
Bottom-Up Approach to Multilevel Supervisory Control
with Coordination

Jan Komenda, Tomáš Masopust, and Jan H. van Schuppen

Abstract— A multilevel coordination approach is proposed to
lower the complexity of control synthesis of large-scale discrete-
event systems. The bottom-up control synthesis method requires
only conditional decomposability and conditional controllability
of the system and of the specification unlike the top-down
approach that requires the specification to be conditionally
decomposable and conditionally controllable with respect to
the multilevel architecture. The computation of coordinators
and supervisors on different levels is presented. An academic
example of two level control architecture is provided.

I. INTRODUCTION

Large discrete-event systems (DES) with synchronous
communication are often modeled as a parallel composition
of several subsystems, typically automata or Petri nets [1]. In
the case of automata (finite-state machines), such automata
networks are called modular DES. Supervisory control [7] of
DES has been introduced as a formal approach to guarantee
that the closed-loop system satisfies the control objectives
of safety and of nonblockingness. The modular (sometimes
also called decentralized) control synthesis then consists in
synthesizing local nonblocking supervisors for each of the
subsystems separately. There are many papers on modular
control combined with hierarchical approach that are not
listed due to space restrictions, but can be found in [5].
It is, however, well known that modular approaches fail in
general to guarantee both nonblockingness and maximally
permissive safe behavior. Therefore, coordination control has
been proposed in [6] as a trade-off between the computa-
tionally cheap purely decentralized control synthesis and the
computationally expensive global control synthesis. It relies
on concepts of conditional decomposability and conditional
controllability, which form necessary and sufficient condi-
tions on a specification to be achieved by the coordination
control architecture. Constructive results, namely a computa-
tion scheme for construction of maximally permissive local
supervisors, have been presented in [5]. These results rely on
important concepts of hierarchical supervisory control, such
as the observer property of [9] and local control consistency
(LCC) of [8].

We distinguish between coordinators for safety and coordi-
nators for nonblockingness. A coordinator for safety has been
defined in [5] as the modular plant projected on the coordi-
nator alphabet. This choice guarantees that the coordinator

J. Komenda and T. Masopust are with Institute of Mathematics, Academy
of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno, Czech Rep.
komenda@math.cas.cz, masopust@math.cas.cz

Jan H. van Schuppen is with Van Schuppen Control Research, Gouden
Leeuw 143, 1103 KB, Amsterdam, The Netherlands.
jan.h.van.schuppen@xs4all.nl

itself does not affect the behavior of the plant, because the
synchronous product of the plant with its projection yields
the plant itself. The only important step of control design is
to determine the coordinator alphabet so that the specification
satisfies conditional controllability, which is a distributed
version of controllability. Global safety specifications can
then be imposed in the maximally permissive way, that is,
the supremal conditionally controllable sublanguages can be
computed in a distributed way. If necessary, a coordinator
for nonblockingness has to be computed as described in [5].

The contribution of this paper is to propose for modular
DES with a large number of local components a multilevel
coordination setting, instead of earlier approaches based on
a single central coordinator. In this approach, local automata
are grouped (divided) into several groups of automata such
that within each group there is only a very small number
of shared events. This ensures that most of the coordination
task is done at the lowest level. The computational scheme
proposed in this paper is referred to as the bottom-up
approach, because we start at the lowest level, where for each
group of automata the corresponding part of the specification
is imposed by using coordination control and the results
are reused at the upper level, where the global specifi-
cation has to be imposed again by applying coordination
control synthesis. Unlike the dual approach, called top-down
and studied in [4], the specification is not made a priori
decomposable with respect to all levels (in the top-down
way), but after moving up from the lowest level we have
to compute other supervisors that ensure the safety. At each
level of the hierarchy both coordinators for safety and for
nonblockingness are computed for each group of subsystems.

The paper has the following structure. The next section
presents auxiliary results from supervisory control includ-
ing coordination control with one central coordinator. The
problem is stated in Section III. Then, in Section IV, a
multilevel hierarchical structure is described, and in Sec-
tion V, a bottom-up approach to multilevel coordination
control is presented. Conclusions together with hints on
future developments are given in Section VII.

