
PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY

TOMÁŠ MASOPUST AND MARKUS KRÖTZSCH

Department of Computer Science, Palacky University in Olomouc, and Institute of Mathematics of
the Czech Academy of Sciences, Prague, Czechia
e-mail address: tomas.masopust@upol.cz

Knowledge-Based Systems Group, TU Dresden, Germany
e-mail address: markus.kroetzsch@tu-dresden.de

Abstract. Partially ordered automata are automata where the transition relation induces
a partial order on states. The expressive power of partially ordered automata is closely
related to the expressivity of fragments of first-order logic on finite words or, equivalently,
to the language classes of the levels of the Straubing-Thérien hierarchy. Several fragments
(levels) have been intensively investigated under various names. For instance, the fragment
of first-order formulae with a single existential block of quantifiers in prenex normal
form is known as piecewise testable languages or J-trivial languages. These languages
are characterized by confluent partially ordered DFAs or by complete, confluent, and
self-loop-deterministic partially ordered NFAs (ptNFAs for short). In this paper, we study
the complexity of basic questions for several types of partially ordered automata on finite
words; namely, the questions of inclusion, equivalence, and (k-)piecewise testability. The
lower-bound complexity boils down to the complexity of universality. The universality
problem asks whether a system recognizes all words over its alphabet. For ptNFAs, the
complexity of universality decreases if the alphabet is fixed, but it is open if the alphabet
may grow with the number of states. We show that deciding universality for general
ptNFAs is as hard as for general NFAs. Our proof is a novel and nontrivial extension of
our recent construction for self-loop-deterministic partially ordered NFAs, a model strictly
more expressive than ptNFAs. We provide a comprehensive picture of the complexities
of the problems of inclusion, equivalence, and (k-)piecewise testability for the considered
types of automata.

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory.
2010 Mathematics Subject Classification: 68Q45, 68Q17, 68Q25, 03D05.
Key words and phrases: Automata, Nondeterminism, Complexity.
∗ This paper is a revised and full version of our recent work partially presented at MFCS 2016 [49] and

SOFSEM 2018 [52]. Except for full proofs, it contains new results and provides an overview of the complexity
results for several types of partially ordered NFAs and operations of universality, inclusion, equivalence, and
(k-)piecewise testability.

Supported in part by the German Research Foundation (DFG) in project number 389792660 (TRR 248,
Center for Perspicuous Systems) and Emmy Noether grant KR 4381/1-1 (DIAMOND), by the Ministry
of Education, Youth and Sports under the INTER-EXCELLENCE project LTAUSA19098, by the Czech
Science Foundation grant GC19-06175J, and by RVO 67985840.

Preprint submitted to
Logical Methods in Computer Science

© T. Masopust and M. Krötzsch
CC© Creative Commons

https://www.perspicuous-computing.science/
http://creativecommons.org/about/licenses

2 T. MASOPUST AND M. KRÖTZSCH

1. Introduction

Partially ordered automata – also known as 1-weak, very weak, linear, acyclic or extensive
automata [18, 40, 58] – are finite automata where the transition relation induces a partial
order on states. This restriction on the behaviour of the automata implies that as soon as
a state is left during the computation, it is never visited again. In other words, the only
cycles of partially ordered automata are self-loops.

Partially ordered automata attracted attention of many researchers because of their
relation to logical, algebraic, and combinatorial charazterizations of languages. From the
logical perspective, they characterize (Boolean combinations of) fragments of first-order logic
on finite words. For an integer i ≥ 1, the fragment Σi of the first-order logic FO[<] on finite
words consists of all FO[<] formulae in prenex normal form with i blocks of quantifiers,
starting with a block of existential quantifiers [19]. From the algebraic perspective, they
characterize regular languages whose syntactic monoids possess some algebraic properties.
For instance, the syntactic monoid of the language is J-trivial or R-trivial, where J and
R are Green’s relations [25], see also Pin [58]. From the combinatorial perspective, they
characterize some levels of the Straubing-Thérien hierarchy [78, 80]. For an alphabet Σ,
level 0 of the Straubing-Thérien hierarchy is defined as L (0) = {∅,Σ∗}, and for integers
n ≥ 0, the half levels L (n+ 1

2) consist of all finite unions of languages L0a1L1a2 · · · akLk,
with k ≥ 0, L0, . . . , Lk ∈ L (n), and a1, . . . , ak ∈ Σ, and the full levels L (n+ 1) consist of
all finite Boolean combinations of languages from level L (n+ 1

2). The hierarchy does not
collapse on any level [10]; see also Pin [58] for more details. The Straubing-Thérien hierarchy
has a close relation to the dot-depth hierarchy [10, 15, 79] and to complexity theory [83].
We now provide more details and mention related research.

As early as 1972, Simon [74] studied a subclass of regular languages called piecewise
testable languages and provided its characterization in terms of partially ordered automata. A
regular language over Σ is piecewise testable if it is a finite Boolean combination of languages
of the form Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗, where ai ∈ Σ and n ≥ 0. If n ≤ k, the language is
k-piecewise testable. Simon showed that piecewise testable languages are characterized by
confluent partially ordered deterministic finite automata (DFAs), where confluence means
that for all states q and letters a and b, if there are transitions q a→ qa and q

b→ qb, then
there is a word w ∈ {a, b}∗ that leads the automaton from both qa and qb to the same state.
Piecewise testable languages are known under many names in the literature. Considering
the perpectives described above, piecewise testable languages are known as finite boolean
combinations of the fragment Σ1 of the first-order logic FO[<] on finite words [19]; as J-trivial
languages, because their syntactic monoids are J-trivial [74]; or as level 1 of the Straubing-
Thérien hierarchy. This list is, indeed, not exhaustive. Piecewise testable languages appear
in many contexts; see, e.g., Karandikar and Schnoebelen [33] who introduced the height of a
language and used it to study the expressivity of a two-variable fragment of first-order logic
of sequences with the subword ordering. This fragment can only express piecewise testable
properties. Although we study piecewise testable languages on classical ∗-languages in this
paper, it is worth mentioning that piecewise testable languages have been extended from
words to trees by Bojanczyk, Segoufin and Straubing [6].

In 1980, Brzozowski and Fich [9] investigated the expressivity of partially ordered DFAs
and showed that they characterize the class of languages whose syntactic monoid is R-trivial.
Consequently, the languages of partially ordered DFAs are called R-trivial languages and
are strictly more powerful than piecewise testable languages.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 3

Schwentick et al. [70] studied partially ordered nondeterministic finite automata (poNFAs)
and showed that they characterize the first-order fragment Σ2 on finite words or, equivalently,
level 3

2 of the Straubing-Thérien hierarchy. Partially ordered NFAs are thus strictly more
powerful than their deterministic counterpart, partially ordered DFAs. Bouajjani et al. [7]
characterized the class of languages accepted by partially ordered NFAs as languages
effectively closed under permutation rewriting, that is, closed under the iterative application
of rules of the form ab→ ba, and call this class of languages Alphabetical Pattern Constraints.

Schwentick et al. [70] further showed that partially ordered two-way DFAs coincide
with the first-order fragment ∆2, which consists of all languages where both the language
and its complement are Σ2-definable. Hence, it is the largest subclass of Σ2 closed under
complementation. This class of languages is also known as unambiguous languages, introduced
by Schützenberger [69], who showed that unambiguous languages are exactly those languages
whose syntactic monoid is in the variety DA; see also Grosshans et al. [26] for their relation
to programs over monoids. Lodaya et al. [43] further characterized the languages of partially
ordered two-way DFAs as a fragment of interval temporal logic.

Considering our contribution to the automata characterization of the discussed language
classes, we defined self-loop-deterministic partially ordered NFAs and showed that they
are expressively equivalent to partially ordered DFAs [39]. A partially ordered NFA is
self-loop-deterministic if, in every state, the automaton has never a choice, under the same
letter, between staying in the state or leaving the state. Furthermore, we defined and studied
a nondeterministic counterpart of confluent partially ordered DFAs recognizing piecewise
testable languages called complete, confluent, and self-loop-deterministic partially ordered
NFAs (or ptNFAs for short) [49, 53].

There is a constant interest in automata characterizations of the levels of the Straubing-
Thérien hierarchy (as well as of the fragments of first-order logic), in particular in decidability
and complexity of checking membership of a language in a specific level of the hierarchy.
Despite a recent progress [2, 60, 63], decidability of whether a language belongs to level k
of the Straubing-Thérien hierarchy is open for k > 7

2 . The recent results were obtained by
considering more general problems than membership, and the investigation has brought
separability and covering problems into focus. We do not provide more details about these
results and rather refer the reader to the literature [64].

Although we consider only ∗-languages in this paper, we now briefly mention related
research for tree- and ω-languages. Héam [28] studied tree regular languages and showed
that the class of tree regular languages accepted by Σ2 formulae is strictly included in the
class of languages accepted by partially ordered tree automata. Kufleitner and Lauser [40]
extended the results of Schwentick et al. [70] from finite words to infinite words. They
defined partially ordered two-way Büchi automata and characterized their expressivity in
terms of first-order logic. Partially ordered Büchi automata can be used, e.g., to characterize
the common fragment of the two temporal logics ACTL and LTL [5, 45]. They showed
that nondeterministic partially ordered two-way Büchi automata are equivalent to their
one-way counterpart, and that their expressivity coincides with the first-order fragment
Σ2. Considering deterministic partially ordered two-way Büchi automata, they showed
that they characterize the first-order fragment ∆2, and that deterministic partially ordered
two-way Büchi automata are more expressive than deterministic partially ordered one-way
Büchi automata. Over finite words, the fragment ∆2 coincides with the fragment FO2 of
first-order logic with only two variables [81], and the corresponding languages are exactly
unambiguous languages [59]. The situation is, however, different over infinite words, where

4 T. MASOPUST AND M. KRÖTZSCH

the fragment ∆2 is a proper subclass of FO2, and only restricted unambiguous languages
are ∆2-definable. They further showed that deterministic partially ordered two-way Büchi
automata are effectively closed under Boolean operations, and discussed the complexity
of several problems for partially ordered two-way Büchi automata, including emptiness,
inclusion, universality, and equivalence. The same problems were studied by Lodaya et
al. [44] for partially ordered two-way automata over finite words and by Sistla et al. [75] for
one-way Büchi automata.

We finally point out that there is also a kind of partially ordered alternating automata,
motivated by applications in specification and verification of nonterminating programs.
Namely, Kupferman and Vardi [41] discussed weak alternating automata of Muller et al. [56],
where the state space is partitioned into partially ordered sets, and the automaton can move
from a set only to a smaller set.

Our interest in partially ordered automata has several reasons. First, it comes from the
supervisory control synthesis of discrete event systems [36, 37] and from the verification
of properties of discrete-event systems [50, 54]. Given an automaton modelling a system
(manufacturing, technological, etc.) and a regular language describing a specification, the
aim of supervisory control is to automatically design a controller such that, running the
controller and the system in a closed-loop feedback manner, the controlled system satisfies
the prescribed specification. Although the goal of supervisory control synthesis is similar
to that of reactive synthesis [27], there are significant differences between the approaches;
interested readers are referred to the literature for details [20, 68]. For our interest, partially
ordered automata are in some sense and on some level of abstraction the simplest models
of deadlock-free discrete event systems, and hence convenient to study the lower-bound
complexity of the problems under consideration, such as detectability, diagnosability, opacity,
etc. [8, 11, 31, 42, 57, 65, 67, 72, 73].

