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K-Step Opacity in Discrete Event Systems:
Verification, Complexity, and Relations

Jiff Balun and Tom4s§ Masopust

Abstract—Opacity is a property expressing whether a system
may reveal its secret to a passive observer (an intruder) who
knows the structure of the system but has a limited observation
of its behavior. Several notions of opacity have been studied,
including current-state opacity, K-step opacity, and infinite-step
opacity. We study K-step opacity that generalizes both current-
state opacity and infinite-step opacity, and asks whether the
intruder cannot decide, at any time, whether or when the system
was in a secret state during the last K observable steps. We design
a new algorithm deciding K-step opacity the complexity of which
is lower than that of existing algorithms and that does not depend
on K. We then compare K-step opacity with other opacity notions
and provide new transformations among the notions that do not
use states that are neither secret nor non-secret (neutral states)
and that are polynomial with respect to both the size of the
system and the binary encoding of K.

Index Terms—K-Step Opacity, Discrete event systems, Verifi-
cation, Complexity, Transformations

I. INTRODUCTION

ROPERTIES that guarantee to keep some information in a
P system secret include anonymity [1], noninterference [2],
secrecy [3], security [4], and opacity [5]. In this paper, we are
interested in opacity of systems modeled by finite automata.

Opacity is an information flow property asking if a system
prevents an intruder from revealing the secret. The intruder is
a passive observer that knows the structure of the system but
has only limited observations of its behavior. Intuitively, the
intruder estimates the behavior of the system, and the system
is opaque if for every secret behavior, there is a non-secret
behavior that looks the same to the intruder.

There are two common ways to model the secret: a set of
secret states and a set of secret behaviors. In the former case,
the opacity is referred to as state-based, introduced by Bryans
et al. [6], [7] for systems modeled by Petri nets and transition
systems, and later adapted to (stochastic) automata by Saboori
and Hadjicostis [8]. In the latter case, the opacity is referred
to as language-based, introduced by Badouel et al. [9] and
Dubreil et al. [10]. For more details, see Jacob et al. [11].

Several opacity notions have been studied in the literature,
including language-based opacity (LBO), initial-state opacity
(ISO), initial-and-final-state opacity (IFO), current-state opac-
ity (CSO), K-step opacity (K-SO), and infinite-step opacity
(INSO). While initial-state opacity prevents the intruder from
revealing, at any step of the computation, whether the system
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started in a secret state, current-state opacity prevents the
intruder only from revealing whether the current state of the
system is secret. The intruder may, however, realize in the
future that the system was in a secret state at a former step
of the computation. For example, if the intruder estimates that
the system is in one of two states and, in the next step, the
system proceeds by an observable event that is possible only
from one of the states, then the intruder reveals the state in
which the system was one step ago.

This issue led to the introduction of K-step opacity [8],
[12]. K-step opacity requires that the intruder cannot ascertain
the secret in the current state and K subsequent observable
steps. Two special cases for K = 0 and K = oo are know
as current-state opacity and infinite-step opacity, respectively,
though the notion of infinite-step opacity may be confusing for
finite automata, because an automaton with n states is infinite-
step opaque if and only if it is (2" — 2)-step opaque [13].

The complexity of known algorithms deciding K-step opac-
ity depends on K. For example, the two-way observer of Yin
and Lafortune [13] has complexity O(min{n22" n¢¥2"}),
including a minor correction by Lan et al. [14], where n is
the number of states of the automaton and ¢ is the number of
observable events. Obviously, the complexity depends on K if
K < 2™ We recently designed an algorithm with complexity
O((K + 1)2"(n + mf?)), where m < ¢n? is the number of
transitions in the projected NFA, which is faster than the two-
way observer if K is larger than 2™ —2 or polynomial in n [15].
The reader can find more methods with their experimental
comparisons in Wintenberg et al. [16].

In this paper, we further improve the complexity of deciding
K-step opacity to O((n+m)2™), which does not depend on K.
We then provide new transformations among K-step opacity,
current-state opacity, and infinite-step opacity. These trans-
formations have been studied by Balun and Masopust [15],
who have shown that the notions are transformable to each
other in polynomial time, and the results do not have more
observable events and preserve determinism. However, the
transformations from K-step opacity are polynomial only if
K is small or considered as constant, whereas a large value of
K makes the transformations infeasible. In addition, some of
the transformations use neutral states—states that are neither
secret nor non-secret.

Here we suggest new transformations that are polynomial in
both the size of the system and a binary encoding (logarithm)
of K, and that do not use neutral states. Wu and Lafortune [17]
studied transformations among other notions of opacity. We
refer the reader to Balun and Masopust [15] for an overview
of these transformations and the complexity results.



II. PRELIMINARIES

We assume that the reader is familiar with discrete-event
systems [18]. For a set S, |:S| denotes the cardinality of .S and
2% its power set. An alphabet X is a finite nonempty set of
events. A string over X' is a sequence of events; the empty
string is denoted by €. The set of all finite strings over X' is
denoted by X*. A language L over X' is a subset of X*. The
set of prefixes of strings of L is the set L = {u | there is v €
X* such that wv € L}. For u € X*, |u] is the length of w.

A nondeterministic finite automaton (NFA) over an alphabet
XY is a structure G = (Q, X, 6,1, F), where @ is a finite set
of states, I C () is a set of initial states, F' C @ is a set of
marked states, and §: Q x X — 2@ is a transition function that
can be extended to the domain 2% x X* by induction. For a set
Qo C Q, the set Lm(g,Qo) = {w e | (S(Qo,w) NFE # @}
is the language marked by G from the states of @y, and
L(G,Qp) = {w e X* | §(Qq,w) # (0} is the language gener-
ated by G from (. The languages marked and generated by
G are L,,(G) = L,,(G,I) and L(G) = L(G, I), respectively.
For S C X*, we write §(Q,S) = Uses 6(Q, s). The NFA G
is deterministic (DFA) if |[I| = 1 and |6(q,a)| < 1 for every
g€ @ and ae .

A discrete-event system (DES) G over X is an NFA over X/
together with the partition of X' into Y, and 3, of observable
and unobservable events, respectively. If the marked states are
irrelevant, we omit them and simply write G = (Q, X, 0, I).

State estimation is modeled by projection P: X* — X7,
which is a morphism defined by P(a) = ¢ if a € X, and
P(a) = aif a € ¥,. The action of P on a string a1 - - - a,, is to
erase unobservable events: P(aj---ay,) = P(a1)--- P(ay).
The definition can be readily extended to languages.