II. SUPERVISORY CONTROL

This paper is based on the supervisory control framework
introduced by Ramadge and Wonham [7]. In this frame-
work, discrete-event systems are modeled as generators that
are deterministic finite-state machines with partial transition
functions. For a finite set A of events, also called alphabet,
the standard notation A∗ is used to denote the free monoid of

words generated by A. The unit element of A∗ is the empty
word denoted by ε . A language L over A is a subset of A∗.

A generator is a construct G = (Q,A, f ,q0,Qm), where Q
is a finite set of states, A is a finite alphabet, f : Q×A→Q
is a partial transition function, q0 ∈ Q is the initial state,
and Qm ⊆ Q is the set of marked states. Recall that f can
be extended to a function f : Q×A∗→Q in a standard way.
The language generated by G is defined as L(G) = {s ∈ A∗ |
f (q0,s) ∈ Q} and the marked language generated by G is
defined as Lm(G) = {s ∈ A∗ | f (q0,s) ∈ Qm}.

The prefix closure L= {w∈A∗ | ∃v∈A∗ such that wv∈ L}
of a language L⊆ A∗ is the set of all prefixes of all its words.
A language L is called prefix-closed if L = L. In particular,
L(G) is prefix-closed.

A controlled generator is a triple (G,Ac,Γ), where G is
a generator over A, Ac ⊆ A is a set of controllable events,
Au = A\Ac is the set of uncontrollable events, and Γ = {γ ⊆
A | Au ⊆ γ} is the set of control patterns that correpond to
enabled events. A supervisor runs in parallel with G, but it
never disables an uncontrollable transition. This results in
the closed-loop language L(S/G) = L(S)‖L(G). The marked
closed-loop languageis Lm(S/G) = L(S/G)∩Lm(G)

Let Lm and L be languages over an alphabet A, where
L is prefix-closed. A language K ⊆ A∗ is controllable with
respect to L and Au if KAu∩L⊆ K. We recall that K is Lm-
closed if K = K∩Lm. These conditions are equivalent to the
existence of a nonblocking supervisor S such that Lm(S/G)=
K, see [1], [10].

Recall that the synchronous product of languages Li ⊆ A∗i ,
i = 1, . . . ,n, is defined by

‖n
i=1Li = ∩n

i=1P−1
i (Li)⊆ A∗ ,

where A = ∪n
i=1Ai and Pi : A∗ → A∗i , for i = 1, . . . ,n, are

projections to local alphabets. The synchronous product can
also be defined in terms of generators (the reader is referred
to [1] for more details). In this case, for generators Gi,
i = 1, . . . ,n, it is well known that L(‖n

i=1Gi) = ‖n
i=1L(Gi) and

Lm(‖n
i=1Gi) = ‖n

i=1Lm(Gi).

III. PROBLEM AND EXAMPLE

A reader is assumed to be familiar with our earlier
results from [3], [5] using coordination supervisory control
framework with a single (central) coordinator that is recalled
in Appendix I. A serious issue with the coordination control
framework relying on a single (central) coordinator is that for
a large number of subsystems the coordinator alphabet has
to be too large in order to satisfy all assumptions imposed by
our framework such as conditional decomposability, observer
and LCC conditions.

It should be understood that the assumption of conditional
decomposability is better suited for systems composed of
a small number of components. With a higher number
of components it is not interesting to communicate the
coordinator event to all components, but only to those
where it is necessary. On the other hand, it often happens
that there are different groups of subsystems that require
different coordination events, which is not allowed in the

0

1

2

3

4

c

u1

a

u

0

1

2

3

4

c

u2

a

u

0

1

2

3

4

v1

c

u

b1

0

1

2

3

4

v2

c

u

b2

Fig. 1. Generators G1, . . . ,G4.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

v1

v2

c

v2

v1a

a

v1

a

v1

v2

v2

v1
u

b1

b2

b2 b1

u1 u2

u2

u1

Fig. 2. Generator for the specification K.

original version of conditional decomposability. As a simple
motivating example let us consider the simple modular plant
and global specification below.