Our second motivation comes from database theory and schema languages for XML
data, namely from efficient approximate query answering and increasing the user-friendliness
of XML Schema. Both problems are motivated by scenarios in which we want to describe
something complex by means of a simple language. The technical core of these scenarios
consists of separation problems, which are usually of the form “Given two languages K and
L, does there exist a language S, coming from a family F of ‘simple’ languages, such that S
contains everything from K and nothing from L?” The family F of simple languages could
be, for example, languages definable by a first-order fragment, piecewise testable languages,
languages definable by a special class of automata, etc. [17, 29, 46, 61, 62]. The separability
technique is further closely related to interpolation, a method providing means to compute
separation between good and bad states in program verification [16, 66].

Our third motivation comes from the evaluation of regular path queries in graph
databases. Regular path queries are an important feature of modern query languages, such
as SPARQL 1.1, allowing queries about arbitrarily long paths in the graph database. Regular
path queries are regular expressions that are matched against labeled directed paths of a
graph. The expressions are often of a specific and simple form [47, 48]. Our particular
interest is in translating regular path queries to simple (e.g., partially ordered) automata.

All of our motivations boil down to the complexity questions of basic operations, such
as inclusion and equivalence. Since the universality question provides the lower-bound
complexity for both inclusion and equivalence, we in particular focus on the complexity of
deciding universality.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 5

|Σ| = 1 |Σ| ≥ 2 Σ is growing

DFA L-c [32] NL-c [32] NL-c [32]
ptNFA NL-c (Thm. 3.1) coNP-c (Thm. 3.2) PSpace-c (Thm. 3.8)
rpoNFA NL-c [39] coNP-c [39] PSpace-c [39]
poNFA NL-c [39] PSpace-c [39] PSpace-c [1]
NFA coNP-c [77] PSpace-c [1] PSpace-c [1]

Table 1: Complexity of deciding universality; Σ denotes the input alphabet.

Universality is a fundamental question asking whether a given system recognizes all
words over its alphabet. The study of universality has a long tradition in formal languages
with many applications across computer science, e.g., in knowledge representation and
database theory [4, 12, 76] or in verification [3]. Deciding universality for NFAs is PSpace-
complete [55], and there are two typical proof techniques for showing hardness. One is based
on the reduction from the DFA-union-universality problem [38] and the other on the reduction
from the word problem for polynomially-space-bounded Turing machines [1]. Kozen’s [38]
proof showing PSpace-hardness of DFA-union universality (actually of its complemented
equivalent – DFA-intersection emptiness) results in DFAs consisting of nontrivial cycles, and
these cycles are essential for the proof; indeed, if all cycles of the DFAs were only self-loops,
then the problem would be easier (namely, coNP-complete, see Theorem 3.3).

Deciding universality for partially ordered NFAs has the same worst-case complexity
as for general NFAs, even if restricted to binary alphabets [39]. This could be caused by
an unbounded number of nondeterministic steps admitted in partially ordered NFAs – a
partially ordered NFA either stays in the same state or moves to another state. Forbidding
this kind of nondeterminism, that is, considering self-loop-deterministic partially ordered
NFAs, indeed affects the complexity of universality – it is coNP-complete if the alphabet
is fixed, but remains PSpace-complete if the alphabet may grow polynomially with the
number of states [39]. The growth of the alphabet thus, in some sense, compensates for the
restricted number of nondeterministic steps.

In this paper, we study the complexity of deciding universality for ptNFAs – complete,
confluent, and self-loop-deterministic partially ordered NFAs on finite words. Since we use a
different definition of these automata in this paper than in our previous work, we first show
that these two definitions coincide (Lemma 2.1). Then we show that deciding universality for
ptNFAs is NL-complete if the input alphabet is unary (Theorem 3.1), coNP-complete if the
input alphabet is fixed (Therem 3.2), and PSpace-complete in general (Therem 3.8). The
proof of Therem 3.8 requires a novel and nontrivial extension of our recent construction for
self-loop-deterministic partially ordered NFAs [39]. The proof is based on a construction of
its own interest; namely, on a construction of a ptNFA accepting all but a single exponentially
long word (Lemma 3.5). These results are summarized in Table 1. Then we show how
to reduce universality to the question of whether the language of a given automaton is
k-piecewise testable (Lemma 4.1), and we use this result to obtain the complexity results for
deciding k-piecewise testability (Theorems 4.2 through 4.8); see Table 2 for an overview of
the results. After that, we study the question whether the language of a given automaton is
piecewise testable, that is, without the restriction to a specific k (Theorems 5.1 through 5.6);
see Table 3 for an overview of the results. Finally, we discuss the complexity of the problems
of inclusion and equivalence in Section 6. These results are summarized in Tables 4 and 5.

6 T. MASOPUST AND M. KRÖTZSCH

Unary alphabet Fixed alphabet Arbitrary alphabet
|Σ| = 1 |Σ| ≥ 2 k ≤ 3 k ≥ 4

DFA L-c (Thm. 4.7) NL-c (Thm. 4.4) NL-c [53] coNP-c [34]
ptNFA NL-c (Thm. 4.6) coNP-c (Thm. 4.3) PSpace-c (Thm. 4.2)
rpoNFA NL-c coNP-c [39] PSpace-c
poNFA NL-c (Thm. 4.6) PSpace-c (Thm. 4.5) PSpace-c
NFA coNP-c (Thm. 4.8) PSpace-c [53] PSpace-c [53]

Table 2: Complexity of deciding k-piecewise testability.

|Σ| = 1 |Σ| ≥ 2 Σ is growing

DFA L-c (Thm. 5.2) NL-c [13] NL-c [13]
rpoNFA X (Thm. 5.1) coNP-c (Thm. 5.6) PSpace-c (Thm. 5.5)
poNFA X (Thm. 5.1) PSpace-c (Thm. 5.4) PSpace-c
NFA coNP-c (Thm. 5.3) PSpace-c [51] PSpace-c [51]

Table 3: Complexity of deciding piecewise testability.

B

A DFA ptNFA & rpoNFA poNFA NFA

DFA L/NL NL/coNP/PSpace NL/PSpace coNP/PSpace
ptNFA NL NL/coNP/PSpace NL/PSpace coNP/PSpace
rpoNFA NL NL/coNP/PSpace NL/PSpace coNP/PSpace
poNFA NL NL/coNP/PSpace NL/PSpace coNP/PSpace
NFA NL NL/coNP/PSpace NL/PSpace coNP/PSpace

Table 4: Complexity of deciding inclusion L(A) ⊆ L(B) (unary/fixed[/growing] alphabet),
all results are complete for the given class.

DFA ptNFA & rpoNFA poNFA NFA

DFA L/NL NL/coNP/PSpace NL/PSpace coNP/PSpace
ptNFA NL/coNP/PSpace NL/PSpace coNP/PSpace
rpoNFA NL/coNP/PSpace NL/PSpace coNP/PSpace
poNFA NL/PSpace coNP/PSpace
NFA coNP/PSpace

Table 5: Complexity of deciding equivalence (unary/fixed[/growing] alphabet), the problems
are complete for the given classes.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 7

2. Preliminaries

2.1. Basic Definitions. We assume that the reader is familiar with automata and formal
language theory [1]. The cardinality of a set A is denoted by |A| and the power set of A by
2A. The empty word is denoted by ε. For a word w = xyz, x is a prefix, y a factor , and
z a suffix of w. Let Σ be an alphabet, and let La1a2···an = Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗, where
ai ∈ Σ for i = 1, . . . , n. A word v is a subword of a word w, denoted by v 4 w, if w ∈ Lv. A
prefix (factor, suffix, subword) of w is proper if it is different from w.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, I, F), where Q
is a finite nonempty set of states, Σ is an input alphabet, I ⊆ Q is a set of initial states,
F ⊆ Q is a set of accepting states, and δ : Q× Σ→ 2Q is the transition function that can
be extended to the domain 2Q ×Σ∗ in the usual way. The language accepted by A is the set
L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F 6= ∅}. The automaton A is complete if for every state q ∈ Q
and every letter a ∈ Σ, the set δ(q, a) is nonempty, and it is deterministic (DFA) if |I| = 1
and |δ(q, a)| = 1 for every state q ∈ Q and every letter a ∈ Σ.

A path π from a state q0 to a state qn under a word a1a2 · · · an, for some n ≥ 0, is a
sequence of states and input symbols q0a1q1a2 . . . qn−1anqn where qi+1 ∈ δ(qi, ai+1) for all
i = 0, 1, . . . , n− 1. Path π is accepting if q0 ∈ I is an initial state and qn ∈ F is an accepting
state. We write q0

a1a2···an−−−−−→ qn to denote that there exists a path from q0 to qn under the
word a1a2 · · · an. A path is simple if all its states are pairwise distinct. The number of states
on the longest simple path of A that starts in an initial state, decreased by one (i.e., the
number of transitions on that path), is the depth of A, denoted by depth(A).

2.2. Partially Ordered Automata. Let A = (Q,Σ, δ, I, F) be an NFA. The reachability
relation ≤ on states is defined by setting p ≤ q if there is a word w ∈ Σ∗ such that q ∈ δ(p, w).
The NFA A is partially ordered (poNFA) if the reachability relation ≤ is a partial order.

The NFA A is confluent provided that for every state q ∈ Q and every pair of (not
necessarily distinct) letters a, b ∈ Σ, if s ∈ δ(q, a) and t ∈ δ(q, b) then there exists a word
w ∈ {a, b}∗ such that δ(s, w) ∩ δ(t, w) 6= ∅; see Figure 1 (left) for an illustration.

The poNFA A is restricted or self-loop-deterministic (rpoNFA) if, for every state q ∈ Q
and every letter a ∈ Σ, q ∈ δ(q, a) implies that δ(q, a) = {q}. Restricted poNFAs can thus
be defined in terms of forbidden patterns similar to that of Glaßer and Schmitz [24]; Figure 1
(right) shows the forbidden pattern of rpoNFAs.

An rpoNFA is a ptNFA if it is complete and confluent. The name ptNFA comes from
piecewise testable, since ptNFAs characterize piecewise testable languages [49, 53]. Notice
that the disjoint union of two or more ptNFAs is a ptNFA; we use this fact in the proof of
Theorem 3.8. The violation of the definitional properties of ptNFAs can be tested by several
reachability checks, and these properties are NL-hard even for minimal DFAs [13]. Since
NL = coNL, checking whether an NFA is a ptNFA is NL-complete.

q
s

t

a

b

w ∈ {a, b}∗

w ∈ {a, b}∗

a

a

Figure 1: Confluence (left) and the forbidden pattern of rpoNFAs (right).

8 T. MASOPUST AND M. KRÖTZSCH

0 1 2
a b

a, b a a, b

Figure 2: A confluent automaton B accepting a non-piecewise testable language.

2.3. The Unique Maximal State Property. For two states p and q, we write p < q if
p ≤ q and p 6= q. A state p is maximal if there is no state q such that p < q.

A poNFA A over Σ with the state set Q can be turned into a directed graph G(A) with
the set of vertices Q where a pair (p, q) ∈ Q×Q is an edge in G(A) if there is a transition
from p to q in A. For an alphabet Γ ⊆ Σ, we define the directed graph G(A,Γ) with the
set of vertices Q by considering only those transitions corresponding to letters in Γ. Let
Σ(p) = {a ∈ Σ | p a−→ p} denote all letters labeling self-loops in state p. We say that A
satisfies the unique maximal state (UMS) property if, for every state q of A, q is the unique
maximal state of the connected component of G(A,Σ(q)) containing q.

To decide whether, for a given DFA, there exists an equivalent confluent poDFA, or,
said differently, whether the given DFA recognizes a piecewise testable language, Kĺıma and
Polák [35] check the confluence property of the minimal DFA while Trahtman [82] checks
the UMS property. Both properties have their advantages and an effect on algorithmic
complexity. While Trahtman’s algorithm runs in quadratic time with respect to the number
of states and in linear time with respect to the size of the alphabet, Kĺıma and Polák’s
algorithm swaps the complexities; it runs in linear time with respect to the number of states
and in quadratic time with respect to the size of the alphabet. From the computational
complexity view, the problem is NL-complete [13].