Let G be a DES over X' with projection P: X* — X%. The
projected automaton of G is the NFA P(G) obtained from G
by replacing every transition (p, a,q) by (p, P(a),q), and by
eliminating the e-transitions. In particular, if ¢ is the transition
function of G, then the transition function v: Q x X, — 29
of P(G) is defined as v(q,a) = §(q, P~*(a)). Then, P(G)
is an NFA over X, with the same states as G that recognizes
the language P(L,,(G)) and that can be constructed in poly-
nomial time [19]. The DFA constructed from P(G) by the
standard subset construction is called an observer of G [18],
which has up to exponentially more states than G [20], [21].

III. K-STEP OPACITY AND ITS VERIFICATION

We denote the set of non-negative integers by N. For K €
N = N U {oo}, K-step opacity asks if the intruder cannot
reveal the secret in the current and K subsequent states.

Definition 1. Given a DES G = (Q, X,6,I) and K € N,
System G is K-step opaque (K-SO) w.rt. secret states QQg,
non-secret states Qns, and P: X* — X* if for every string
st € L(G) with |P(t)| < K and §(6(I1,s) N Qs,t) # 0, there
is s't' € L(G) such that P(s) = P(s'), P(t) = P(t'), and
(6(1,s"YNQns,t') # 0.

Two special cases of K-step opacity include O-step opacity
also known as current-state opacity (CSO), and oco-step opacity
aka infinite-step opacity (INSO) [12], which, for a DES with
n states, coincides with (2™ — 2)-step opacity [13].

The complexity of existing algorithms verifying K-SO is
exponential and depends on K. Exponential complexity seems
unavoidable because the problem is PSPACE-complete [15].
We now design an algorithm verifying K-SO with complexity
O((n+m)2™), where n is the number of states of the automa-
ton and m is the number of transitions of the projected NFA,
which improves the existing complexity and does not depend
on K. Comparing the complexity with that of Wintenberg et
al. [16], who neglect the number of transitions in the automata,
our complexity can be stated as O(n2™), which is better than
the results in Wintenberg et al. [16].

Algorithm 1: Verification of K-step opacity
Input : ADES G = (Q,X,4,I), Qs,Qns C Q,
Y, C X, and K € N.
Output: true if and only if G is K-SO w.r.t. Qg,
QNS’ and P: X* — EZ

SetY :=0
Compute the observer G of G
Compute the projected automaton P(G) of G
for every reachable state X of G°* do
for every state x € X N Qg do
add state (z, X N Qng) to set YV
Compute the product automaton C = P(G) x G
with the states of Y as initial states
8 Use BFS to mark states of C reachable from Y in at
most K steps
9 if C contains a marked state of the form (q, () then
return false else return true
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Our algorithm is described as Algorithm 1. Intuitively, we
compute the observer of G (on demand also some of its non-
reachable states), the projected NFA of G, and their product
automaton C. For every reachable state X of the observer,
we make the states (x, X N Qng), where x is a secret state
from X and the second component is a set of all non-secret
states from X, initial in C. Then we use Breadth-First Search
(BFS) [22] to search C and to mark all states of C that are
reachable in at most K steps from an initial state. This is done
as follows. First, we push all initial states of C to the queue,
followed by pushing number O (in binary) to the queue. After
processing the initial states, we remove O from and push 1
to the queue. At this point, the queue contains all states of
C reachable from the initial states in one step, followed by
number 1. The algorithm proceeds this way until it has either
visited all states of C or the number stored in the queue is
K. All and only visited states of C are marked. We show in
Theorem 2 that G is K-SO if and only if no state of the form
(-,0) is marked in C.

Before that, we illustrate Algorithm 1 by considering one-
step opacity of the DES G depicted in Figure 1 where all
events are observable, Q¢ = {2}, and Qngs = {4}. A relevant
part of the observer G°° is depicted in the same figure. Since
G has no unobservable events, P(G) = G. The only reachable
state X = {2,4} of G°* intersecting Qs results in ¥ =
{(2,{4})}. The marked part of C; = P(G) x G reachable
from Y in at most one step is depicted in Figure 2. Since
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Figure 1. A DES G (left) and a relevant part of the observer G°?° (right).
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Figure 2. The reachable parts of C; (left) and C2 (right).

state (3, () is marked in C;, G is not one-step opaque; indeed,
observing ab, the intruder reveals that G was in a secret state.
We now assume that event ¢ is unobservable, and denote G
with a,b observable, ¢ unobservable, Qs = {2}, Qns = {4}
by G. The automaton P(G) and a relevant part of G are
depicted in Figure 3. The only reachable state X = {2,4,5} of
G intersecting Qs results in Y = {(2,{4})}. The marked
part of C; = P(G) x G is depicted in Figure 2. Since no
state of the form (-, ) is marked in Cs, G is one- step opaque.
We now prove the correctness of our algorithm.

Theorem 2. A DES G is K-SO w.rt. Qgs, Qns, and P if and
only if Algorithm 1 returns true.

Proof. If G = (Q,X,0,1) is not K-SO, then there exists
st € L(G) such that |P(t)| < K, 6(6(1,s) N Qs,t) # 0, and
§(8(I, P~YP(s)) N Qns, P71P(t)) = (). We have two cases.
(i) If 6(I, P~'P(s)) N Qns = 0, then G is not K-SO. The
algorithm detects this situation by X = §(I, P~1P(s)), since
there is g € X N Qg # ¥ and X N Qng = 0, which results in
adding (¢,0) to Y in line 6. (ii) If (I, P~1P(s)) N Qns =
Z # (), then the pairs (6(1, P~*P(s))NQs) x {Z} are added
to Y. Since 6(6(1,s) N Qg,t) # 0, there is (z,Z) € Y such
that P(t) leads the automaton P(G) from state z to a state
q. However, §(Z, P71 P(t)) = 0 implies that P(t) leads the
observer of G from state Z to state ), and hence (g¢,0) is
reachable in C from a state of Y in at most |P(t)| < K steps.