Example 1: Let us consider four generators G1, . . . ,G4
over alphabets A1, . . . ,A4, as defined in Fig. 1, respectively,
and their synchronous product G = G1‖ . . .‖G4. Let Au =
{u,u1,u2}. The specification K is defined in Fig. 2.

It is easy to see that K is not decomposable wrt local
alphabets Ai, i = 1,2,3,4. A coordinator alphabet Ak needs
to be found such that K is conditionally decomposable.
However, this amounts to communicate the events from Ak
among all subsystems.

On the other hand, it is easy to see that K =
P1+2(K)‖P3+4(K) and that P1+2(K) = P1(K)‖P2(K) is de-
composable wrt alphabets A1 and A2. Even though P3+4(K) is
not decomposable wrt alphabets A3 and A4, it is sufficient to
include event v1 in Ak in addition to shared events of G3 and
G4, i.e., take Ak = {c,u,v1} and P3+4(K) =P3+k(K)‖P4+k(K)
is actually conditionally decomposable wrt A3, A4, and Ak. It
then appears natural that a multilevel coordination would be
more advantageous for this example, because event v1 needs
to be communicated between A3 and A4 and not among all
the four subsystems. /

In the example we have seen that it is then useless (and
moreover it brings an unnecessary computational burden) to

decompose a global specification according to the original
definition of conditional decomposability with centralized
coordination (see Appendix I), because it amounts to com-
municate all coordinator events among all local subsystems.
For large systems with many components it is typically better
to conditionally decompose a global specification according
to the respective local alphabets in a more clever hierarchical
way.

In the hierarchical structure of coordinators on several
levels these conditions are only required for a given group
of subsystems and because of this smaller extensions of the
coordinator alphabet may be applied to make the observer
and/or LCC conditions hold. Therefore, computationally
efficient approaches to supervisory control are proposed in
this section for large modular discrete-event systems modeled
by synchronous products of automata.

IV. MULTILEVEL HIERARCHY OF SUBSYSTEMS AND
COORDINATORS

Let us consider the modular DES G = G1‖G2‖ . . .‖Gn.
We have proposed in [4] a technique for the organization
of local automata into groups of automata on several levels.
The guiding strategy was to gather local automata with strong
interactions at the lowest level of the multilevel structure. A
criterion for this division of automata into groups can be the
number of shared events within the groups of subsystems.

Assume the organization of subsystems into groups is
given with indexing of the generators changed so that the
first group is formed by generators G1, . . . ,Gi1 , the second
group is formed by Gi1+1, . . . ,Gi2 , and so forth, i.e., the m-
th group is formed by Gim−1+1, . . . ,Gim , where 1≤ i1 ≤ i2 ≤
·· · ≤ im = n.

We denote the indices of the generators of the j-th
group by I j, i.e., I j = {i j−1 +1, i j−1 +2, . . . , i j}, j = 1, . . . ,m
where i0 = 1. Similarly, we may assume that the groups
of subsystems I1, . . . , Im are organized into l larger groups
J1, . . . ,J` with `≤m using the same criterion (but applied to
groups rather than low-level automata themselves). In order
to avoid too many indices we only consider the two-level
organization in this paper, i.e., J1 = {I1, . . . , Im} meaning that
‖I∈J1

i∈I Gi = G1‖ . . .‖Gn.
The notation Ash, j is chosen for the set of shared events

of generators Gi j−1+1, . . . ,Gi j of group I j, i.e.,

Ash, j =
k 6=⋃̀

k,`∈{i j−1+1,...,i j}
(Ak ∩A`) .

Unlike the previously studied case with one central coordi-
nator, there are m low-level coordinators Gk1 , . . . ,Gkm at the
low level, one for each group of subsystems. The situation
is depicted in Fig. 3. Moreover, there is one high-level
coordinator denoted by Gk.