Although the UMS property and the confluence property coincide on DFAs, they differ
on NFAs. Consider the automaton B in Figure 2. One can verify that B is confluent.
However, B does not satisfy the UMS property. Indeed, for state 0, the connected component
is G(B,Σ(0)) = G(B, {a, b}) = G(B), i.e., the component is the whole automaton. Therefore,
state 0 is not a maximal state of this component; in particular, it is not the unique maximal
state. Furthermore, notice that B accepts a language that is not piecewise testable. Indeed,
there is an infinite sequence of words a, ab, aba, abab, . . . where accepted words alternate with
non-accepted words. The corresponding minimal DFA therefore must have a nontrivial cycle
that contains at least one accepting and one non-accepting state. This, however, means that
the minimal DFA is not partially ordered, and hence it cannot recognize a piecewise testable
language. In summary, we find that the confluence property on its own is not suitable for
characterizing piecewise testable languages for poNFAs. Intuitively, the problem comes from
the presence of the forbidden pattern of rpoNFAs (see Figure 1), which may fool confluence
but not the UMS property.

Recall that ptNFAs are complete and confluent rpoNFAs. The next lemma gives an
alternative characterization of ptNFAs as poNFAs that are complete and satisfy the UMS
property, which was used as the primary definition of ptNFAs in our previous work [49].
Lemma 2.1. Partially ordered NFAs that are complete and satisfy the UMS property are
exactly ptNFAs.
Proof. First, we show that if A is partially ordered, complete, and satisfies the UMS property,
then A is a ptNFA, i.e., that A is a complete and confluent rpoNFA. Indeed, the presence of
the forbidden pattern of rpoNFAs violates the UMS property, cf. Figure 2. Therefore, A is a

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 9

complete rpoNFA. It remains to show that A is confluent. To this aim, let r be a state of A,
and let a and b be letters of the alphabet of A (a = b not excluded) such that r a−→ s, r b−→ t,
and s 6= t. Let s′ and t′ be any maximal states reachable from s and t in the component
G(A, {a, b}), respectively. Since {a, b} ⊆ Σ(s′) by the definition of s′ and the assumption
that A is complete, t′ is also in the component G(A,Σ(s′)) containing s′. However, by the
UMS property of A, s′ is the unique maximal state of that component, and therefore there
must be a path from t′ to s′ under Σ(s′). Similarly, interchanging s′ and t′, there must be
a path from s′ to t′ under Σ(t′). Since A is partially ordered, the paths give that t′ ≤ s′

and s′ ≤ t′, i.e., s′ = t′. To show that A is confluent, let u ∈ {a, b}∗ be a word labeling the
path from s to s′ in G(A, {a, b}). Since A is complete, there is a path from state t under
u to a state p. Let v ∈ {a, b}∗ be a word labeling a path from p to a maximal state, p′, in
G(A, {a, b}); such a path exists, since A is complete and partially ordered. Let w = uv, and
notice that v can be read in s′. Then we have that s w−→ s′, t w−→ p′, and, from the above,
since s′ and t′ were arbitrary, we have that s′ = p′. Thus, A is confluent.

To prove the other direction, assume that A is a ptNFA, i.e., that A is a complete
and confluent rpoNFA. Obviously, A is a complete poNFA, and it remains to show that A
satisfies the UMS property. For the sake of contradiction, suppose that A does not satisfy
the UMS property, i.e., that there is a state q in A such that the component G(A,Σ(q))
containing q has at least two different maximal states. Let r be a biggest state with respect
to the partial order on states of that component such that at least two different maximal
states, say s 6= t, are reachable from r under the alphabet Σ(q); such a state exists by
assumption. Obviously, r /∈ {s, t}. Let s′ ∈ δ(r, a) and t′ ∈ δ(r, b) be two different states on
the paths from r to s and from r to t, respectively, for some letters a, b ∈ Σ(q) \Σ(r); notice
that such letters a and b exist because A is an rpoNFA, and that a = b is not excluded.
Then r < s′ and r < t′. Since A is confluent, there exists r′ such that r′ ∈ δ(s′, w) ∩ δ(t′, w),
for some word w ∈ {a, b}∗. Let r′′ denote a maximal state that is reachable from r′ in
G(A,Σ(q)). Then there are three cases: (i) if r′′ = s, then r < t′ and both s and t are
reachable from t′ under Σ(q), which is a contradiction with the choice of r as the biggest
state of the component with this property; (ii) r′′ = t yields a contradiction with the choice
of r as in (i) by interchanging t′ and s′; (iii) similarly, r′′ /∈ {s, t} yields a contradiction with
the choice of r, since r < s′ and r < t′ and, e.g., s and r′′ are two different maximal states
of the component G(A,Σ(q)) containing q that are both reachable from s′ > r. Thus, A
satisfies the UMS property, which completes the proof.

3. Complexity of Deciding Universality for ptNFAs

We now study the complexity of deciding universality for ptNFAs. As mentioned before,
these automata are known to characterize the piecewise testable languages. Our results of
this section in the context of existing results are summarized in Table 6.

For unary alphabets, deciding universality for ptNFAs is solvable in polynomial time [39].
We now improve the result and show that the problem is NL-complete.

Theorem 3.1. Deciding universality for ptNFAs over a unary alphabet is NL-complete.

Proof. The problem is in NL even for unary poNFAs [39]. To prove hardness, we reduce the
DAG-reachability problem [32]. Let G be a directed acyclic graph with n nodes, and let s
and t be two nodes of G such that there is no edge from t. We define a ptNFA A as follows.

10 T. MASOPUST AND M. KRÖTZSCH

ST |Σ| = 1 |Σ| ≥ 2 Σ is growing

DFA L-c [32] NL-c [32] NL-c [32]
ptNFA 1 NL-c (Thm. 3.1) coNP-c (Thm. 3.2) PSpace-c (Thm. 3.8)
rpoNFA NL-c [39] coNP-c [39] PSpace-c [39]
poNFA 3

2 NL-c [39] PSpace-c [39] PSpace-c [1]
NFA coNP-c [77] PSpace-c [1] PSpace-c [1]

Table 6: Complexity of deciding universality; ST stands for the corresponding level of the
Straubing-Thérien hierarchy; Σ denotes the input alphabet.

With each node of G, we associate a state in A. Whenever there is an edge from i to j in G,
we add a transition i a−→ j to A. The initial state of A is s and all states are accepting. The
automaton is obviously an rpoNFA, because there are no (self-)loops. To make it complete
and confluent, we add n− 1 new non-accepting states f1, . . . , fn−1 together with transitions
fi

a−→ fi+1, for i = 1, . . . , n − 2, fn−1
a−→ t, t a−→ t, and, for every state q /∈ {t, f1, . . . , fn−1},

we add the transition q
a−→ f1. The resulting automaton is a ptNFA.

We now show that A is universal if and only if t is reachable from s in G. If t is reachable
from s in G, then L(A) = {a}∗, since t is reachable from s via states corresponding to nodes
of G, which are all accepting in A. If t is not reachable from s in G, then t is reachable from
s in A via a path s

ak

−→ q
a−→ f1

a−→ f2
a−→ . . .

a−→ fn−1
a−→ t for any state q corresponding to a

node of G different from t reachable from s in G. We show that an−1 does not belong to
L(A). The shortest path from state s to state t in A is of length n for q = s. Thus, any
word accepted in t is of length at least n. On the other hand, every word accepted in a
state corresponding to a node of G different from t is of length at most n− 2, since there
are n− 1 such states and A is acyclic on those states. This gives that an−1 is not accepted
by A, and hence L(A) is not universal.

We next show that if the alphabet is fixed, deciding universality for ptNFAs is coNP-
complete, and that hardness holds even if restricted to binary alphabets. Our proof is
based on a construction that shows non-equivalence of regular expressions with union and
concatenation to be NP-complete, even if one of the expressions has the form Σn for some
fixed n [30, 77].

Theorem 3.2. Deciding universality for ptNFAs over a fixed alphabet is coNP-complete
even if the alphabet is binary.

Proof. Membership follows from the membership for rpoNFAs [39, Corollary 24]. To
show hardness, we reduce DNF validity1. Let U = {x1, . . . , xn} be a set of variables and
ϕ = ϕ1 ∨ · · · ∨ϕm be a formula in DNF, where every ϕi is a conjunction of literals. Without
loss of generality, we may assume that no ϕi contains both x and ¬x. To illustrate our

1A (boolean) formula is built from propositional variables; operators conjunction, disjunction, and negation;
and parentheses. A formula is valid if it is true for every assignment of 1 (true) and 0 (false) to its variables.
A literal is a variable or its negation. A formula is in disjunctive normal form (DNF) if it is a disjunction of
one or more conjunctions of literals; e.g., ϕ = (x ∧ y ∧ z) ∨ (¬x ∧ y ∧ z) is a formula in DNF consisting of two
conjunctions x ∧ y ∧ z and ¬x ∧ y ∧ z. Given a formula in DNF, the DNF validity problem asks whether the
formula is valid. The formula ϕ is not valid; it is not true for, e.g., (x, y, z) = (0, 1, 0).

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 11

0 q2,1 q2,2 q2,3

q1,1 q1,2 q1,3

α1 α2 α3

r1 r2 r3 α4
0 0, 1 1

1

1 0, 1

0, 1

0, 1 0, 1
0, 1

0, 1

0, 1 0, 1 0, 1

0

0, 1

0

0, 1

Figure 3: The ptNFA for the formula (x ∧ y) ∨ (¬x ∧ z) from the proof of Theorem 3.2.

construction, we use the formula (x ∧ y) ∨ (¬x ∧ z) over three variables x, y, z. For every
i = 1, . . . ,m, we define a regular expression βi = βi,1 . . . βi,n, where

βi,j =

0 + 1 if neither xj nor ¬xj appear in ϕi
0 if ¬xj appears in ϕi
1 if xj appears in ϕi

for j = 1, . . . , n. For our formula (x∧y)∨(¬x∧z), we obtain β1 = 11(0+1) and β2 = 0(0+1)1.
We now define a regular expression β =

∑m
i=1 βi as the alternative of all expressions βi.

Then w ∈ L(β) if and only if w corresponds to a truth assignment that satisfies some ϕi.
That is, L(β) = {0, 1}n if and only if ϕ is valid. By construction, the length of each βi is
proportional to n.

We now construct a ptNFAM as follows (the transitions are the minimal sets satisfying
the definitions). The initial state of M is state 0. For every βi, we construct a deterministic
path consisting of n + 1 states {qi,0, qi,1, . . . , qi,n} and transitions qi,`

βi,`+1−−−−→ qi,`+1, for
0 ≤ ` < n, qi,0 = 0, and qi,n is accepting, where, for βi,`+1 = 0 + 1, qi,`

βi,`+1−−−−→ qi,`+1 denotes
two transitions: qi,`

0−−→ qi,`+1 and qi,`
1−−→ qi,`+1. This ensures that M accepts L(β). The

overall construction for our formula (x ∧ y) ∨ (¬x ∧ z) is illustrated in Figure 3.
To accept all words of length different from n, we add n+ 1 states {α1, α2, . . . , αn+1}

and transitions α`
a−−→ α`+1, for 0 ≤ ` < n + 1, and αn+1

a−−→ αn+1, where a ∈ {0, 1},
α0 = 0, and {α0, α1, . . . αn+1} \ {αn} are accepting.