On the other hand, if GG is K-SO, we show that no state of the
form (g, @) is reachable in C from Y in at most K steps. For the
sake of contradiction, assume that a state (g, () is marked in C.
Then, there must be a string s such that §(1, P71 P(s)) = X
in G, that is, P(s) reaches state X in the observer of G, and
there is 2 € X NQgs, X NQns = Z, (2,Z) €Y, and state
(g, 0) is reached from state (2, Z) in C by a string w € X% of
length at most K. In particular, there is ¢ € P~!(w) moving
G from state z to state g. But then ¢ € 6(6(1, s)NQsg,t) # 0,
and 6(6(1, P~ P(s))NQns, P~ (w)) = §(Z, P~ (w)) = 0,
which means that G is not K-SO—a contradiction. O
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Figure 3. Projected automaton P(G ) (left) and a relevant part of @Gobs (right).

Finally, we discuss the complexity of our algorithm.

Theorem 3. The space and time complexity of Algorithm 1
is resp. O(n2™) and O((n + m)2™), where n is the number
of states of G and m is the number of transitions of P(QG).
Further, m < n2, where { is the number of observable events.

Proof. Computing the observer and the projected NFA, lines 2
and 3, takes time O(¢2™) and O(m + n), resp. The cycle on
lines 4-6 takes time O(n2™). Constructing C, line 7, takes
time O(n2"™ + m2™), where O(n2") is the number of states
and O(m2™) is the number of transitions of C. The BFS takes
time linear in C, and the condition of line 9 can be processed
during the BFS. Since m > ¢, the proof is complete. O

IV. RELATION TO OTHER OPACITY NOTIONS

We now design polynomial-time transformations of K-SO to
CSO, and vice versa. For the transformations of CSO to other
opacity notions, we refer the reader to the literature [15], [17].
Compared with the transformations of Wu and Lafortune [17]
and Balun and Masopust [15], which use neutral states and
are polynomial in the system size and the value of K, our new
transformations do not use neutral states and are polynomial
in the size of the system and the encoding (logarithm) of K.

The need for the new transformations comes from the facts
that (i) a large value of K makes the existing transformations
infeasible, and (ii) the meaning of neutral states is unclear or
questionable. Although we allow neutral states to appear in the
systems, we neither use them nor create them in the transfor-
mations; using neutral states would result in transformations
that do not work when the neutral states are not allowed [15].

Our motivation for the transformations is two-fold. First,
they provide a deeper understanding of differences/similarities
of the notions: we see that one secret state is sufficient for
CSO, and we learn how to transform K-SO to K’-SO for any
K and K’. Second, they are a tool to transfer complexity results
among the notions: we get that deciding CSO for systems with
a single secret state is as hard as deciding CSO for general
systems, or that the existing complexity results for K-SO (and
hence also INSO and CSO) [15, Table 1] hold for systems
without neutral states and K given as part of the input.

To simplify the presentation of this section, some auxiliary
technical results are moved to the appendices.

A. Transforming CSO to K-SO for any K € N

The problem of deciding current-state opacity consists of
a DES G = (Q, X,6,1), secret states (Qg, non-secret states
@ns, and projection P: X* — X*. From G, we construct a
DES G’ = (QU{¢s, gns }, XU{@}, &, I) over the alphabet XU
{@}, where @ is a new observable event, by adding two new
states ¢, and g,,s. The transition function ¢’ of G’ is initialized
as the transitions function § of G and further extended as
follows, see Figure 4 for an illustration:

1) for every state ¢ € Qg, we add (¢, @, g5) to ¢';

2) for every state ¢ € Qngs, we add (¢, Q, g,s) to §’.

We define P’: (X U{Q@Q})* — (X, U {@})*, secret states

's = {¢s}, and non-secret states Qs = QsUQnsU{qns}-
We now prove the correctness of the transformation.



Figure 4. Transforming CSO to K-SO for any K € No.

Theorem 4. The DES G is CSO wrt. Qs, Qns,
DES G’ is K-SO w.rt. Q%, Q'ys, P’

P iff the

Proof. Assume that G is not CSO. Then there is a string w €
2* that leads G to a secret state, and every string that looks
the same as w leads G out of non-secret states. Then, in G’,
generating the string w@ ends up in the secret state g5 €
8 (I,w@) N Q' # (. Since generating any string that looks
the same as w leads G to a state out of non-secret states, we
have that &' (I, P'~1 P'(w@))NQ'y g = 0. Therefore, G’ is not
CSO, neither K-SO for any K € N,

Now, assume that G is CSO, and let st € L(G") be such that
s leads G’ to a secret state and ¢ may be generated from this
secret state in G’, formally ¢'(6'(1, s) NQ’, t) # 0. Then, s =
51@ where s; does not contain @, and ¢ = ¢. By construction,
generating s in GG ends up in a secret state. Since G is CSO,
there is a string s; € P71 P(s;) looking the same as s; such
that generating s} in G ends up in a non-secret state. Then,
generating s} @ in G’ ends up in a non-secret state, and hence
taking s’ = s]@ gives that P/(s't) = P'(s') = P'(s) =
P'(st) and 6'(0'(1,s")NQ'yg,t) # 0, which shows that G’ is
K-SO for any K € N. O

The transformation can be done in polynomial time, does
not depend on K, and does not use neutral states. However, it
introduces a new observable event.

To decrease the number of observable events in G’, we may
notice that G’ is K-SO, for any K € N, if and only if G’ is
CSO, since there are no transitions from the secret state ¢, of
G'. Taking an encoding ¢’ : X, — {0, 1}* for a suitable k (see
Appendix A), and defining e(a) = 0¢'(a), for a € X,, and
e(@) = 1%*1, we get an encoding e: ¥, U {@} — {0, 1}F+1
that encodes observable events of 3 as binary sequences
starting with 0, and @ as a sequence of 1’s. Applying the
construction of Appendix A to G’ and e results in G” with
two observable events, 0 and 1, the only secret state g5, and no
transitions from the secret state g5, G” is K-SO if and only if
G" is CSO, which is if and only if G’ is CSO by Lemma 12.

Notice that the transformation reduces CSO to K-SO with a
single secret state, and hence we have the following corollary.

Corollary 5. For any K € Ny, deciding K-step opacity of a
system with a single secret state and two or more observable
events is PSPACE-complete. [

If G has a single observable event, the previous construction
results in G’ with two observable events, and the construction
of G” does not work because the technique of Appendix A
requires at least three observable events in G’. Therefore, we
design a direct transformation preserving a single observable
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Figure 5. Transforming CSO to K-SO with a single observable event. Secret
states are squared; the dashed transitions are in G’ only if L(G) is finite.

event that does not admit neutral states. For systems admitting
neutral states, we refer to our recent work [15].

