𝑜𝑟𝑚 such that 𝑃(𝑠) = 𝑃(𝑣).
By Lemma 15, there is a run 𝑖

𝑤−→ in 𝐺 with 𝑃(𝑤) = 𝑃(𝑣).
Since 𝑃(𝑤) = 𝑃(𝑠) and 𝐺 is not 𝑘-SSO-NFA, there is a
𝑘-short prefix 𝑤1 of 𝑤 such that the subrun 𝑖

𝑤1−−→ 𝑞1 has
𝑞1 ∈ 𝑄𝑆 . By Lemma 16, the run 𝑖

𝑣−→ in 𝐺𝑛𝑜𝑟𝑚 can be
decomposed as 𝑖

𝑣−→= 𝑖
𝑣1−→ 𝑞′1

𝑣2−→ such that 𝑃(𝑣1) = 𝑃(𝑤1)
and 𝑞′1 ∈ 𝑄𝑆 . Since 𝑣1 is a 𝑘-short prefix of 𝑣, 𝐺𝑛𝑜𝑟𝑚 is not
𝑘-SSO-NFA with respect to 𝑄𝑆 and 𝑃. □

6.1 Reducing K-SSO-NFA to K-SO

We now reduce 𝑘-SSO-NFA to 𝑘-SO. Without loss of gen-
erality, we consider only normal DES.

Construction 18. Let 𝐺 = (𝑄, Σ, 𝛿, 𝐼) be a normal DES,
𝑃 : Σ∗ → Σ∗

𝑜 be the projection, and 𝑄𝑆 be the set of secret
states. We construct 𝐺′ = (𝑄′, Σ ∪ {𝑢}, 𝛿′, 𝐼) as a disjoint
union of 𝐺 and 𝐺𝑛𝑠 , where 𝐺𝑛𝑠 is obtained from 𝐺 by
removing all secret states and corresponding transitions. We
add a new unobservable event 𝑢 and 𝑢-transitions from every
state 𝑞 ∉ 𝑄𝑆 to its copy 𝑞′ in 𝐺𝑛𝑠 , see Figure 11 for an
illustration. The non-secret states 𝑄′

𝑁𝑆
of 𝐺′ are the states

of 𝐺𝑛𝑠 , the secret states 𝑄′
𝑆

of 𝐺′ are the states of 𝐺, and the
observable events of 𝐺′ coincide with the observable events
of 𝐺, that is, we define 𝑃′ : (Σ ∪ {𝑢})∗ → Σ∗

𝑜. ⋄
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The following theorem describes the relationship between
𝑘-SSO-NFA and 𝑘-SO.

Theorem 19. Let 𝐺 be a normal DES. Then 𝐺 is 𝑘-SSO-
NFA with respect to 𝑄𝑆 and 𝑃 if and only if 𝐺′ is 𝑘-SO with
respect to 𝑄′

𝑆
, 𝑄′

𝑁𝑆
, and 𝑃′, where 𝐺′,𝑄′

𝑆
, 𝑄′

𝑁𝑆
and 𝑃′ are

obtained by Construction 18.

Proof. Assume that 𝐺 is 𝑘-SSO-NFA. Take 𝑠𝑡 ∈ 𝐿 (𝐺′)
such that |𝑃′ (𝑡) | ≤ 𝑘 and 𝛿′ (𝐼, 𝑠) ∩ 𝑄′

𝑆
≠ ∅. Let 𝑠1𝑡1 be 𝑠𝑡

with 𝑢 removed. Clearly 𝑃(𝑠1) = 𝑃′ (𝑠) and 𝑃(𝑡1) = 𝑃′ (𝑡). It
follows that 𝑠1𝑡1 ∈ 𝐿 (𝐺) and since 𝐺 is 𝑘-SSO-NFA there is
an initial run 𝑖

𝑤−→ in𝐺 with 𝑃(𝑤) = 𝑃(𝑠1𝑡1) such that for any
𝑘-short prefix 𝑤1 of 𝑤 the subrun 𝑖

𝑤1−−→ 𝑗 satisfies 𝑗 ∉ 𝑄𝑆 .
Let 𝑤 = 𝑤𝑝𝑤𝑟 where 𝑤𝑝 is a 𝑘-short prefix with 𝑃(𝑤𝑝) =
𝑃(𝑠1). Then by Construction 18, 𝑖

𝑤𝑝−−→ 𝑗
𝑢−→ 𝑞𝑛𝑠

𝑤𝑟−−→ is a
run in 𝐺′ where 𝑞𝑛𝑠 ∈ 𝑄′

𝑁𝑆
.