Finally, to make the automaton complete and confluent, we add n non-accepting states
{r1, . . . , rn} and transitions ri

a−−→ ri+1, for 1 ≤ i < n, and rn
a−−→ αn+1, where a ∈ {0, 1}.

These states are used to complete M by adding a transition from every state q to r1 under
a if a is not defined in q. Then completeness and the fact that state αn+1 is reachable from
every state implies confluence of the automaton. Notice that the states r1, . . . , rn and the
corresponding transitions do not accept any word of length n that does not belong to L(β).

Altogether, the accepting states ofM are states {0} ∪ {q1,n, . . . , qm,n} ∪ {α1, . . . αn+1} \
{αn}. Thus, M is a ptNFA accepting the language L(M) = L(β) ∪ {w ∈ {0, 1}∗ | |w| 6= n},
and hence L(M) = {0, 1}∗ if and only if L(β) = {0, 1}n, which is if and only if ϕ is valid.

If the alphabet may grow polynomially with the number of states, there are basically two
approaches how to tackle the universality problem for ptNFAs to show PSpace-hardness:
(1) to use a reduction from Kozen’s DFA-union-universality problem [38], or (2) to use a
reduction from the word problem of polynomially-space-bounded Turing machines à la Aho,
Hopcroft and Ullman [1]. We discuss these two options in the following two subsections. In

12 T. MASOPUST AND M. KRÖTZSCH

the first subsection, we show that the partially ordered variant of the DFA-union-universality
problem is easier than its general counterpart, and hence not suitable to prove PSpace-
hardness of deciding universality for ptNFAs. Therefore, in the second subsection, we use
the reduction from the word problem of a polynomially-space-bounded Turing machine to
prove the result.

3.1. Partially Ordered DFA Union Universality. To use the union-universality prob-
lem for our purposes, we would need to use partially ordered DFAs (poDFAs) rather than
general DFAs to ensure that the union of the DFAs is partially ordered. We now show that
the difficulty of the DFA-union-universality problem comes from nontrivial cycles, and hence
its partially-ordered variant is easier unless PSpace = NP.

We consider the complemented equivalent of the problem – the DFA-intersection
emptiness. It asks, given n DFAs, whether the intersection of their languages is empty.
Clearly, the union of n DFA languages is universal if and only if the intersection of their
complements is empty.

Theorem 3.3. The intersection-emptiness problem for poDFAs/poNFAs is coNP-complete.
It is coNP-hard even if the alphabet is binary.2

Proof. We show membership in coNP for poNFAs and coNP-hardness for poDFAs.
Let A1, . . . ,An be poNFAs and assume that w ∈

⋂n
i=1 L(Ai). Let ki be the depth of

Ai and consider a fixed path of Ai accepting w. Along this path, we mark (at most) ki
letters of w that cause the change of state of Ai. Doing this for all of the n automata, we
mark at most k1 + k2 + · · ·+ kn letters in w. Since all non-marked letters of w correspond
to self-loops in the automata, we can remove them to obtain a subword w′ of w accepted
by every Ai that is of length at most

∑n
i=1 ki, which is polynomial in the size of the input.

Thus, if the intersection is nonempty, there is a polynomial certificate. Therefore, the
intersection-emptiness problem is in coNP.

To show hardness, we reduce DNF validity. Let ϕ be a formula in DNF with n variables
and m conjunctions of literals. For i = 1, . . . ,m, we define an expression βi as in the
proof of Theorem 3.2. Since every βi represents a finite language, we construct a poDFA
recognizing L(βi) and take its complement, denoted by Ai, which is also a poDFA. Then
{0, 1}n ∩

⋂m
i=1 L(Ai) = ∅ if and only if

⋃m
i=1 L(βi) = {0, 1}n, which is if and only if ϕ is

valid.

Thus, we have the following corollary.

Corollary 3.4. The poDFA-union-universality problem is coNP-complete.

We point out that the previous result cannot be further strengthened to the case of
unary alphabets, since the intersection-emptiness problem for unary poNFAs can be solved
in polynomial time. Indeed, if there is a word in the intersection

⋂n
i=1 L(Ai), then it is a

prefix of the word ak1+···+kn , where the ki’s are as in the proof of Theorem 3.3, and this
word is of polynomial length.

2We thank G. Zetzsche and O. Kĺıma, who suggested the membership proof.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 13

3.2. Complexity of Deciding Universality for ptNFAs. In this section, we show that
the universality problem for ptNFAs is PSpace-complete if the alphabet may grow poly-
nomially with the number of states of the automaton. The proof is a novel and nontrivial
extension of our recent proof showing a similar result for self-loop-deterministic poNFAs [39].

To prove our result, we use the idea of Aho, Hopcroft and Ullman [1] to take, for a
polynomial p, a p-space-bounded deterministic Turing machine M together with an input
x, and to encode the computations of M on x as words over some alphabet Σ, where Σ
depends on M. One then constructs a regular expression (or an NFA) Rx representing all
computations that do not encode an accepting run of M on x. That is, L(Rx) = Σ∗ if and
only if M does not accept x [1].

The form of Rx is relatively simple, consisting of a union of expressions of the form
Σ∗K Σ∗ (3.1)

where K is a finite language of words of length O(p(|x|)). Intuitively, K encodes possible
“violations” of a correct computation of M on x, such as the initial configuration does not
contain the input x, or the step from a configuration to the next one does not correspond
to a rule of M. These checks are local, involving at most two consecutive configurations
of M, each of polynomial size. Hence they can be encoded as the finite language K. The
initial segment Σ∗ of (3.1) nondeterministically guesses a position of the computation where
a violation encoded by K occurs, and the last Σ∗ reads the rest of the word if the violation
check was successful. However, this idea cannot be directly used to prove our result for two
reasons:
(1) Although expression (3.1) can easily be translated to a poNFA, it is not true for ptNFAs

because the translation of the leading part Σ∗K may not be self-loop-deterministic;
(2) The constructed poNFA may be incomplete and its “standard” completion by adding

the missing transitions to a new sink state may violate confluence.
We addressed problem (1) in our previous work [39] where we proved PSpace-hardness

of deciding universality for rpoNFAs. However, the constructed rpoNFA is not a ptNFA, and
because of different expressive powers, it is not always possible to complete an rpoNFA to
obtain a ptNFA. To solve problem (2), we use an observation that the length of the encoding
of a computation of M on x is at most exponential with respect to the size of M and x,
and hence we could use an exponentially long word to make the automaton confluent in a
similar way as we did in our previous constructions above. Since such a word cannot be
constructed by a polynomial-time reduction, we need to encode it by a ptNFA, which exists
and is of polynomial size as we show in Lemma 3.5 – there we construct, in polynomial
time, a ptNFA An,n that accepts all words but a single one, Wn,n, of exponential length.
The automaton consists of two parts (the upper and lower parts in Figure 4). The upper
part (together with state max) is the rpoNFA we used to tackle problem (1) in our previous
work [39]. The lower part not only makes the rpoNFA complete and confluent, but it also
encodes an exponentially long word that we use to tackle problem (2).

In our proof we do not get the same language as defined by the regular expression Rx,
but the language of the constructed ptNFA is universal if and only if the language of Rx is,
which suffices for our reduction.

It is not hard to see that an automaton that is complete and has a single maximal state
reachable from every state must also be confluent. We use this fact to simplify the proof.

Thus, the first step of the construction is to construct the ptNFA An,n, which accepts
all words but the single word Wn,n of exponential length. This automaton is the core of

14 T. MASOPUST AND M. KRÖTZSCH

the proof. The considered language is the same as in our previous work [39, Lemma 17],
where the constructed automaton is an rpoNFA that is not a ptNFA. As already pointed
out above, that rpoNFA is formed by the upper part of Figure 4 together with state max,
cf. Corollary 3.7. In the following lemma, we present the basic idea how to transform this
rpoNFA into a ptNFA. This idea is used and further developed in the proof of Theorem 3.8.
On an intuitive level, the states of the lower part of Figure 4, except for state max, are
used to make the rpoNFA (as well as the rpoNFAs constructed in the proof of Theorem 3.8)
complete and confluent, and hence a ptNFA. Recall that because of a weaker expressivity of
ptNFAs, this transformation is not possible in general.

Lemma 3.5. For all integers k, n ≥ 1, there exists a ptNFA Ak,n over an n-letter alphabet
with n(2k+1)+1 states, such that the unique non-accepted word of Ak,n is of length

(k+n
k

)
−1.

Proof. For positive integers k and n, we recursively define words Wk,n over the alphabet
Σn = {a1, a2, . . . , an} as follows. For the base cases, we set Wk,1 = ak1 and W1,n = a1a2 . . . an.
The cases for k, n > 1 are defined recursively by setting

Wk,n = Wk,n−1 anWk−1,n

= Wk,n−1 anWk−1,n−1 anWk−2,n

...
= Wk,n−1 anWk−1,n−1 an · · · anW1,n−1 an .

The length of Wk,n is
(k+n
n

)
− 1 [53]. Notice that the letter an appears exactly k times in

Wk,n. We further set Wk,n = ε whenever kn = 0, since this is useful for defining Ak,n below.
We construct a ptNFA Ak,n over Σn that accepts the language Σ∗n \ {Wk,n}. For n = 1

and k ≥ 0, let Ak,1 be a DFA for {a1}∗ \ {ak1} with k additional unreachable states used
to address confluence of problem (2) and included here for uniformity (see Corollary 3.6).
Thus, Ak,1 consists of 2k + 1 states of the form (i; 1) and a state max together with the
given a1-transitions, see Figure 4 for an illustration. All states but (i; 1), for i = k, . . . , 2k,
are accepting, and (0; 1) is initial. All undefined transitions in Figure 4 go to state max.

Given a ptNFA Ak,n−1, we recursively construct Ak,n as defined next. The construction
for n = 3 is illustrated in Figure 4. We obtain Ak,n from Ak,n−1 by adding 2k + 1 states
(0;n), (1;n), . . . , (2k;n), where (0;n) is added to the initial states, and all states (i;n) with
i < k are added to the accepting states. The automaton Ak,n therefore has n(2k + 1) + 1
states. The additional transitions of Ak,n consist of the following groups:
(1) Self-loops (i;n) aj−→ (i;n) for i ∈ {0, 1, . . . , 2k} and aj = a1, a2, . . . , an−1;
(2) Transitions (i;n) an−→ (i+ 1;n) for i ∈ {0, 1, . . . , 2k − 1} \ {k};
(3) Transitions (k, n) an−→ max, (2k, n) an−→ max, and the self-loop max

an−→ max;
(4) Transitions (i;n) an−→ (i+ 1;m) for i = 0, 1, . . . , k − 1 and m = 1, . . . , n− 1;
(5) Transitions (i;m) an−→ max for every accepting state (i;m) of Ak,n−1;
(6) Transitions (i;m) an−→ (k + 1, n) for every non-accepting state (i;m) of Ak,n−1.

By construction, Ak,n is complete and partially ordered. It satisfies the UMS property
because if there is a self-loop in a state q 6= max under a letter a, then there is no other
incoming or outgoing transition of q under a. This means that the component of the graph
G(Ak,n,Σ(q)) containing q is only state q, which is indeed the unique maximal state. Hence,
it is a ptNFA.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 15

0; 1 1; 1 . . . k − 1; 1 k; 1

0; 2 1; 2 . . . k − 1; 2 k; 2

0; 3 1; 3 . . . k − 1; 3 k; 3

k + 1; 1k + 2; 1. . .2k; 1

k + 1; 2k + 2; 2. . .2k; 2

k + 1; 3k + 2; 3. . .2k; 3

max

a1 a1 a1 a1

a1

a2

a1

a2 a2

a1

a2

a1

a 2 a 2
a 2 a 2

a
2

a1

a2

a1

a2a2

a1

a2

a1, a2 a1, a2 a1, a2 a1, a2

a1
, a2

, a3

a3 a3 a3 a3

a 3

a 3

a 3

a 3

a 3

a 3

a 3

a 3

a
1 ,a

2

a1, a2a1, a2

a3a3a3

a
3

a
3

a
3

a
3a3a3

a3

a1a1a1

a 1 a
2a2a2
a2

a
3a

3
a3

a3

Figure 4: The ptNFA Ak,3 with 3(2k + 1) + 1 states; all undefined transitions go to state
max; for readability, transitions (k+ i; 1) a3→ (k+ 1; 3) for i = 2, 3, . . . , k, are dotted.