The notation AIr = ∪i∈Ir Ai for the alphabet of low level
groups of generators is used in the paper. PIr then denotes
the projection PIr : A∗ → A∗Ir . The high-level coordinator is
over the alphabet Ak that is chosen in such a way that it

contains all shared events, in this case all events shared by
the groups of subsystems denoted by

Ash =
k 6=l⋃

k,`∈{1,...,m}
(AIk ∩AI`) .

V. CONTROL SYNTHESIS – BOTTOM-UP APPROACH

In this section, a bottom-up approach to the coordination
control synthesis is presented. Unlike the top-down approach
discussed in another paper we start at the bottom (lowest)
level. The advantage of this approach is that we do not need
to assume that K is two-level conditional decomposable and
that the standard notion of conditional decomposability as
well as conditional controllability can be used. Let us recall
that the r-th group on the local level is formed by Gir−1+1,
. . . , Gir , where 1 ≤ r ≤ m. We denote the composed lan-
guage of the r-th group by L(GIr), i.e., L(GIr) = L(‖ir

`=ir−1+1

G`) =‖ir
`=ir−1+1 L(G`).

The bottom-up approach consists of the following: the
supervisory control task given by specification K is divided
into subtasks PIr(K), r = 1, . . . ,m, that are treated separately.
For each subtask, a standard coordination control with a
single (central) coordinator is applied. This means that first
PIr(K) is made conditionally decomposable, for each r =
1, . . . ,m, by finding the coordinator alphabets Akr so that

PIr(K) = ‖ j∈Ir Pj+kr(K) .

The corresponding coordinator for the r-th group of
the subsystems is computed in the standard way as
Gkr = Pkr(‖ir

`=ir−1+1G`) = ‖`∈Ir Pkr(G`) by assuming that
Akr has been chosen so that Pkr are all Li-observers,
where Li = L(Gi), i ∈ Ir. For simplicity L(Gkr) is de-
noted by Lkr for r = 1, . . . ,m. If PIr(K) is not con-
ditionally controllable (see Definition 6) for some r =
1, . . . ,m, then the supremal conditionally controllable sub-
language of PIr(K), recalled in the appendix and denoted by
supcC(PIr(K)) = supcC(PIr(K),(Li)i∈Ir ,Lkr ,(Ai,u)i∈Ir ,Akr ,u)
has to be computed by the technique presented in Corollary
7. Namely, for group I j, j = 1, . . . ,m, we compute supC j

k =

supC(Pk j(K),Lk j ,Ak j ,u) and for any i ∈ I j, supC j
i+k =

supC(Pi+k j(K),Li‖supC j
k,Ai+k,u). Then under conditions of

Corollary 7 (that can be imposed by extending coordinator
alphabets Ak j , j = 1, . . . ,m)

supcC(PI j(K)) = ‖i∈I j supC j
i+k. (1)

If there exists a r ∈ {1, . . . ,m} such that PIr(K) is condi-
tionally controllable, then supcC(PI j(K)) = PI j(K). Note that
for PI j(K) that are not prefix-closed the above computation
yields supcC(PI j(K)) only if supCk ⊆ Pk(supCi+k) for all
i ∈ I j, otherwise optimality is lost. Moreover, for PI j(K) that
are not prefix-closed it could well be that languages supC j

i+k,
i ∈ I j, are conflicting, which leads to blocking. In this case
Theorem 9 can be applied (possibly after extending alphabets
Ak j such that observer conditions are satisfied) we define
coordinators for nonblockingness as

Ck j =‖i∈I j Pk j(supC j
i+k). (2)

Gk

over Ak

Gk1

over Ak1

Gk2

over Ak2

.
Gkm

over Akm

G1 ‖ . . . Gi1‖

Group I1

Gi1+1 ‖ . . . Gi2‖

Group I2

Gim−1+1 ‖. . . Gim‖

Group Im

Fig. 3. Multilevel architecture.

Then ‖i∈I j supC j
i+k‖Ck j is the resulting nonblocking closed-

loop for the group Ir after low-level supervisory control with
coordination has been applied.