Assume now that 𝐺′ is 𝑘-SO with respect to 𝑄′
𝑆
, 𝑄′

𝑁𝑆
,

and 𝑃′. For the sake of contradiction, suppose that 𝐺 is
not 𝑘-SSO-NFA with respect to 𝑄𝑆 and 𝑃. Then, there is
𝑣 ∈ 𝐿 (𝐺) such that, for every initial run 𝑖𝑤

𝑤−→ in 𝐺 with
𝑃(𝑤) = 𝑃(𝑣), there is a 𝑘-short prefix 𝑠𝑤 of 𝑤 such that the
subrun 𝑖𝑤

𝑠𝑤−−→ 𝑗𝑤 has 𝑗𝑤 ∈ 𝑄𝑆; let 𝑆𝑤 denote the set of all
such prefixes of 𝑤, and let 𝑊 = {𝑤 ∈ 𝐿 (𝐺) | 𝑃(𝑤) = 𝑃(𝑣)}.
Pick 𝑤0 = 𝑠𝑡 ∈ 𝑊 be such that 𝑃(𝑠) is a shortest string from⋃

𝑤∈𝑊 𝑆𝑤 . Then, in 𝐺′, 𝛿′ (𝛿′ (𝐼, 𝑠) ∩𝑄′
𝑆
, 𝑡) ≠ ∅, and the 𝑘-

SO property of𝐺′ implies that there is 𝑠′𝑡′ ∈ 𝐿 (𝐺′) such that
𝑃′ (𝑠) = 𝑃′ (𝑠′), 𝑃′ (𝑡) = 𝑃′ (𝑡′), and 𝛿′ (𝛿′ (𝐼, 𝑠′) ∩𝑄′

𝑁𝑆
, 𝑡′) ≠

∅. In particular, 𝑠′ = 𝑠′′𝑢𝑠′′′, and there is an initial run 𝑖
𝑠′′−−→

𝑟
𝑢−→ 𝑟 ′

𝑠′′′𝑡 ′−−−→ 𝑞′ in 𝐺′. Then, 𝑖
𝑠′′−−→ 𝑟

𝑠′′′𝑡 ′−−−→ 𝑞 is an initial run
in 𝐺 with 𝑟

𝑠′′′𝑡 ′−−−→ 𝑞 non-secret, and 𝑧 = 𝑠′′𝑠′′′𝑡′ ∈ 𝑊 . Since
𝐺 is not 𝑘-SSO-NFA, and 𝑃(𝑧) = 𝑃(𝑣), there is a 𝑘-short
prefix 𝑠𝑧 of 𝑧 such that the subrun 𝑖

𝑠𝑧−→ 𝑗𝑧 has 𝑗𝑧 ∈ 𝑄𝑆 .
However, since the run 𝑟

𝑠′′′𝑡 ′−−−→ 𝑞 is non-secret, 𝑠𝑧 is a strict
prefix of 𝑠′′. Since 𝐺 is normal, |𝑃(𝑠𝑧) | < |𝑃(𝑠′′) | ≤ |𝑃(𝑠) |,
which is a contradiction with the choice of 𝑤0. □

6.2 Experimental results

We implemented two algorithms to verify 𝑘-SSO from the
literature. Namely, the algorithm of Han et al. (2022), called
hzl, the usage of which is justified by Theorem 13, because
our benchmarks consist only of normal DES, and the reduc-
tion of 𝑘-SSO to the secret observer of Wintenberg et al.
(2022), called w-ksso. Our reduction of 𝑘-SSO to 𝑘-SO
results in several algorithms, from which we implemented
two: the one using the projected-automata-based algorithm
of Balun and Masopust (2023), called ksso-bm, and the one
reducing 𝑘-SO to CSO using the classical observer-based
algorithm, called ksso-o.