The problem of deciding CSO for systems with a single
observable event consists of a DES G = (Q,X,6,I) with
Yo = {a}, secret states QQg, non-secret states Qns = Q \
Q@s, and projection P: X* — {a}*. From G, we construct
a DES G' = (QU{¢},q1,¢3}, 2 U {u},d',I) by adding a
new unobservable event v and three new states ¢, ¢, ¢5. The
transition function ¢’ is initialized as § and further extend by
adding, for each ¢ € Qng, the transition (q,u,q}), and by
adding three transitions (q7, a, ¢3), (¢}, a, ¢}), and (¢3, a,¢3);
see Figure 5 for an illustration. Now, we determine (in linear
time) whether the language L(G) is finite. If so, we denote
by m = max{|P(w)| | w € L(G)} the maximal number of
observable events in the strings of L(G), and by Qe = {q €
Q | ¢ € 6(I, P~1(a™))} the states reachable by the strings
with the maximal number of observable events. Finally, we
add the transition (g, a,qj), for every ¢ € Qmaz, to ¢’ and
define P': (X U{u})* — X, secret states Qs = Qs U{q3},
and non-secret states Qv = Qns U {43, ¢}, see Figure 5.

We first formulate a simple, but important, observation.

Lemma 6. If G is CSO, then, for every w € L(G), there
exists w' € P~1P(w) such that 6(I,w") N Qns # 0.

Proof. For w € L(G), either 6(I,w)NQns # @ or 6(I,w) C
Qs. In the latter case, CSO of G implies that there is w’ €
P~1P(w) such that §(I,w') N Qns # 0. O

We now prove the correctness of the construction.

Theorem 7. The DES G with a single observable event is
CSO w.rt. Qg, Qns, P iff G' is K-SO wrt. Q, Qg P

Proof. Assume that G is CSO. We show that if st € L(G’)
with |P’(t)| < K and s leads G’ to a secret state from which ¢
can be generated, then there are strings s’ and ¢’ with P’(s) =
P’(s) and P’(t') = P’(t) such that s’ leads G’ to a non-secret
state from which ¢ can be generated.

If s leads G’ to a secret state g,, which is also a state of
G, then CSO of G implies that there is s’ with P(s’) = P(s)
leading G, and hence G, to a non-secret state, ¢,,s. Therefore,
for any extension ¢ of s from state ¢4, t' = ua!?’ ® is an
extension of s’ from ¢,s with P'(t') = P'(t).

If s leads G’ to state g5, we have two cases. If L(G) is in-
finite, there is s” € L(G) with P(s”) = P’(s). By Lemma 6,
there is &' € L(G) with P(s") = P(s”) that leads G, and
hence G, to a non-secret state, say ¢,,. Then, ¢ = ual?’ @]
is an extension of s’ from g, with P'(t') = P’(¢t). If L(G) is
finite, then s = syussg, and s” = s1 9 satisfies P(s”) = P’(s).
If s” leads G’ to state g, any extension ¢ of s from state ¢}



Figure 6. Automaton G’ of the first step transforming K-SO to CSO.

is an extension of s’ = s” from state ¢f. If s” € L(G), then,
by Lemma 6, there is s’ with P(s") = P(s”) leading G to
a non-secret state, from which # = ualtl can be generated.
Altogether, G’ is K-SO.

On the other hand, if G is not CSO, there is w € L(G) such
that 6(1, P~ P(w))NQs # 0 and §(I, P71 P(w))NQns = 0.
In particular, g7 ¢ 0'(I, P'"~'P'(w))NQ'y - Since w € L(G),
|P(w)| < m, the maximal number of a’s in the strings of
L(G), and hence ¢§ ¢ &'(I, P'~'P'(w)) N Q'yg- Altogether,
§'(I,P'71P(w)) N Qg = 0, and therefore G’ is not CSO,
neither K-SO. O

B. Transforming K-SO to CSO

The problem of deciding K-step opacity consists of a DES
G = (Q,X,6,1), secret states (g, non-secret states Qns,
and projection P: X* — X*. From G, we first construct a
DES G’ = (QUQTUQ~,Xu{Q},d, I) by creating two
disjoint copies of G, denoted by G+ and G, with the state
sets QT = {¢" | ¢ € Q} and Q~ = {¢” | ¢ € @}, and
with an additional observable event @ that connects G to GT
and G~ by the transitions (q, @, q1), for every q € Qg, and
(q,@,q™), for every ¢ € Qns. The secret states are Q% = Q
and the non-secret states are Q¢ = Q@ U Q~, see Figure 6.

The idea of the construction is that if G is K-SO, and hence
CSO, then G is in a non-secret state whenever it is in a secret
state. Therefore, being in a secret (and hence also in a non-
secret) state, the new Q@-transitions move the computation to
both new copies G and G~ In these copies, we verify that if
G can make k steps from the secret state (in GT), it can also
make k steps from the corresponding non-secret state (in G ™).
This is verified using current-state opacity, by considering the
states of G secret and of G~ non-secret, which requires that
every move in G must be accompanied by a move in G™.

Notice that G” can be constructed in polynomial-time using
no neutral states. The construction of G is already suitable
to verify INSO of G by checking CSO of G”.

Theorem 8 (Transforming INSO to CSO). The DES G is
INSO w.rt. Qs, Qns, and P iff G" is CSO w.rt. QY Qs
and P": (X U{@})* — (X, u{@})*.

Proof. Assume that G is INSO. To show that G” is CSO, we
consider a string w such that ¢ (I,w) N Q% # 0, and show
that there is w’ such that P’ (w) = P”(w’) and ¢"(I,w’) N

g # 0. Since Q% = Q™ string w is of the form w; Quws.

By construction, there is a secret state ¢ € 6(I,w;) Qg in G
such that ¢* € 6" (I,w;@) N Q% in G”, and wy is generated
from g*+. Therefore, we can generate wy from state ¢ in G,
that is, §(6(1,w1) N Qg,wa) # 0, and infinite-step opacity
of G implies that there is wjw} € L(G) such that P(w;) =
P(w}), P(wg) = P(w)), and 6(6(I,w}) N Qns,wh) # 0. If
we set w’ = wjQu}, then P (w) = P”( ") and we have that
0 # 6" (8" (I,wiQ)NQYK g, wh) C Q% g, which completes this
part of the proof.