We show that Ak,n accepts Σ∗n \ {Wk,n}. The transitions (1), (2), and (3) ensure
acceptance of every word that does not contain exactly k occurrences of an. The transitions
(4) and (5) ensure acceptance of all words in (Σ∗n−1an)iL(Ak−i,n−1)anΣ∗n, for which the
longest factor before the (i+ 1)th occurrence of an is not of the form Wk−i,n−1, and hence is
not a correct factor of Wk,n = Wk,n−1an · · · anWk−i,n−1an · · · anW1,n−1an. Together, these
transitions ensure that Ak,n accepts every input other than Wk,n. Notice that transitions (6)
are not needed to obtain the language, and we show below that they do not change the
language. This corresponds to the informal explanation that the lower part of the automaton
is used to take care of confluence and has no effect on the language. We formulate this
precisely as Corollary 3.7.

It remains to show that Ak,n does not accept Wk,n, which we do by induction on (k, n).
We start with the base cases. For (0, n) and any n ≥ 1, the word W0,n = ε is not accepted
by A0,n, since the initial states (0;m) = (k;m) of A0,n are not accepting. Likewise, for (k, 1)
and any k ≥ 0, we find that Wk,1 = ak1 is not accepted by Ak,1 (cf. Figure 4).

For the inductive case (k, n) ≥ (1, 2), assume that Ak′,n′ does not accept Wk′,n′ for any
(k′, n′) < (k, n). We have Wk,n = Wk,n−1anWk−1,n, and Wk,n−1 is not accepted by Ak,n−1
by induction. Therefore, after reading Wk,n−1an, automaton Ak,n must be in one of the
states (1;m), 1 ≤ m ≤ n, or (k + 1;n). However, states (1;m), 1 ≤ m ≤ n, are the initial
states of Ak−1,n, which does not accept Wk−1,n by induction, and hence neither Ak,n accepts
Wk−1,n from the states (1;m), 1 ≤ m ≤ n; indeed, after reading Wk−1,n, automaton Ak−1,n

16 T. MASOPUST AND M. KRÖTZSCH

ends up in non-accepting states, and since Ak,n starting from the states (1;m), 1 ≤ m ≤ n,
differs from Ak−1,n only in states (2k; i), i = 1, . . . , n, it ends up in the same non-accepting
states after reading Wk−1,n as Ak−1,n. Thus, assume that Ak,n is in state (k + 1;n) after
reading Wk,n−1an. Since Wk−1,n has exactly k − 1 occurrences of letter an, Ak,n is in state
(2k;n) after reading Wk−1,n. Hence Wk,n is not accepted by Ak,n.

The last part of the previous proof shows that the suffix Wk−1,n of the word Wk,n =
Wk,n−1anWk−1,n is not accepted from state (k + 1;n). This can be generalized as follows.

Corollary 3.6. For any suffix aiw of Wk,n, w is not accepted from state (k + 1; i) of Ak,n.

Proof. Consider the word Wk,n over Σn = {a1, a2, . . . , an} constructed in the proof of
Lemma 3.5, and let i ∈ {1, . . . , n} be the maximal number for which there is a suffix aiw of
Wk,n such that w is accepted by Ak,n from state (k + 1; i). Then Wk,n = w1aiw2w3, where
w2 ∈ {a1, . . . , ai}∗ is the shortest word labeling the path from state (k + 1; i) to state max.
By the construction of Ak,n, word aiw2 must contain k + 1 letters ai. We shown that Wk,n

does not contain more than k letters ai interleaved only with letters aj for j < i, which
yields a contradiction that proves the claim.

By definition, every longest factor of Wk,n over {a1, . . . , ai} is of the form Wk−`,i, for
` ∈ {0, . . . , k − 1}. Since Wk−`,i = Wk−`,i−1 aiWk−`−1,i−1 ai · · · aiW1,i−1 ai, the number of
occurrences of ai interleaved only with letters aj for j < i is at most k − `, which results in
the maximum of k for ` = 0 as claimed above.

As already pointed out in the proof of Lemma 3.5, transitions (6) are redundant and
present only to take care of confluence.

Corollary 3.7. Removing from Ak,n the non-accepting states (k + 1, i), . . . , (2k, i), for
1 ≤ i ≤ n, and the corresponding transitions results in an rpoNFA that accepts the same
language.

Proof. By the proof of Lemma 3.5, removing the states with corresponding transitions has
no effect on the accepted language. The resulting automaton is indeed an rpoNFA. This
rpoNFA is exactly the rpoNFA used in our previous work [39].

We now have the necessary results to show, using a reduction from the word problem of
polynomially-space-bounded Turing machines, that the universality problem for ptNFAs,
where the alphabet may grow polynomially with the number of states, is PSpace-complete.

A deterministic Turing machine (DTM) is a tuple M = (Q,T, I, δ, xy, qo, qf), where Q
is the finite state set, T is the tape alphabet, I ⊆ T is the input alphabet, xy ∈ T \ I is
the blank symbol, qo is the initial state, qf is the accepting state, and δ is the transition
function mapping Q× T to Q× T × {L,R, S}; see Aho et al. [1] for details.

Theorem 3.8. Deciding universality for ptNFAs is PSpace-complete.

Proof. Membership follows since universality is in PSpace for NFAs [23].
To prove PSpace-hardness, we consider a polynomial p and a p-space-bounded DTM

M = (Q,T, I, δ, xy, qo, qf) with a nonempty input x. The basic idea of the proof is to use the
alphabet Π = Σn ×∆, where Σn = {a1, . . . , an} and ∆ is used to encode runs of the Turing
machine M. The aim is to construct a ptNFA that accepts all words over Π, where the
projection to the first component does not equal Wn,n (the word constructed in Lemma 3.5)
or the projection to the second component does not encode an accepting run of M on x.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 17

Before elaborating on the details of the construction, we make several assumptions on
the DTMs that simplify the proof and under which the word problem for these DTMs clearly
remains PSpace-hard. We assume that
(1) the initial and accepting states of M are different, i.e., qo 6= qf ;
(2) M accepts by looping in the accepting state qf indefinitely, i.e., no transition from state

qf modifies the tape, state, or head position;
(3) and M always accepts with the head at the very beginning of the tape.

A configuration of M on x consists of a current state q ∈ Q, the position 1 ≤ ` ≤ p(|x|)
of the read/write head, and the tape contents θ1, . . . , θp(|x|) with θi ∈ T . We represent it by
a sequence

〈θ1, •〉 · · · 〈θ`−1, •〉〈θ`, q〉〈θ`+1, •〉 · · · 〈θp(|x|), •〉
of symbols from ∆ = T × (Q∪{•}). A run ofM on x is represented as a word #w1#w2# · · ·
#wm#, where wi ∈ ∆p(|x|) and # /∈ ∆ is a fresh separator symbol. One can construct a
regular expression recognizing all words over ∆ ∪ {#} that do not correctly encode a run of
M (in particular are not of the form #w1#w2# · · ·#wm#) or that encode a run that is not
accepting [1]. Such a regular expression can be constructed in the following three steps: we
detect all words that
(A): do not start with the initial configuration;
(B): do not encode a valid run since they violate a transition rule (including words with an

invalid encoding);
(C): encode non-accepting runs or runs that end prematurely.

If M has an accepting run on x, it has one without repeated configurations. There
are C(x) = |∆|p(|x|) distinct configuration words in our encoding. Considering a separator
symbol #, the length of the encoding of a run without repeated configurations is at most
1 + C(x)(p(|x|) + 1), because every configuration word ends with # and is thus of length
p(|x|) + 1. Let n be the least number such that |Wn,n| ≥ 1 + C(x)(p(|x|) + 1), where Wn,n

is the word constructed in Lemma 3.5. Since |Wn,n| + 1 =
(2n
n

)
≥ 2n, it follows that n is

smaller than dlog(1 + C(x)(p(|x|) + 1))e, and hence polynomial in the size of M and x.
Consider the ptNFA An,n over the alphabet Σn = {a1, . . . , an} of Lemma 3.5, and define

the alphabet ∆#$ = ∆ ∪ {#, $}. We consider the alphabet Π = Σn ×∆#$ where the first
component is an input for An,n and the second component is used for encoding a run as
described above; that is, letters of Π are pairs that might have pairs (of tape symbols and
states) as their second element. Recall that An,n accepts all words different from Wn,n.
Therefore, only those words over Π are of our interest, where the first components form the
word Wn,n. Since the length of Wn,n may not be a multiple of p(|x|) + 1, we add $ to fill up
any remaining space after the last configuration.

For a word w = 〈ai1 , δ1〉 · · · 〈ai` , δ`〉 ∈ Π`, we define w[1] = ai1 · · · ai` ∈ Σ`
n as the

projection of w to the first components, and w[2] = δ1 . . . δ` ∈ ∆`
#$ as the projection to

the second components. Conversely, for a word ai1 · · · ai` ∈ Σ`
n, we write ai1 · · · ai` ⊗∆#$

to denote the set ({ai1}×∆#$) · · · ({ai`}×∆#$) of all words w ∈ Π` with w[1] = ai1 · · · ai` .
Similarly, for δ1 . . . δ` ∈ ∆`

#$, we write Σn⊗δ1 . . . δ` to denote the set (Σn×{δ1}) · · · (Σn×{δ`})
of all words w ∈ Π` with w[2] = δ1 . . . δ`. We extend this notation to sets of words.

Let enc(An,n) denote the automaton An,n with each transition q
ai−→ q′ replaced by

all transitions q π−→ q′ with π ∈ {ai} × ∆#$. Then enc(An,n) accepts the language Π∗ \
(Wn,n ⊗∆#$). We say that a word w encodes an accepting run of M on x if w[1] = Wn,n

18 T. MASOPUST AND M. KRÖTZSCH

and w[2] is of the form #w1# · · ·#wm#$j such that there is an i ∈ {1, 2, . . . ,m} for which
#w1# · · ·#wi# encodes an accepting run of M on x, wk = wi for all k ∈ {i + 1, . . . ,m},
and j ≤ p(|x|). That is, we extend the encoding by repeating the accepting configuration
until we have less than p(|x|) + 1 symbols before the end of |Wn,n|, and fill up the remaining
places with symbol $. This extension is possible due to the assuption that M loops in the
accepting configuration.

For (A), we want to detect all words that do not start with the word
w[2] = #〈x1, q0〉〈x2, •〉 · · · 〈x|x|, •〉〈xy, •〉 · · · 〈xy, •〉# (3.2)

of length p(|x|) + 2. This happens if (A.1) the word is shorter than p(|x|) + 2, or (A.2) at
position j, for 0 ≤ j ≤ p(|x|) + 1, there is a letter from the alphabet ∆#$ \ {δj}, where δj
is the jth letter of the expected initial word (3.2). Let Ēj = Σn × (∆#$ \ {δj}). We can
capture (A.1) and (A.2) in the regular expression(

ε+ Π + Π2 + · · ·+ Πp(|x|)+1
)

+
∑

0≤j≤p(|x|)+1
(Πj · Ēj ·Π∗) (3.3)

where Πk is an abbreviation of the concatenation of Π k-times.
Expression (3.3) is polynomial in size. It can be captured by a ptNFA as follows. Each

of the first p(|x|) + 2 expressions defines a finite language and can easily be captured by a
ptNFA (by a confluent DFA) of size of the expression. (By size of a regular expression, we
mean the ordinary length, i.e., the total number of symbols, including parentheses; cf. Ellul
et al. [21] for more options and a detailed discussion.) The disjoint union of these ptNFAs
then clearly forms a single ptNFA recognizing the language ε+ Π + Π2 + · · ·+ Πp(|x|)+1.