On the high level we consider the new plants Lhi
1 =

supcC(PI1(K)), . . . , Lhi
m = supcC(PIm(K)). The advantage of

this choice is that by taking the new (restricted) plants we can
actually obtain larger (more permissive) sublanguages that
will still remain controllable with respect to the original plant
due to the low level computation. For these new plants we
then apply standard coordination control of [3]. This means
that first of all a high-level coordinator alphabet Ak has to
be found so that

K = ‖m
r=1PIr+k(K) .

The corresponding high-level coordinator is computed in
the standard way Gk = Pk(‖m

r=1 supcC(PIr(K))).
Again, L(Gk) is denoted by Lk and it has to be tested

if K is conditionally controllable with respect to gener-
ators given by (new high level plant) languages Lhi

1 =
supcC(PI1(K)), . . . , Lhi

m = supcC(PIm(K)) computed above
and uncontrollable alphabets AIr ,u, i ∈ Ir, and Ak,u = Ak∩Au.
In the negative case, the supremal conditional sublanguage is
computed. The resulting supremal conditionally controllable
sublanguage supcC(K,(Lhi

i)i=1,...,m,k,(AIi,u)i=1,...,m,Ak,u), de-
noted supcC(K) has the form:

supcC(K) =‖m
i=1 supC(PIi+k(K),Lhi

i ‖supCk,AIi+k,u), (3)

with supCk = supC(Pk(K),Lk,Ak,u) provided the conditions
of Corollary 7 are satisfied.

Similarly as at the low level it may happen
that for K that is not prefix-closed, the languages
supC(PIi+k(K),Lhi

i ‖supCk,AIi+k,u), i = 1, . . . ,m, computed
using Theorem 8 extended to general n > 1, denoted by
supCi+k, are conflicting, which causes blocking. Then
Theorem 9 can be applied (possibly with Ak extended
such that the observer condition is satisfied). A high level
coordinator for nonblockingness is then defined by

Ck =‖n
i=1 Pk(supCi+k). (4)

Note that in particular

supcC(K,(Lhi
i)i=1,...,m,k,(AIi,u)i=1,...,m,Ak,u)

= ‖m
i=1 supC(PIi+k(K),Lhi

i ‖supCk,AIi+k,u) (5)
⊆ ‖m

i=1 PIi+k(K) = K.

Also, the resulting language is still controllable with
respect to the original plant. It follows from definition of
the involved languages, transitivity of controllability and its
preservation under synchronous product for nonconflicting
languages and the fact that for any language and projection
L‖P(L) = L. Hence we have the following result.

Theorem 2: The bottom-up computation scheme de-
scribed in Procedure 3 below yields a nonblocking solution
to the supervisory control problem of imposing global spec-
ification K ⊆ A∗ in a nonblocking way.

The above description yields the following algorithm that
formally describes the bottom-up computation scheme.

Procedure 3:

1) Find low-level coordinator alphabets Akr , r = 1, . . . ,m,
containing shared event alphabets Ash, j such that

PIr(K) = ‖ j∈Ir Pj+kr(K) .

2) Extend if necessary Akr such that Pkr are all Li-
observers, r = 1, . . . ,m.

3) Compute the low level group coordinators

Gkr =Pkr(‖ir
`=ir−1+1 G`) = ‖`∈Ir Pkr(G`)

and set Lkr = L(Gkr).
4) Compute the languages

supcC(PIr(K))

= supcC(PIr(K),(Li)i∈Ir ,Lkr ,(Ai,u)i∈Ir ,Akr ,u)

using Equation (1) and set high level plants Lhi
1 =

supcC(PI1(K)), . . . , Lhi
m = supcC(PIm(K)).

5) If there exists a r ∈ {1, . . . ,m} such that supcC(PIr(K))
is blocking, compute the low-level coordinators for
nonblocking using Equation (2) and set Lhi

r = Lhi
r ‖Ckr

6) Find a high-level coordinator alphabet Ak by extending
the (high-level) shared alphabet Ash such that K =
‖m

r=1PIr+k(K).
7) Compute the high-level coordinator

Gk = Pk(‖m
r=1 Lhi

r)

and set Lk = L(Gk).
8) Compute

supcC(K)= supcC(K,(Lhi
i)i=1,...,m,k,(AIi,u)i=1,...,m,Ak,u)

using Equation (3).
9) If supcC(K) is blocking then compute the high-level

coordinator for nonblocking Ck using Equation (4) and
set Ck = A∗ if supcC(K) is nonblocking

10) Set supcC(K)‖Ck as a solution of multilevel coordina-
tion control using the bottom-up approach.