Notice that Wintenberg et al. (2022) proposed several algo-
rithms for the verification of 𝑘-SSO. However, according to

hzl w-ksso ksso-o ksso-bm

Solved 11332 11594 11565 11354
Fastest for 8327 2477 165 488
Solved only by 2 21 0 0
True solved 5591 5786 5756 5615
False solved 5741 5808 5809 5739
Total time 241532 54529 73754 186521
Time true solved 184022 14365 32945 125338
Time false solved 23610 6264 6910 27283

Table 4
Comparing hzl, w-ksso, ksso-o, and ksso-bm for 𝑘 = 5 within a
five-minute time limit.

hzl w-ksso ksso-o ksso-bm

Solved 11319 10892 9709 11280
Fastest for 8855 62 58 2501
Solved only by 167 1 12 0
True solved 5578 5150 3903 5541
False solved 5741 5742 5806 5739
Total time 247279 1023909 960910 219473
Time true solved 179976 716691 902364 148316
Time false solved 22903 262816 14145 26756

Table 5
Comparing hzl, w-ksso, ksso-o, and ksso-bm for 𝑘 = 500 within
a five-minute time limit.

their study, the reduction of 𝑘-SSO to the secret observer is
the best. Therefore, we have chosen this algorithm for com-
parisons, and we have not implemented and tested the other
algorithms proposed by Wintenberg et al. (2022).

Similarly to the case of 𝑘-SO, we have run the experiments
for 𝑘 ∈ {5, 500, 50000}. The results for 𝑘 = 5 are sum-
marized in Table 4. All the tools together solved 11597 in-
stances. Although hzl, implementing the algorithm of Han
et al. (2022), was the fastest for the most instances, the min-
imum total time took the algorithm of Wintenberg et al.
(2022), followed by our ksso-o.

The results for 𝑘 = 500 are summarized in Table 5. All the
tools together solved 11562 instances. Even though hzl was
the fastest for the most instances, the minimum total time
took our reduction-based tool ksso-bm. Notice that both w-
ksso and ksso-o took an enormous amount of time.

Finally, the results for 𝑘 = 50000 are summarized in Table 6.
The w-ksso and ksso-o tools timed out for many instances,
and therefore we excluded them from the comparisons. The
remaining tools together solved 11496 instances. Although
hzl was again fastest for most of the instances, in total it
took for more than six hours more than our ksso-bm.

7 Conclusions

We studied reductions of 𝑘-SSO to 𝑘-SO, and of 𝑘-SO to
CSO. These reductions result in sever new algorithms de-
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hzl ksso-bm

Solved 11369 11285
Fastest for 8911 2492
Solved only by 211 127
True solved 5628 5545
False solved 5741 5740
Total time 232029 208894
Time true solved 164771 138088
Time false solved 3059 6606

Table 6
Comparing hzl and ksso-bm for 𝑘 = 50000 within a five-minute
time limit.

ciding 𝑘-SO and 𝑘-SSO. We implemented some of these
algorithms and experimentally compared them with the ex-
isting algorithms. For the comparisons, we created extensive
benchmarks based on almost twelve thousand real-based au-
tomata examples with the state spaces ranging from two to
278372 and the number of transitions ranging from four to
95937444. Our results showed that the algorithms based on
our reductions perform very well. In addition, by adding
our normalization technique to the algorithm of Han et al.
(2022), we made it applicable to verify 𝑘-SSO-NFA and
𝑘-SSO-DFA.

Considering the benchmarks, there are instances that were
not solved by any of the considered algorithms within a five-
minute time limit. In fact, it turns out that for some of the
instances, the considered algorithms run for hours without
success. These instances are a challenge for new techniques
to be developed that would be able to solve these difficult
cases. We should, however, confess that all our implemen-
tations are straightforward and unoptimized. It is, therefore,
an interesting question whether the implementations can be
significantly optimized. We leave it for future research.
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