To express the language Πj ·Ēj ·Π∗ as a ptNFA, we first construct the minimal incomplete
DFA recognizing this language (states 0, 1, . . . , j,max in Figure 5). However, we cannot
complete this DFA by simply adding the missing transitions under Σn × {δj} from state j
to a new sink state because it results in a DFA with two maximal states – max and the sink
state – violating the UMS property. Instead, we use a copy of the ptNFA enc(An,n) and
add the missing transitions from state j under 〈ai, δj〉 ∈ Σn × {δj} to state (n+ 1; i); see
Figure 5 for an illustration. Notice that states (n+ 1; i) are the states (k + 1; i) in Figure 4.
The resulting automaton is a ptNFA, since it is complete, partially ordered, and satisfies
the UMS property – for every state q different from max, the component co-reachable and
reachable under the letters of self-loops in state q is only state q itself. This ptNFA accepts
all words of Πj · Ēj ·Π∗.

We now show that any word w that is accepted by this ptNFA and that does not belong
to Πj · Ēj · Π∗ is such that w[1] 6= Wn,n, i.e., w belongs to Π∗ \ (Wn,n ⊗ ∆#$). To this
aim, assume that w[1] = Wn,n and that w is of the form w = u〈ai, δj〉v such that |u| = j.
Then, 〈ai, δj〉 is the letter under which the state (n+ 1; i) of An,n is reached and v is read
in the An,n-part of the ptNFA. By Corollary 3.6, v is not accepted from state (n + 1; i),
and hence the ptNFA does not accept w. Therefore, the ptNFA accepts the language
Πj · Ēj · Π∗ + (Π∗ \ (Wn,n ⊗ ∆#$)). Constructing such a ptNFA for polynomially many
expressions Πj · Ēj ·Π∗ and taking their disjoint union results in a polynomially large ptNFA
accepting the language

∑p(|x|)+1
j=0 (Πj · Ēj ·Π∗) + (Π∗ \ (Wn,n ⊗∆#$)).

Notice that we ensure that the surrounding # in the initial configuration are present.
For (B), we check for incorrect transitions and invalid encodings. Consider again the

encoding #w1# · · ·#wm# of a sequence of configurations with a word over ∆∪{#}. We can
assume that w1 encodes the initial configuration according to (A). In an encoding of a valid

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 19

0

..
.

j

n+ 1; 1 n+ 2; 1 . . . 2n; 1

n+ 1; 2 n+ 2; 2 . . . 2n; 2

n+ 1; 3 n+ 2; 3 . . . 2n; 3

max

Π

Π

Ēj

〈a1,
δj〉

〈a
2 , δj 〉

〈a
3 , δ

j 〉

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

{a2}×∆#$ {a2}×∆#$

{a1}×∆#$

{a2}×∆#$ Π

{a1, a2}×∆#$

{a1, a2}×∆#$ {a1, a2}×∆#$

{a3}×∆#$ {a3}×∆#$ {a3}×∆#$

{a 3
}×

∆
#
$

{
a
3 }×

∆
#
$

{a3
}×∆#$

{a3}×∆#$

{a3}×∆#$

{a1}×∆#$ {a1}×∆#$ {a1}×∆#$ {a
1 }×

∆
#
$

{
a
2 }×

∆
#
$

{a2
}×∆#$

{a2}×∆#$

{a2}×∆#$

{a
3 }×

∆
#
$

{
a
3 }×

∆
#
$

{a
3 }×

∆
#
$

{a
3 }×

∆
#
$

Figure 5: A ptNFA that accepts Πj ·Ēj ·Π∗+(Π∗\(Wn,n⊗∆#$)) with Ēj = Σn×(∆#$\{δj})
illustrated for Σn = {a1, a2, a3}; only the relevant part of An,n is depicted.

run, the symbol at any position j ≥ p(|x|) + 2 is uniquely determined by the three symbols
at positions j− p(|x|)− 2, j− p(|x|)− 1, and j− p(|x|), corresponding to the cell and its left
and right neighbor in the previous configuration. Given symbols δ`, δ, δr ∈ ∆ ∪ {#}, we can
therefore define f(δ`, δ, δr) ∈ ∆ ∪ {#} to be the symbol required in the next configuration.
The case where δ` = # or δr = # corresponds to transitions applied at the left and right
edge of the tape, respectively; for the cases where δ = #, we define f(δ`, δ, δr) = #, ensuring
that the separator # is always present in successor configurations as well. We extend f to
f : ∆3

#$ → ∆#$. We can then check for invalid transitions using the regular expression

Π∗
∑

δ`,δ,δr∈∆#$

(Σn ⊗ δ`δδr) ·Πp(|x|)−1 · f̂(δ`, δ, δr) ·Π∗ (3.4)

where f̂(δ`, δ, δr) is Π\(Σn×{f(δ`, δ, δr), $}). Here, we also consider $ as a correct continuation
instead of the expected next configuration symbol. Note that (3.4) only detects wrong
transitions and invalid encodings if a long enough next configuration exists. The case that
the run stops prematurely is covered in (C).

Expression (3.4) is not readily encoded in a ptNFA because of the leading Π∗. To address
this issue, we replace Π∗ by the expression Π≤|Wn,n|−1, which matches every word w ∈ Π∗
with |w| ≤ |Wn,n| − 1. This suffices for our purpose because the computations of interest
are of length |Wn,n| and a violation of a correct computation must occur. As |Wn,n| − 1 is
exponential, we cannot encode it directly and we use enc(An,n) instead.

In detail, let E be the expression obtained from (3.4) by omitting the initial Π∗, and let
B1 be an incomplete DFA that accepts the language of E constructed as follows. From the
initial state, we construct a tree-shaped DFA corresponding to all words of length three of
the finite language

∑
δ`,δ,δr∈∆#$

(Σn ⊗ δ`δδr). To every leaf state, we add a path under Π of
length p(|x|)− 1. The result corresponds to the language

∑
δ`,δ,δr∈∆#$

(Σn⊗ δ`δδr) ·Πp(|x|)−1.
Let qδ`δδr denote the states uniquely determined by the words in (Σn⊗ δ`δδr) ·Πp(|x|)−1. We

20 T. MASOPUST AND M. KRÖTZSCH

0; 1 1; 1 . . . n− 1; 1 n; 1

0; 2 1; 2 . . . n− 1; 2 n; 2

. . .

· · ·
. . .

qδ`δδr

The ptNFA B1 without the initial state and state max

n+ 1; 1n+ 2; 1. . .2n; 1

n+ 1; 2n+ 2; 2. . .2n; 2max

{a1}×∆#$ {a1}×∆#$ {a1}×∆#$ {a1}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

{a2}×∆#$ {a2}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

Π

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a
2 }×

∆
#
$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

{a2}×∆#${a2}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#${a1}×∆#${a1}×∆#$

{a
1
}×

∆
#
$ {a

2 }×
∆

#
$

{a2}×∆
#$

{a2}×∆#$

{a2}×∆#$

Σ
n ×
{δ
` }

〈a
2 , δ

` 〉

Σ n
×{
δ}

Σ
n×{δ

r }
Π Π Π

f̂(δ`, δ, δr
)

〈a
1 , f

(δ
` , δ, δ

r)〉, 〈a
1 , $〉

〈a
2 , f(δ

,̀ δ, δ
r)〉, 〈a

2 , $〉

Figure 6: The ptNFA B that combines ptNFA enc(An,n) with ptNFA B1, for n = 2; the
edges from accepting states of enc(An,n) to the second states of B1 are illustrated
only for states (0; 1) and (0; 2).

add the transitions qδ`δδr

f̂(δ`,δ,δr)−−−−−−→ max, where max is the state of enc(An,n). Automaton B1
is illustrated in the middle part of Figure 6, except for the initial state that is identified with
accepting states of the ptNFA enc(An,n) as described below, and state max that is a state of
enc(An,n). It is an incomplete DFA for the language of E of polynomial size. It is incomplete
only in states qδrδδ`

due to the missing transitions under Σn × {f(δ`, δ, δr)} and Σn × {$}.
We complete it by adding the missing transitions to the states of the ptNFA enc(An,n).
Namely, for z ∈ {〈ai, f(δ`, δ, δr)〉, 〈ai, $〉}, we add qδ`δδr

z−−→ (n + 1; i); see Figure 6 for an
illustration.

We construct a ptNFA B accepting the language (Π∗ \ (Wn,n ⊗∆#$)) + (Π≤|Wn,n|−1 ·E)
by merging enc(An,n) with the DFA B1, where we add edges labeled with (Σn \Σ(q))×{δ`}
from any accepting state q of enc(An,n) to the states of the second level of the tree-shaped
DFA B1 (the leftmost states in the middle part of Figure 6). This step is justified by
Corollary 3.7, since we do not need to consider connecting B1 to non-accepting states of
enc(An,n) and it is not possible to connect it to state max. The fact that enc(An,n) alone
accepts Π∗ \ (Wn,n ⊗∆#$) was shown in Lemma 3.5. This also implies that it accepts all
words of length ≤ |Wn,n| − 1 as needed to show that (Π≤|Wn,n|−1 · E) is accepted. Entering
states of B1 after reading a word of length ≥ |Wn,n| is possible but all such words are longer
than Wn,n, and hence in Π∗ \ (Wn,n ⊗∆#$).

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 21

To show that the completion does not affect the language, let w be a word that is read
but not accepted by B1, and let u lead enc(An,n) to a state from which w is read in B1.
Since w is not accepted, there is a letter z and a word v such that uwz goes to state (n+ 1; i)
of enc(An,n) (for z[1] = ai) and v leads enc(An,n) from state (n + 1; i) to state max. If
u[1]w[1]aiv[1] = Wn,n,, then v is not accepted from (n+ 1; i) by Corollary 3.6, and hence
uwzv[1] 6= Wn,n; thus, uwzv /∈ (Wn,n ⊗∆#$).

It remains to show that for every proper prefix wn,n of Wn,n, there is a state in An,n
reached by wn,n that has transitions to the second states of B1, and hence the check
represented by E in Π≤|Wn,n|−1 · E can be performed. In other words, if an,n denotes
the letter following wn,n in Wn,n, then there must be a state reachable by wn,n in An,n
that does not have a self-loop under an,n. However, this follows from the fact that An,n
accepts everything but Wn,n, since then the DFA obtained from An,n by the standard subset
construction has a path of length

(2n
n

)
− 1 labeled with Wn,n without any loop. Moreover,

any state of this path in the DFA is a subset of states of An,n, and therefore at least one of
the states reachable under wn,n in An,n does not have a self-loop under an,n.