�
It should be noted that the computational complexity of all

steps in Procedure 3 is polynomial in relatively small param-
eters (number of states and events of subsystems combined
with coordinators) if the observer conditions that guarantee
natural projections being small are all satisfied. Let us recall
that the monolithic supervisor synthesis is polynomial in
the number of states of a modular system (that is however
exponential in the number of components). Here, the sub-
systems are treated separately (they are only combined with
coordinators), which decreases the computational complexity
when the number of components is high. Also, conditional
decomposability can be checked in a polynomial time in
the number of components (unlike decomposability and
coobservability) and a polynomial-time algorithm to extend
an event set to make a language conditionally decomposable
is known ([2]).

Let us recall that for specifications that are not prefix-
closed supcC(K) can only be computed if supCk ⊆
Pk(supCi+k) for i = 1, . . . ,n, cf. Theorem 8. Otherwise, the
optimality with respect to our multilevel scheme is lost.

VI. EXAMPLE

Let us consider again Example 1. On the low (system)
level we divide the four generators into two groups I1 =
{1,2} and I2 = {3,4}. There will be low-level coordinators
Gk1 and Gk2 coordinating G1‖G2 and G3‖G4, respectively.

Following the procedure for the bottom-up computation
scheme we treat at the bottom level separately P1+2(K) as
a specification for L1+2 = L1‖L2 and P3+4(K) as a speci-
fication for L3+4 = L3‖L4, although it is easy to see that
P1+2(K)‖P3+4(K) 6⊆K due to e.g. v1a∈P1+2(K)‖P3+4(K)\K
(but this issue will be fixed at the upper level of hierarchy).
Concerning L1‖L2, the situation is extremely easy as one can
check that P1+2(K) = L1‖L2, depicted on Fig. 4. Therefore,
no coordination control is needed for I1 (the first group).
For L3‖L4, we apply coordination control with P3+4(K) as
the specification. P3+4(K) is depicted on Fig. 5. Language
L3‖L4 is on Fig. 6. It is easy to see that P3+4(K) is not
decomposable wrt alphabets A3 and A4. Hence, for group
I2 we have to find a coordinator Gk2 , and its alphabet Ak2 ,

0

1

2

3

4

5

6

c

u1 u2

u1

u2

a

u

Fig. 4. Generator for P1+2(K) = L1‖L2.

0

1

2

3

4

5

6

7

8

9

v1

v2

c

v2

v1

u

b1

b2

b2 b1

Fig. 5. Generator for P3+4(K).

such that P3+4(K) is conditionally decomposable: P3+4(K) =
P3+k2(K)‖P4+k2(K). It is sufficient to include event v1 into
Ak2 in addition to shared events of G3 and G4, i.e., Ak2 =
{c,u,v1}. The corresponding coordinator is then Lk2 =
Pk2(L3‖L4) = {ε,v1,v1c,u}. Since Pk2(K) = Lk2 there is no
need to compute the supervisor for the coordinator Gk2 . We
only need to compute supervisors S3 for L3‖Pk2(K) and S4
for L4‖Pk2(K) so that the respective specifications P3+k2(K)
and P3+k2(K) are met for these plants. It can be checked
that P3+4(K) is actually conditionally controllable wrt these
plants. Again, we have P3+k2(K) = L3 = L3‖Pk2(K), hence S3
is given by P3+k2(K). Finally, P4+k2(K) = {v1v2c,v2v1,ub2}.
Clearly, P4+k2(K) 6= L4‖Pk2(K), but P4+k2(K) is controllable
wrt L4‖Pk2(K), hence S4 is given by P4+k2(K) itself (meaning
c is disabled after the word v2v1: but is not disabled after
v1v2). We recall that P3+4(K) = P3+k2(K)‖P4+k2(K).