If G is not INSO, then there is a string st € L(G) such
that §(6(1,s) N Qs,t) # 0 and §(6(L,s") N Qns,t") = 0 for
every s't’ € L(G) with P(s) = P(s’) and P(t) = P(t').
Taking s@Qt € L(G"), we obtain that ) # §”(6"(I,sQ) N

&, t) = 46"(I,sQt) C Q% and, for every s'Qt’ € L(G") with
P’ (s@t) = P"(s'@t’), we have that §”(I,s'Qt') N Qg =
8" (0"(1,s'Q)N QK g.t") = 0, and hence G” is not CSO. O

Although G” can verify INSO of G by checking CSO of
G"”, G" is not suitable to verify K-SO in general; indeed, G”
verifies any number of steps from the visited secret state rather
than at most K steps. To overcome this issue, we extend the
construction by adding a counter that allows us to count up to
K observable events from a visited secret state. To this aim, we
use the automaton Ak constructed in Appendix B. Recall that
Ak is of size polynomial in the logarithm of K, that the unique
initial state of Ak is denoted by qg, and that the observer of
Ak has a unique path of length K consisting solely of non-
marked states, while all the other states are marked.

However, the automata G, Gt, G~ are over the alphabet X,
while Ag is over I, which is disjoint from Y. Therefore, we
change the alphabets of the automata to X/ = Y U(X, x I'") as
follows. In G and G, we replace every observable transition
(p,o,q) by |I'| transitions (p, (c,7), q), for every v € I', and
denote the results by Gt and G~. Similarly, in Ak, we replace
every transition (p,~, q) by |X,| transitions (p, (c,7), q), for
every observable o € Y, and denote the result by .:41(. If
we simplify the strings of the form (a, a’)(b, V') as (ab, a’t’),
then the language P(L(G1)) = {(w,w’) € (¥, x I')* |w €
P(L(GY)), |w| = [w'|}. Similarly for G~ and Ag.

For a moment, we admit neutral states, and construct the
NFA G’ as a disjoint union of G, G+, G, and Ay, together
with the transitions (¢, @, ") and (q, @, qg), for every q €
Qs. where qq is the initial state of A, and by (¢, @, ¢ ), for
every ¢ € Qns. The secret states are QY = Q* and the non-
secret states are Qg = Q~ U {marked states of Ax}. The
other states are neutral.

The construction transforms the K-SO problem of G to
the CSO problem of G’’, as we show below. Since the
transformation is polynomial in both the system size and the
encoding (logarithm) of K, it improves our recent result [15].

To illustrate the construction, we transform the 6-SO prob-
lem of G = ({1,...,8},{a},d,{1,2}) with the transitions
0(iya) ={i+1},i=1,...,7, Qs = {1}, and Qns = {2}.
Notice that G is 6-SO, since we can make 6 steps from
both states 1 and 2. To encode K = 6, the transformation
uses NFA Ag = Az 5 (see Appendix B), and results in G’
depicted in Figure 7, where all non-secret states are marked.
The minimized observer of G’ is shown in Figure 8. Since
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Figure 8. The minimized observer of G’ of Figure 7.

every state of the observer reachable by a string containing @
is marked, it has to contain a non-secret state of (, that is,
G is CSO.

If we remove state 8 from G together with the corresponding
transitions, then G is not 6-SO, since we can make Six
steps from the secret state 1, but only five steps from the
corresponding non-secret state 2. The transformation results in
G"" that coincides with the automaton of Figure 7 disregarding
states 8, 81, 8=, and corresponding transitions. The minimized
observer is shown in Figure 9, where state 4, corresponding
to state {71, (2;1),(2;2)} consisting of secret states of G, is
reachable by Q(a, ¢)(a,a1)(a,a1)(a,az)(a,a1)(a,as), that is,
G"" is not CSO.

Theorem 9 (K-SO to CSO with neutral states). The DES G is
K-SO w.rt. Qs, Qns, and P iff G' is CSO w.rt. QY, Qs
and P" . (X' U{@})* —» (X, Uu{Qu X, x I')*.

Proof. Assume that G is K-SO. We show that G’ is CSO. To
this end, we consider a string w such that 6" (I, w)NQY # 0,
and show that there is a string w’ € P"”"~1P"(w) such that
8" (I, w') N QN g # 0. Since QY = QT, string w is of the
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Figure 9. The minimized observer of G’” of Figure 7 disregarding states 8,

8+, 8, and corresponding transitions.

form w;@Quws and, by construction, (1, w,) contains a secret
state of G from which wy can be generated. If |P(w2)| < K,
then K-SO of G implies the existence of wjw) € L(G) such
that P(w}) = P(w), P(wh) = P(ws), and §(6(1,w}) N
Qns,wh) # 0; that is, there is a non-secret state ¢ € §(I, w})
from which w can be generated, reaching a state r. Then, for
w' = w)@(wh, x), where x is a prefix of the unique string not
accepted by Ak of length | P(w})|, we obtain that 5" (I, w")N

g # 0, since the non-secret state r~ € @~ is reachable
from state ¢~ in G by (w}, z). If |P(wz)| > K, every string
wiQ(wh, y) € (X' U{@})* is such that y is accepted by Ak,
and hence 0" (I, w}@Q(w},y)) N Qg # 0. Thus, G" is CSO.

Assume that G is not K-SO, that is, there exists st € L(G)
such that |P(t)| < K, 6(6(1,s) N Qg,t) # O and, for every
s’ € P7'P(s) and t' € P7'P(t), 6(6(1,s") N Qnsg,t") = 0.
Then, in particular, 6" (I,sQ)NQY # 0. If §(I,s")NQng =
0, then §"'(1,s'@Q) N QY g = 0, and hence G’ is not CSO. If
8(1,8)NQns = Z # 0, we consider any string s'Q(t',y) €
L(G""), where y is a prefix of the unique string not accepted
by Ag, which exists because |y| = |P(t')| < K. Then, (t',y)
is not accepted by A, and hence §"(I,s'Q(t',y)) N Qs =
a"([0"(1,s8@) N Q7], (¥, y)) = 6"(Z7, (', y)) = 0, where
Z— ={z" | z € Z}, because (t',y) is not generated in G"
from a state of Z~, since ' cannot be generated in G from
any z € Z. Again, G’ is not CSO. O

Finally, to transform K-SO to CSO without using neutral
states, we make all states of G both initial and marked,
and synchronize the computations of Gt and Ag by their
synchronous product G || Ax. Now, we construct a DES G' as
a disjoint union of G, G, and Gt ||.;1K, connected together by
transitions (q, @, (¢, qo)), for every ¢ € Qs, and (¢, @, q7),
for every ¢ € Qs The secret states of G’ are the non-marked
states of G || Ag. All the other states are non-secret.