The ptNFA B thus accepts the language (Π≤|Wn,n|−1 · E) + (Π∗ \ (Wn,n ⊗∆#$)).
Finally, for (C), we detect all words that (C.1) end in a configuration that is incomplete

(too short), possibly followed by at most p(|x|) trailing $, (C.2) end in a configuration that
is not in the accepting state qf , which must be the very first tape symbol by our assumption,
(C.3) end with more than p(|x|) trailing $, or (C.4) contain $ not only at the last positions,
that is, we detect all words where $ is followed by a different symbol. For a word v, we
use v≤i to abbreviate ε + v + · · · + vi, and we define Ēf = (T × (Q \ {qf})). Then these
properties are expressed by the following expressions:

(C.1) Π∗ (Σn × {#}) (Π + · · ·+ Πp(|x|)) (Σn × {$})≤p(|x|) +
(C.2) Π∗ (Σn × Ēf) Πp(|x|)−1 (Σn × {#}) (Σn × {$})≤p(|x|) +
(C.3) Π∗ (Σn × {$})p(|x|)+1 +
(C.4) (Π \ (Σn × {$}))∗ (Σn × {$}) (Σn × {$})∗ (Π \ (Σn × {$})) Π∗

(3.5)

As before, we cannot encode the expression directly as a ptNFA, but we can perform
a similar construction as the one used for encoding (3.4). Namely, ptNFAs for (C.1) and
(C.2) are illustrated in Figure 7 and for (C.3) in Figure 8, where, analogously to Figure 6,
the edges from the accepting states of enc(An,n) to the second state of the automaton Ci
that recognizes the language of expression (C.i) without the initial Π∗, for i = 1, 2, 3, are
illustrated only for states (0; 1) and (0; 2). However, the reader should keep in mind that such
transitions lead from every accepting state of enc(An,n) to the second state of Ci. Finally,
(C.4) can be represented by a three-state partially ordered and confluent DFA.

The expressions (3.3)–(3.5) together then detect all non-accepting or wrongly encoded
runs of M. In particular, if we start from the correct initial configuration ((3.3) does not
match), then for (3.4) not to match, all complete future configurations must have exactly one
state, be delimited by encodings of #, and correctly follow from the previous configurations.
We have shown how to express each of the expressions as a ptNFA. Taking the disjoint union
of all these ptNFAs results in a single ptNFA. This ptNFA is of polynomial size, and hence
we have reduced the word problem of polynomially-space-bounded Turing machines to the
universality problem for ptNFAs.

22 T. MASOPUST AND M. KRÖTZSCH

0; 1 1; 1 . . . n− 1; 1 n; 1

0; 2 1; 2 . . . n− 1; 2 n; 2

n + 1; 1n + 2; 1. . .2n; 1

n + 1; 2n + 2; 2. . .2n; 2max

The ptNFA C1
without the
initial state

{a1}×∆#$ {a1}×∆#$ {a1}×∆#$ {a1}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

{a2}×∆#$ {a2}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

Π

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a
2 }×

∆
#
$

{a1}×∆#${a2}×∆#$

{a1}×∆#$

{a2}×∆#${a2}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#${a1}×∆#${a1}×∆#$

{a 1
}×

∆
#
$

{
a
2 }×

∆
#
$

{a2}×∆
#$

{a2}×∆#$

{a2}×∆#$

Σ
n ×
{#
}

〈a
2 ,#
〉

Π
Π

Π

Π

Σn×{$
}

Σn×{$}

Σ
n×{$}

Σ
n ×{$}

Σn×{$} Σn×{$}

Π[a1]
Π[a1]

Π
[a

1]

Π[a
2]

Π
[a

2]

Π
[a

2]

Π[a1],Π[a2]

0; 1 1; 1 . . . n− 1; 1 n; 1

0; 2 1; 2 . . . n− 1; 2 n; 2

n + 1; 1n + 2; 1. . .2n; 1

n + 1; 2n + 2; 2. . .2n; 2max

The ptNFA C2 without the initial state

{a1}×∆#$ {a1}×∆#$ {a1}×∆#$ {a1}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

{a2}×∆#$ {a2}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

Π

{a
2
}×

∆
#
$

{a
2
}×

∆
#
$

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a
2 }×

∆
#
$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

{a2}×∆#${a2}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#${a1}×∆#${a1}×∆#$

{a
1
}×

∆
#
$

{a
2 }×

∆
#
$

{a
2}×∆

#$

{a2}×∆#${a2}×∆#$

Σ
n ×

Ē
f

{a
2 }×

Ē
f

Π Π Π Σn×{#}
Π

[a
1]

Π
[a

2]

Π[a1] Π
[a
2]

Figure 7: ptNFAs for (C.1) (top) and (C.2) (bottom) illustrated for n = 2; automata C1
and C2, recognizing resp. (C.1) and (C.2) without the initial Π∗, are completed by
adding transitions q Π[ai]−−−→ (n+ 1; i), where Π[ai] denotes all letters of Π undefined
in state q with the first component of the letter being ai.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 23

0; 1 1; 1 . . . n− 1; 1 n; 1

0; 2 1; 2 . . . n− 1; 2 n; 2

n + 1; 1n + 2; 1. . .2n; 1

n + 1; 2n + 2; 2. . .2n; 2max

The ptNFA C3 without the initial state

{a1}×∆#$ {a1}×∆#$ {a1}×∆#$ {a1}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

{a2}×∆#$ {a2}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

Π

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{a 2
}×

∆#
$

{
a
2 }×

∆
#
$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#$

{a2}×∆#${a2}×∆#$

{a1}×∆#$

{a2}×∆#$

{a1}×∆#${a1}×∆#${a1}×∆#$

{a 1
}×

∆
#
$

{a
2 }×

∆
#
$

{a
2}×∆

#$

{a2}×∆
#$

{a2}×∆#$

Σ
n ×
{$}

〈a
2 , $〉

Σn×{$} Σn×{$} Σn×{$}

Π[a1]
Π[a1]

Π[a1]

Π[a
1]

Π[a2]
Π[a2] Π[a2]

Π
[a
2]

Figure 8: The ptNFA for (C.3) illustrated for n = 2; automaton C3, recognizing (C.3)
without the initial Π∗, is completed by adding transitions q Π[ai]−−−→ (n+ 1; i), where
Π[ai] denotes all letters of Π undefined in q with the first component of the letter
being ai.

4. Complexity of Deciding k-Piecewise Testability

The effort to simplify XML Schema using the BonXai language [46] led to the study of
(k-)piecewise testable languages [17, 29]. A regular language over Σ is piecewise testable if
it is a finite boolean combination of languages of the form Σ∗a1Σ∗a2Σ∗ · · ·Σ∗anΣ∗, where
ai ∈ Σ for i = 1, . . . , n, n ≥ 0. Let k ≥ 0 be an integer. The language is k-piecewise testable
if n ≤ k. The k-piecewise testability problem asks whether a given automaton recognizes a
k-piecewise testable language.

In this section, we study the complexity of deciding k-piecewise testability for partially
ordered automata. Our results are summarized in Table 7.

To simplify proofs, we make use of the following lemma that will save us a lot of work
by directly obtaining the lower bounds from the complexity results for universality.

We first need some additional definitions. For k ≥ 0, let subk(v) = {u ∈ Σ∗ | u 4
v, |u| ≤ k}. For two words w1, w2, we write w1 ∼k w2 if subk(w1) = subk(w2). The relation
∼k is a congruence with finite index, and every k-piecewise testable language is a finite
union of ∼k classes [74].

Lemma 4.1. Let k ≥ 0 be a constant. Then the universality problem for ptNFAs (resp.
rpoNFAs, poNFAs, NFAs, DFAs) is log-space reducible to the k-piecewise testability problem
for ptNFAs (resp. rpoNFAs, poNFAs, NFAs, DFAs).

24 T. MASOPUST AND M. KRÖTZSCH

Unary alphabet Fixed alphabet Arbitrary alphabet

|Σ| = 1 |Σ| ≥ 2 k ≤ 3 k ≥ 4

DFA L-c (Thm. 4.7) NL-c (Thm. 4.4) NL-c [53] coNP-c [34]
ptNFA NL-c (Thm. 4.6) coNP-c (Thm. 4.3) PSpace-c (Thm. 4.2)
rpoNFA NL-c coNP-c [39] PSpace-c
poNFA NL-c (Thm. 4.6) PSpace-c (Thm. 4.5) PSpace-c
NFA coNP-c (Thm. 4.8) PSpace-c [53] PSpace-c [53]

Table 7: Complexity of deciding k-piecewise testability.

Proof. LetM over Σ be a ptNFA (resp. rpoNFA, poNFA, NFA, DFA) recognizing a nonempty
language. We construct a ptNFA (resp. rpoNFA, poNFA, NFA, DFA) Mk over Σ from M
as depicted in Figure 9. Namely, we add |Σ|k new states ij,1, . . . , ij,|Σ|k for every initial state
ij of M. For 1 ≤ ` < |Σ|k, we add transitions from ij,` to ij,`+1 and a transition from ij,|Σ|k
to the initial state ij ofM under all letters of Σ. The initial states ofMk are the states ij,1,
the accepting states are the accepting states of M and the states ij,k+1, . . . , ij,|Σ|k. Note
that Mk is a ptNFA (resp. rpoNFA, poNFA, NFA, DFA) constructible in logarithmic space.

If the language L(M) is universal, i.e., L(M) = Σ∗, then the language L(Mk) = ΣkΣ∗
is k-piecewise testable because it consists of all words of length at least k, and hence if there
are x ∈ L(Mk) and y /∈ L(Mk), then the length of y is less than k, and hence x ∼k y does
not hold because subk(x) contains a word of length k that is not in subk(y).

If the language L(M) is not universal, then there exist x ∈ L(M) and y /∈ L(M). Let Σ
be {a1, a2, . . . , a|Σ|}. Then (a1a2 · · · a|Σ|)kx ∼k (a1a2 · · · a|Σ|)ky, since subk((a1a2 · · · a|Σ|)k) =
{u ∈ Σ∗ | |u| ≤ k}, and (a1a2 · · · a|Σ|)kx ∈ L(Mk) and (a1a2 · · · a|Σ|)ky /∈ L(Mk), which
shows that the language L(Mk) is not k-piecewise testable.

We immediately have the following consequences. The first consequence is that deciding
k-piecewise testability for ptNFAs, where the alphabet may grow with the number of states,
is PSpace-complete.

Theorem 4.2. Deciding k-piecewise testability for ptNFAs is PSpace-complete.

Proof. Membership follows from the results for NFAs, hardness follows from Lemma 4.1 and
Theorem 3.8.

M

I

i1

i2

i1,|Σ|k· · ·i1,k+1i1,k· · ·i1,1

i2,|Σ|k· · ·i2,k+1i2,k· · ·i2,1

Σ

Σ

Σ Σ

Σ Σ

Σ Σ Σ

Σ Σ Σ

Figure 9: The ptNFA Mk constructed from a ptNFA M with two initial states.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 25

The second consequence is that the complexity decreases if we only consider ptNFAs
over a fixed alphabet. We distinguish two cases: (i) at least binary alphabets, and (ii) unary
alphabets.
Theorem 4.3. Let Σ be a fixed alphabet with at least two letters. Deciding k-piecewise
testability for ptNFAs over Σ is coNP-complete.
Proof. Hardness follows from Lemma 4.1 and Theorem 3.2, membership follows from the
result for rpoNFAs [39, Corollary 24].

This result is in contrast with an analogous result for DFAs. Deciding k-piecewise
testability for DFAs over a fixed alphabet is in P [34]. A more precise complexity can be
shown.
Theorem 4.4. Let Σ be a fixed alphabet with at least two letters. Deciding k-piecewise
testability for DFAs over Σ is NL-complete.
Proof. Hardness follows from Lemma 4.1 because deciding universality for DFAs is NL-
complete [32]. Membership can be shown as follows. Since Σ and k are fixed, there is a
constant number of k-piecewise testable languages over Σ, and hence we may assume that
the minimal DFAs of all these languages are precomputed. Let A be a DFA. Then L(A) is
k-piecewise testable if and only if it is equivalent to one of the precomputed languages. This
can be verified in NL by guessing a precomputed minimal DFA and checking equivalence
(see the next section for more details).