Now we proceed to the second step of our scheme and
we go up to the high level. Here the new plants are given
by Lhi

1 = P1+2(K) and Lhi
2 = P3+4(K). As it has already

been mentioned, P1+2(K)‖P3+4(K) 6⊆K, hence the high-level
shared alphabet Ash = (A1 ∪A2)∩ (A3 ∪A4) = {c,u} has to
be extended to make K conditionally decomposable with
respect to A1 ∪A2, A3 ∪A4, and Ak. Clearly, it suffices to
include a into Ash, i.e., Ak = {a,c,u}. First of all, the high-
level coordinator is given by Lk = Pk(Lhi

1 ‖Lhi
2) = {ε,c,a,au}.

It can be checked that K is conditionally controllable wrt

0

1

2

3

4

5

6

7

8

v1

v2

c

v2

v1

u

b1

b2

b2 b1

Fig. 6. Generator for L3‖L4.

high level plants and the high-level coordinator. We have
Lhi

1 ‖Lk = Lhi
1 . It is easy to see that P1+2+k(K) = P1+2(K) =

Lhi
1 , i.e., no high-level supervisor Shi

1 is needed to im-
pose P1+2+k(K) for the plant Lhi

1 ‖Lk. Concerning Lhi
2 ‖Lk =

L \ {v1v2cu1,v1v2cu1u2,v1v2cu2,v1v2cu2u1,v2v1c} one can
check that P3+4+k(K) is controllable with respect to Lhi

2 ‖Lk,
hence high level supervisor Shi

2 is given by P3+4+k(K) itself.
/

VII. CONCLUDING REMARKS

In this paper, coordination control of large modular
discrete-event systems has been studied. The coordination
control paradigm has been extended to the multilevel co-
ordination with a hierarchical structure of coordinators and
supervisors based on a bottom-up approach.

ACKNOWLEDGMENTS

The research has been supported by the MŠMT grant
LH13012 (MUSIC), and by RVO 67985840.

REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems, 2nd ed. Springer, 2008.

[2] J. Komenda, T. Masopust, and J. H. van Schuppen, “On conditional
decomposability,” Systems Control Lett., vol. 61, no. 12, pp. 1260–
1268, 2012.

[3] ——, “Supervisory control synthesis of discrete-event systems using a
coordination scheme,” Automatica, vol. 48, no. 2, pp. 247–254, 2012.

[4] ——, “Multilevel coordination control of modular DES,” in IEEE
CDC, Florence, Italy, 2013, pp. 6323–6328.

[5] ——, “Coordination control of discrete-event systems revisited,” Dis-
crete Event Dyn. Syst., 2014, to appear.

[6] J. Komenda and J. H. van Schuppen, “Coordination control of discrete
event systems,” in WODES, Gothenburg, Sweden, 2008, pp. 9–15.

[7] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, 1987.

[8] K. Schmidt and C. Breindl, “On maximal permissiveness of hierar-
chical and modular supervisory control approaches for discrete event
systems,” in WODES, Gothenburg, Sweden, 2008, pp. 462–467.

[9] K. Wong and W. Wonham, “Hierarchical control of discrete-event
systems,” Discrete Event Dyn. Syst., vol. 6, no. 3, pp. 241–273, 1996.

[10] W. M. Wonham, “Supervisory control of discrete-event systems,”
2012, lecture notes, University of Toronto, [Online]. Available at
http://www.control.utoronto.ca/DES/.

APPENDIX I
COORDINATION CONTROL

Basic concepts of coordination control with a single
coordinator are recalled. See [5] for further discussion on
computational complexity and other issues.

For Ai, A j, A` ⊆ A, we use the notation Pi+ j
` to denote the

projection from (Ai∪A j)
∗ to A∗` . If Ai∪A j = A, we simply

write P̀ . Moreover, Ai,u = Ai∩Au denotes the set of locally
uncontrollable events.