This transformation can be done in polynomial time in the
system size and the binary encoding of K. How to reduce the
number of observable events (in all transformations of this
section) is discussed in Appendix A.

To illustrate the construction, we again transform the 6-SO
problem G = ({1,...,8},{a},d, {1,2}) with state 1 secret
and other states non-secret, and 6(i,a) = {i+1},i=1,...,7.
The transformation results in G’ depicted in Figure 10, using
again the NFA A¢. The minimized observer of G’ is depicted
in Figure 11. Since every state of the observer reachable by a
string containing @ is marked, it has to contain a non-secret
state of G, that is, G’ is CSO.

If we remove state 8 from G together with the corresponding
transitions, the transformation results in the DES G’ that
coincides with the NFA of Figure 10 without states containing
8, 8%, 87, and the corresponding transitions. The minimized
observer is shown in Figure 12, where state 4, abbreviating
the state {(71,(2;1)), (7%,(2;2))} consisting of secret states
of G| Ak, is reachable by the string @(a, c)(a,a1)(a,a;)
(a,a2)(a,a1)(a,az), that is, G’ is not CSO.

Theorem 10 (K-SO to CSO without neutral states). The DES
G is K-SO wrt. Qs, Qng, and P iff G’ is CSO w.rt. Q,
Qg and P': (X' U{@})* —» (X, u{Q@} U X, x I')*
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Figure 11. The minimized observer of G’.

Proof. Assume that G is K-SO. We show that G’ is CSO. To
this end, we consider a string w such that §'(1, w) N QY # 0,
and show that there exists a string w’ € P'~1P’(w) such
that 0'(1,w') N Q’yg # 0. Since Q' consists of non-marked
states of é*”.;lK, string w is of the form w;@Qwsy and, by
construction, d(/, wy) contains a secret state of G, from which
ws can be generated. If | P(ws)| < K, then K-SO of G implies
the existence of wjw) € L(G) such that P(w}) = P(wy),
P(w}) = P(ws), and 6(6(,w}) N Qns,wh) # O; that is,
there is a non-secret state ¢ € 6(/,w}) from which wj can
be generated, reaching a state 7. Then, for w’ = w}Q(w}, x),
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Figure 12. The minimized observer of G’ of Figure 10 disregarding states
containing 8, 8+, 8, and corresponding transitions.

where x is a prefix of the unique string not accepted by Ag
of length |P(w>)|, we obtain that 6'(I,w’) N Q' # 0, since
the non-secret state v~ € @~ is reachable from state ¢~ in G’
by (wh, x). If |P(wsz)| > K, every string w;Q(w},y) € (XU
{@})* is such that y is accepted by Ak, and hence (w5, y) is
accepted by G || Ak because L(G™T||Ax) = L(GT) || L(Ak)
and (w},y) belongs to both L(GT) and L(Ak). Therefore,
8 (I, w@Q(wh,y)) N Qg # 0, and G’ is CSO.

Assume that G is not K-SO, that is, there exists st € L(G)
such that |P(¢)] < K, 6(6(I,s) N Qs,t) # ( and, for every
s’ € P71P(s) and t' € P71P(t), 6(6(1,8") N Qns,t') = 0.
This implies that §'(I,s@) N Q% # 0. If 6(1,s') NQns =0,
then 0'(1,s'@) N Qyg = 0, and hence G’ is not CSO. If
5(I1,8)NQns = Z # 0, we take any s'Q(t',y) € L(G'),
where y is a prefix of the unique string not accepted by Ak,
which exists because |y| = |P(¢')| < K. Then, (¢',y) is not
accepted by G| Ak, and hence &' (I,s'Q(t',y)) N Qg =
5([§/(1,5'Q) N Q). (t,y) = 8(Z",(t,y)) = 0, where
Z~ =A{z" | z € Z}, because (t',y) is not generated in G’
from a state of Z~, since ¢’ cannot be generated in G from
any z € Z. Again, G’ is not CSO. O

Again, we provide a direct transformation for systems with
one observable event, where we do not admit neutral states;
see our recent work [15] for systems admitting neutral states.

The K-SO problem for systems with one observable event
consists of a DES G = (Q, X,6,1) with X, = {a}, secret
states (Qg, non-secret states Qns = @ \ @s, and projection
P: X* — {a}*. We denote the number of states of G by n,
and determine (in linear time) whether P(L(G)) is finite.

If P(L(@)) is finite, we verify K-SO of G in linear time by
checking the subsets of states §(1, P~1(a")), for k < n — 1.
If G is K-SO, and hence CSO, we set Qg = Qg and Qv g =
Qns. If G is not K-SO, we set Q'yg =0 and Q5 = Q.

If P(L(GQ)) is infinite, we define Qyg = {¢ € Qns |
v(q) = K}, where ¢: @ — {0,..., K} assigns to state ¢ the
maximal k& € {0,..., K} of observable steps possible from
q. Formally, ¢(q) = max{k € {0,..., K} | d(q, P"1(a*)) #
(0}. The secret states are Qs = Q \ Q'ys-

Theorem 11 (K-SO to CSO with a single observable event).
The DES G with a single observable event is K-SO w.r.t. Qg,
Qns, and P iff G is CSO w.rt. Q, Q'yg, and P.

Proof. Assume that G is K-SO. If P(L(G)) is finite, then G is
CSO. If P(L(G)) is infinite, then, for every w € L(G), there is
astate ¢ € 6(1, P~1P(w)) such that p(q) = K. Since G is K-
SO, for every secret state q; € (I, P~*P(w)), there is a non-
secret state ¢ns € 6(1, P~1P(w)) such that ¢(qns) > ¢(qs)-
Therefore, there is a non-secret state ¢,, € (I, P~1P(w))
such that p(q),,) = K, which means that ¢/, € Qyg. and
hence G is CSO w.rt. Qyg, Q%, and P.