Definition 4 (Conditional decomposability): A language
K ⊆ ∪n

i=1Ai is conditionally decomposable with respect to
(Ai)

n
i=1 and Ak, where

⋃i 6= j
i, j∈{1,2,...,n}(Ai∩A j)⊆ Ak ⊆

⋃n
j=1 A j,

if
K = P1+k(K) ‖ P2+k(K) ‖ . . . ‖ Pn+k(K)

for projections Pi+k from
⋃n

j=1 A j to Ai∪Ak. /
The problem of coordination control synthesis is now

recalled for n = 2.

Problem 5: Given generators G1, G2 over alphabets A1,
A2, respectively, and a coordinator Gk over Ak, where A1∩
A2⊆Ak ⊆A1∪A2. Let K⊆ Lm(G1‖G2‖Gk) be a specification
such that K and K are conditionally decomposable with
respect to A1, A2, Ak. The problem of coordination control
synthesis is to determine nonblocking supervisors S1, S2, Sk
for the respective generators so that the closed-loop system
with the coordinator satisfies

Lm(S1/[G1‖(Sk/Gk)]) ‖ Lm(S2/[G2‖(Sk/Gk)]) = K.

/
It has been shown that conditional controllability together
with conditional decomposability form an equivalent condi-
tion for a language to be exactly achieved by the closed-loop
system within our coordination control architecture.

Definition 6: A language K ⊆ L(G1‖ . . .Gn) is condition-
ally controllable for generators Gi, i = 1,dots,n,k and un-
controllable alphabets Ai,u, i = 1,dots,n,k if

1) Pk(K) is controllable wrt L(Gk) and Ak,u,
2) Pi+k(K) is controllable wrt L(Gi) ‖ Pk(K) and Ai+k,u,

where Ai+k,u = (Ai∪Ak)∩Au, for i = 1, . . . ,n.
/

If the specification K fails to be conditionally controllable,
then we consider the supremal conditionally controllable
sublanguage that always exists, cf. [5].

Below an extension to n ≥ 2 of [5, Theorem 10] is
presented. The reader is invited to see e.g. [8] for definition
of observer and LCC properties.

Corollary 7: Let K ⊆ L = L(G1‖ . . .‖Gn‖Gk) be a prefix-
closed language, where Gi is over Ai, i = 1, . . . ,n,k. Assume
that K = ‖n

i=1Pi+k(K) (K is conditionally decomposable)
and define supCk = supC(Pk(K),Lk,Ak,u) and supCi+k =
supC(Pi+k(K),Li‖supCk,Ai+k,u), for i= 1, . . . ,n. Let Pi+k

k be
an (Pi+k

i)−1(L(Gi))-observer and LCC for (Pi+k
i)−1(L(Gi)),

for i = 1, . . . ,n. Then,

supcC(K,L,(A1,u, . . . ,An,u,Ak,u)) =‖n
i=1 supCi+k . (6)

Another result on how to compute supcC is extended to
n≥ 2.

Theorem 8: [5, Theorem 6] Consider the setting of
Problem 5, and the languages supCi+k, i = 1, . . . ,n and
supCk defined in Corollary 7, where K is possibly not
prefix-closed. If for all i: supCk ⊆ Pk(supCi+k), then
supcC(K,L,(A1,u, . . . ,An,u,Ak,u)) =‖n

i=1 supCi+k.
Similarly, we extend [5, Theorem 7] to general n≥ 2.
Theorem 9: Consider a modular plant with local marked

languages Li = Lm(Gi) ⊆ A∗i , i = 1, . . . ,n, and let projection
Pk : A∗ → A∗k , with shared events included in Ak, be an Li-
observer, for i = 1, . . . ,n. Define Ck as the nonblocking gen-
erator with Lm(Ck) = ‖n

i=1Pk(Li) with notation Lk = Lm(Ck),
i.e., L(Ck) = Lk = ‖n

i=1Pk(Li). Then the coordinated system
G‖Ck is nonblocking, i.e., ‖n

i=1Li‖Lm(Ck) = ‖n
i=1Li‖Lm(Ck).