Assume that G is not K-SO. If P(L(G)) is finite, then G
is not CSO. If P(L(QG)) is infinite, there is w € L(G) and
a secret state g5 € 6(I, P~1P(w)) such that ¢(qs) > @(qns)
for every non-secret state g,s € d(I, P~*P(w)). Therefore,
©(qns) < K for every gns € 6(I, P71P(w)) N Qns, and
hence §(1, P~'P(w)) N Q'yg = 0, which shows that G is not
CSO w.rt. Qf, Qyg. and P. O



Figure 13. Replacement of observable events a1, a2, a3 encoded e(ai) = 00,
e(az) = 01, and e(a3) = 10, and new states pp and pj.

V. CONCLUSIONS

We designed a new algorithm verifying K-step opacity with
better complexity than that of existing algorithms. In addition,
our complexity does not depend on K. We compared K-step
opacity with current-state opacity and infinite-step opacity, and
provided new transformations among these notions that do not
use neutral states, that are polynomial w.r.t. both the size of the
system and the binary encoding of K, preserve determinism
(see Appendix C), and the resulting systems of which do not
have more observable events than the input systems.

APPENDIX A
REDUCING THE NUMBER OF OBSERVABLE EVENTS

We now discuss how to reduce the number of observable
events in systems with at least three observable events without
affecting the property of being CSO. This construction is a
modification of the construction of Balun and Masopust [15].

For an NFA G = (Q, X, 4, I, F), an alphabet I, C X, with
at least three events, and a binary encoding e: I, — {0,1}*
of the events of I}, where k < [log,(|1,|)] + 1, we define
the NFA G’ = (Q', (XY — I,) U{0,1},0',1, F) as follows.
We replace every transition (p, a,q) with a € I, and e(a) =

biby - --by € {0,1}* by k transitions
(pv blvpbl)v (pb1 ) b25pb1b2)’ LR (pbr“bkfl s bk q)
where Dy, ,...,DPp,...b,_, are states added to the state set of

G’ as non-secret states. These states are created when needed
for the first time, and reused later during the replacements.
Figure 13 illustrates the replacement of three observable events
a1, as,az with the encoding e(a;) = 00, e(az) = 01, and
e(az) = 10. Notice that G’ can be constructed from G in
polynomial time.

Lemma 12. System G is CSO w.rt. Qs, Qns, and P: X* —
XX iff G'is CSO wrt. Qs, QnsU(Q' — @), and P': [(X —
I,)u{0,1}]* = [(X, — I,) U{0,1}]*

Proof. To show that G is CSO iff G’ is CSO, we need to show
that P(Lg) C P(Lng) iff P'(L) C P'(Llyg) [15], where

L4 LS :Lm(Q72767]7QS)9

° LNS:L’I’TL(Q7275?I7QNS)9

o L'y =L,(Q,(X¥—1I,)u{0,1},¢,1,Qs), and

o L'ye = Ln(Q, (X2 — I,) U{0,1},d,1,Qg), for

Qs =QnsU(Q = Q).

We define a morphism f: X* — ((X'—I,)U{0,1})* such
that f(a) = e(a) for a € I, and f(a) = a for a € X' —
I',. By the definition of e and the construction of G', w €
L(G) iff f(w) € L(G). In particular, P(w) € P(Lg) iff
P'(f(w)) € P'(Ly), and P(w) € P(Lng) iff P'(f(w)) €
P'(L’g). Therefore, if P'(Ly) C P'(L)yg) then P(Lg) C

Table 1
STRINGS W}, ,, USED IN THE PROOF OF LEMMA 13.
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P(Lyg). On the other hand, assume that P(Ls) C P(Lys),
and consider any P’(x) € P'(L/y). Then, P’(z) is of the form
P'(f(y)) for some y € Ls, and P(y) € P(Ls) C P(Lns)
implies that P’'(z) = P'(f(y)) € P'(Lyg)- O

APPENDIX B
LOGARITHMIC ENCODING OF A K-STEP COUNTER

In this appendix, we construct an NFA Ag of size polyno-
mial in the logarithm of K such that the observer of Ak has a
unique path of length K consisting solely of non-marked states,
while all the other states are marked. This path plays the role
of a K-step counter that is essential in the transformation from
K-SO to CSO of Section IV-B. To construct the automaton Ak,
we make use of NFAs Ay, ,,, for every k,n > 1, that can be
constructed in time polynomial in k and n and that are similar
to NFAs we used earlier [23], though we need to adjust them.

Lemma 13. For every integers k,n > 1, there is an NFA Ay, ,
with n events and n(k + 2) states, such that Ay, accepts all
strings except for all prefixes of a unique string Wy, ,, which
is a string of length (k+") -1

Proof. For k,n > 1, we define Wy, ,, over X,

by setting Wk,l = a’f, Wl,n =ajas---
Wk’,n = Wk,n—l (279 Wk—l,n

= Wk,n—l Qn, Wk—l,n—l an, Wk:—2,n ()

= Wk,nfl An, kalq,nfl Ap -

={a,...,a,}

a,, and

(07%% lenfl Ay, -

The construction is illustrated in Table I. The length of Wy ,,
is (k;g") —1, and a,, appears exactly k times in Wy, ,, [24]. For
defining Ay, ,,, it is useful to set W}, ,, = ¢ whenever kn = 0.

We construct an NFA Ay, ,, over X, marking X —{W},,}.
For k > 0, A1 is the minimal DFA marking {a;}* — {a¥},
consisting of k + 2 states of the form (i;1), see Figure 14,
together with the given transitions. State (k -+ 1;1) is marked,
state (0;1) is initial.

o N @ ay Ol’ ay ar
—( 051 151 k-1;1
N

Figure 14. The NFA Ay, ; with k 4- 2 states.

Figure 15. The NFA A, o with 2(k + 2) states.



Figure 16. The observer of the NFA Aj ».

Given Ay, ,—1, we construct Ay, ,, from A ,—; by adding
k+2 states (0;n), (1;n),..., (k+1;n), where (0;n) is added
to initial, and (k+1;n) to final states, see Figure 15 illustrating
the construction for n = 2; Ay, has n(k + 2) states. We call
the state (k + 1,n) maximal. Additional transitions of Ay,
consist of four groups:

1) Self-loops (i;n) — (i;n) for every i € {0,...,k+ 1}

and a; € {a1,...,an-1};

2) Transitions (i;n) <% (i+1;n) forevery i € {0,...,k},

and the self-loop (k + 1;n) = (k + 1;n);
3) Transitions (i;n) <% (i+1;m) forevery i € {0,...,k}
and m € {1,...,n—1};
4) Transitions (i;m) =% (k + 1;n) for every state (4;m)
of Ay n—1 with i # k.
The additional states of A, and transitions (1) and (2)
ensure marking of all strings containing more than %k events
an. The transitions (3) and (4) ensure marking of all strings
in (2% _a,)" " L(Ag_(i41),n—1)an X for which the string
between the (i + 1)-st and the (i + 2)-nd occurrence of a,,
is not of the form Wj_(;11),,—1, and hence not a correct
substring of Wy, = Wgp_1an- anWi_(i41),n—10n " "
an Wi n—1an. The transitions (4) ensure that all strings with
a prefix wa,,, where w is any string from X} _; — {Wy ,_1},
are marked. Together, these conditions ensure that Ay, ,, marks
every string that is not a prefix of Wy, ,,.

It remains to show that Ay ,, does not mark any prefix of
Wi, which we show by induction on (k,n). For (0,n), n >
1, string Wy, = ¢ is not marked by Ay ,, since the initial
states (0,m) = (k,m) of Ag . are not marked. Likewise, for
(k,1), k > 0, we find that the prefixes of W}, ; = a’f are not
marked by Ay, 1 (cf. Figure 14). For the inductive case (k,n) >
(1,2), where < is the standard product order, we assume that
Ay s marks no prefix of Wy, v for any (k',n') < (k,n)
and that Wy ,,» leads Ay, only to states of the form (k; ).
Then, Wy, = Wi n—10,Wk—1,, and no prefix of Wy, ,,_1
is marked by Ay ,—1 by induction. In addition, there is no
transition under a,, from a state (k;m) with m # n in Ay .
Therefore, if a prefix of Wy, ,, is marked by Ay, ,,, it must be
marked in a run starting from the initial state (0;n). Since
Wi n—1 contains no a,, we find that A, can only reach
states 0((0;n), Wi n—1a,) = {(1;m) | 1 < m < n} after
generating Wy, ,_1a,, which are the initial states of Aj_1 .
By induction, Aj_1 , marks no prefix of Wj_1 ,, and hence
no prefix of Wy, ,, is marked by Ay . O

To illustrate the construction, we consider £ = n = 2. Then,
W = a%agal asz, the NFA A, - has 8 states, and the observer
of Aj 2, shown in Figure 16, contains a unique path of length

Figure 17. Example for K = 12, which gives a2 = 2, the automaton .A12
consisting of two copies of Az 2.

(3) — 1 = 5 consisting solely of non-marked states while all
the other states are marked.

We now show how to use the NFAs A; ; to construct an
automaton Ag of size polynomial in the logarithm of K such
that the observer of Ak has a unique path consisting solely
of non-marked states, while all the other states are marked.
For simplicity, and without loss of generality, we only use the
automata of the form A; ;.

Since (Qsjf) = ‘Z’jf (27?) and (2:) < 4", every natural
number K can be expressed as

2 2n — 2 2
() e (520) () o
n n—1 1

for some n < [log,(K+1)] and b; € {0,1,2,3},i=0,...,n.
This expression is not unique, e.g., K = 2 can be expressed
as by =2, or by =1 and by = 0.

For every b;, i =n,...,0, we create b; copies of A; ; over
Y; ={ay...,a;}, which results in a sequence of automata
Bi,...,B¢ We take a new event ¢ ¢ X, and connect all the

automata B, . . ., By to a single automaton Ak by c-transitions
as follows. For j = 1,...,¢ — 1, we add a c-transition from
every non-marked state of 3; to every initial state of B;i1;
from all the other states, the c-transition goes to the maximal
state of B,. Finally, we add a new state, qg, which is the only
initial state of the automaton Ak, c-transitions from ¢q to all
initial states of 31, and transitions under all the other events
to the maximal state of By; see an illustrative example below.

Then, the observer of Ak has a unique path consisting of
non-marked states along the string

(CWn,n)bn (CWn—l,n—l)bn_l T (CI/VO,O)b0
of length K = b, (>") + bp—1(**77) + -+ + bo(J). and the

n—1
other states are marked. Since every B; is of size polynomial
in n, we obtain that Ay is of size polynomial in the logarithm
of K and its observer has a unique path of length K consisting

solely of non-marked states, with all the other states marked.

Lemma 14. For every natural number K, there is an automata
Ak of size polynomial in O(logK) such that the observer of
Ag has a unique path of length K consisting solely of non-
marked states, and with all the other states marked. O

For an illustration, consider K = 12 = 2(3) +0(%) +0. We
create two copies of A; o and connect them by c-transitions
as shown in Figure 17. The observer with the unique path of
non-marked states of length K = 12 is shown in Figure 18.



Figure 18. The min. DFA of the observer with the unique path of length 12.
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Figure 19. Determinization of an NFA.

APPENDIX C
PRESERVING DETERMINISM

In this section, we show how to make an NFA deterministic
without affecting the property of being K-step opaque, for any

K € N, by adding a few unobservable events.

From an NFA G = (Q,X,4,1,F), we construct a DFA
G' = (Q,X, J,I,F) as follows. For every state p and an
event a with |6(p, a)| > 1, we replace every transition (p, a, q)
of G with two transitions (p,u,p’) and (p/, a, ¢), where p’ is a
new state and u is a new unobservable event (neither p’ nor u
are reused), see Figure 19 for an illustration. The secret status
of the new state p’ is set according to the status of state p,
that is, p’ is secret iff p is. Notice that G’ can be constructed

from G in polynomial time.

Lemma 15. System G is K-SO w.r.t. Qs, Qns, and P: X* —

XX if G is K-SO wrt. Q, Qg and P': X — X%

Proof. Indeed, the number of observable steps from a state of
G is preserved in G’. Thus, we need to show that G’ is CSO
iff G is. However, every newly added state p’ is reachable
by an unobservable event from its original state p, and hence
p’ is contained in every state of the observer that contains p;
and vice versa, because every path to state p’ goes through
state p in G’. Therefore, if a state of the observer contains a
secret state p’ and a non-secret state 7, then it also contains
the original secret state p and the original non-secret state r.

That is, G is K-SO iff G’ is K-SO.
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