In comparison with ptNFAs or rpoNFAs, fixing the alphabet does not affect the com-
plexity for poNFAs.
Theorem 4.5. Let Σ be a fixed alphabet with at least two letters. Deciding k-piecewise
testability for poNFAs over Σ is PSpace-complete.
Proof. Membership follows from the results for NFAs, hardness follows from Lemma 4.1 and
the fact that deciding universality for poNFAs over Σ is PSpace-complete [39].

Theorems 4.3 and 4.5 show hardness even for binary alphabets, which improves our
recent result where the alphabet had at least three letters [49]. Furthermore, we point out
that hardness in Theorem 4.3 does not follow from the coNP-hardness proof of Kĺıma et
al. [34] showing coNP-completeness of deciding k-piecewise testability for DFAs for k ≥ 4,
since their proof requires a growing alphabet.

It remains to consider the case of unary alphabets. We first focus on the case of
nondeterministic partially ordered automata and the variants thereof.
Theorem 4.6. Deciding k-piecewise testability for poNFAs, rpoNFAs, and ptNFAs over a
unary alphabet is NL-complete. It holds even if k is given as part of the input.
Proof. Hardness follows from Lemma 4.1 and Theorem 3.1. We now show membership for
poNFAs, which covers all the cases. Let A be a poNFA over the alphabet {a} with n states.
If the language L(A) is infinite, then there exists d ≤ n such that ada∗ ⊆ L(A); indeed,
L(A) is infinite if and only if there is an accepting state that is reachable via a state with
a self-loop, and hence d is bounded by the number of states on such a path. Therefore,
the language L(A) is not k-piecewise testable if and only if there exists ` with k < ` ≤ d
such that ak ∈ L(A) if and only if a` /∈ L(A). Such an ` can be guessed in binary and
the property verified in NL, since NL is closed under complement. If L(A) is finite, its
complement, which is k-piecewise testable if and only if L(A) is, is infinite.

26 T. MASOPUST AND M. KRÖTZSCH

Now we focus on the case of deterministic automata.

Theorem 4.7. Deciding k-piecewise testability for DFAs over a unary alphabet is L-complete.

Proof. Hardness follows from Lemma 4.1 and the fact that deciding universality for unary
DFAs is L-complete [32]. Membership in L can be shown as follows. Let n be the number of
states of the DFA. Then the language is k-piecewise testable if and only if ak, ak+1, . . . , ak+n

all belong to the language or none does. (k + n because there may be a cycle to the initial
state.)

Finally, we focus on the case of general nondeterministic automata.

Theorem 4.8. Deciding k-piecewise testability for NFAs over a unary alphabet is coNP-
complete.

Proof. Hardness follows from Lemma 4.1 and the fact that deciding universality for unary
NFAs is coNP-complete [77]. To show membership, we first show that deciding piecewise
testability for NFAs over a unary alphabet is in coNP. To do this, we show how to check
non-piecewise testability in NP. Intuitively, we need to check that the corresponding DFA is
partially ordered and confluent. However, confluence is trivially satisfied because there is no
branching in a DFA over a single letter. Partial order is violated if and only if there exist
three words a`1 , a`2 and a`3 with `1 < `2 < `3 such that δ(I, a`1) = δ(I, a`3) 6= δ(I, a`2) and
one of these sets is accepting (as a state of the DFA) and the other is not (otherwise they
are equivalent). The lengths of the words are bounded by 2n, where n denotes the number
of states of the NFA, and can thus be guessed in binary. The matrix multiplication (fast
exponentiation) can then be used to compute the sets of states reachable under those words
in polynomial time.

Thus, we can check in coNP whether the language of an NFA is piecewise testable. If
so, then it is 2n-piecewise testable, since the depth of the minimal DFA is bounded by 2n,
where n is the number of states of the NFA [49]. Let M be the transition matrix of the
NFA. To show that it is not k-piecewise testable, we need to find two ∼k-equivalent words
such that exactly one of them belongs to the language of the NFA. Since every ∼k class
defined by a`, for ` < k, is a singleton, we need to find k < ` ≤ 2n such that ak ∼k a` and
only one of them belongs to the language. This can be done in nondeterministic polynomial
time by guessing ` in binary, using the matrix multiplication to obtain the corresponding
reachable sets in Mk and M `, and verifying that one set contains an accepting state and
the other does not.

5. Complexity of Deciding Piecewise Testability

The piecewise testability problem asks, given an automaton, whether it recognizes a piecewise
testable language. We now study the complexity of deciding piecewise testability for partially
ordered automata. Our results are summarized in Table 8.

To simplify proofs, we would like to use a result similar to Lemma 4.1. Unfortunately,
there is no such result preserving the alphabet. If there were, it would imply that deciding
piecewise testability for ptNFAs has a nontrivial complexity, but these languages are trivially

3Cho and Huynh [13] showed hardness for a three-letter alphabet. However, the result holds also for
binary alphabets, using, e.g., a reduction from the reachability problem for directed acyclic graphs with
out-degree at most two.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 27

|Σ| = 1 |Σ| ≥ 2 Σ is growing

DFA L-c (Thm. 5.2) NL-c [13]3 NL-c [13]
rpoNFA X (Thm. 5.1) coNP-c (Thm. 5.6) PSpace-c (Thm. 5.5)
poNFA X (Thm. 5.1) PSpace-c (Thm. 5.4) PSpace-c
NFA coNP-c (Thm. 5.3) PSpace-c [51] PSpace-c [51]

Table 8: Complexity of deciding piecewise testability.

piecewise testable. Similarly, it would imply that deciding piecewise testability of unary
(r)poNFAs is nontrivial, but we show below that they are trivially piecewise testable.

Recall that R-trivial languages, poDFA-languages, and rpoNFA-languages coincide.

Theorem 5.1. The classes of unary poNFA languages, unary R-trivial languages, and
unary piecewise testable languages coincide.

Proof. Since every piecewise testable language is an R-trivial language, and every R-trivial
language is a poNFA language, we only need to prove that unary poNFA languages are
piecewise testable. If the language of a poNFA is finite, then it is piecewise testable. If it is
infinite, then there is an integer n bounded by the number of states of the poNFA such that
the poNFA accepts all words of length longer than n. The minimal DFA equivalent to the
poNFA is thus partially ordered and confluent.

We first discuss the complexity of deciding piecewise testability for unary DFAs.

Theorem 5.2. Deciding piecewise testability for DFAs over a unary alphabet is L-complete.

Proof. To prove hardness, we reduce from the DAG-reachability problem where no vertex
has more than one outgoing directed edge [32]. Let G be a directed acyclic graph where
no vertex has more than one outgoing directed edge with vertices 1, 2, . . . , n, n > 1. We
define a DFA A = ({0, 1, . . . , n}, {a}, δ, 1, {n}) using exactly the same reduction as Jones [32,
Theorem 26] defining δ(i, a) = j if (i, j) is an edge of G and i 6= n, δ(n, a) = 1, and δ(i, a) = 0
for other values of i. Then n is reachable from 1 in G if and only if the language L(A) is
infinite as well as the language {a}∗ \ L(A), which implies non-piecewise testability of the
language L(A) because the minimal DFA for L(A) needs to have a nontrivial cycle.

To show membership, we need to check that there is no nontrivial cycle in the minimal
DFA equivalent to the given DFA. This can be done by checking that the words an, . . . , a2n

all have the same accepting status, where n is the number of states of the given DFA.

Next we discuss the case of unary NFAs.

Theorem 5.3. Deciding piecewise testability for NFAs over a unary alphabet is coNP-
complete.

Proof. Membership is shown in the proof of Theorem 4.8. To show hardness, we modify the
proof of Stockmeyer and Meyer [77]. Let ϕ be a formula in 3CNF with n distinct variables,
and let Ck be the set of literals in the kth conjunct, 1 ≤ k ≤ m. The assignment to the
variables can be represented as a binary vector of length n. Let p1, p2, . . . , pn be the first
n prime numbers. For a natural number z congruent with 0 or 1 modulo pi, for every

28 T. MASOPUST AND M. KRÖTZSCH

1 ≤ i ≤ n, we say that z satisfies ϕ if the assignment (z mod p1, z mod p2, . . . , z mod pn)
satisfies ϕ. Let

E0 =
n⋃
k=1

pk−1⋃
j=2

0j · (0pk)∗

that is, L(E0) = {0z | ∃k ≤ n, z 6≡ 0 mod pk and z 6≡ 1 mod pk} is the set of natural numbers
that do not encode an assignment to the variables. For each conjunct Ck, we construct
an expression Ek such that if 0z ∈ L(Ek) and z is an assignment, then z does not assign
the value 1 to any literal in Ck. For example, if Ck = {xr,¬xs, xt}, for 1 ≤ r, s, t ≤ n
and r, s, t distinct, let zk be the unique integer such that 0 ≤ zk < prpspt, zk ≡ 0 mod pr,
zk ≡ 1 mod ps, and zk ≡ 0 mod pt. Then

Ek = 0zk · (0prpspt)∗ .
Now, ϕ is satisfiable if and only if there exists z such that z encodes an assignment to ϕ
and 0z /∈ L(Ek) for all 1 ≤ k ≤ m, which is if and only if L(E0 ∪

⋃m
k=1Ek) 6= 0∗.

The proof up to now shows that universality is coNP-hard for NFAs over a unary
alphabet. Let now pn# = Πn

i=1pi. If z encodes an assignment of ϕ, then, for any natural
number c, z + c · pn# also encodes an assignment of ϕ; indeed, if z ≡ xi mod pi, then
z + c · pn# ≡ xi mod pi, for every 1 ≤ i ≤ n. This shows that if, in addition, 0z /∈ L(Ek) for
all k, then 0z(0pn#)∗∩L(E0∪

⋃m
k=1Ek) = ∅. Since both the languages of the intersection are

infinite, the minimal DFA recognizing the language L(E0 ∪
⋃m
k=1Ek) must have a non-trivial

cycle alternating between accepting and non-accepting states. Therefore, if the language
L(E0 ∪

⋃m
k=1Ek) is universal, then it is piecewise testable, and if it is non-universal, then it

is not piecewise testable.

We next show that deciding piecewise testability for poNFAs is PSpace-complete even
if the alphabet is binary.

Theorem 5.4. Let Σ be a fixed alphabet with at least two letters. Deciding piecewise
testability for poNFAs over Σ is PSpace-complete.

Proof. Membership in PSpace follows from the results for NFAs. PSpace-hardness follows
from an analogous result for rpoNFAs [39] where we construct, given a polynomial-space-
bounded DTM M and an input x, a binary poNFA Ax in polynomial time such that if M
does not accept x, then L(Ax) = {0, 1}∗, which is piecewise testable, and if M accepts x,
then L(Ax) is not R-trivial, and hence neither piecewise testable. The language of Ax is
thus piecewise testable if and only if M does not accept x.

The case of rpoNFAs is more complicated. In the next theorem, we show that deciding
piecewise testability for rpoNFAs is PSpace-complete if the alphabet is not fixed, and then
we discuss the case of rpoNFAs over a fixed (binary) alphabet.

Theorem 5.5. Deciding piecewise testability for rpoNFAs is PSpace-complete.

Proof. Membership follows from the result for NFAs. To prove hardness, we reduce the
universality problem for rpoNFAs, which is PSpace-complete in general and coNP-complete
for fixed alphabets [39].

Let A be an rpoNFA, and let Σ be its alphabet. We construct an rpoNFA B from A
by adding two fresh letters a, b /∈ Σ and by adding two new states 1 and 2. State 1 is the
only accepting state of B. From every non-accepting state of A, we add an a-transition to
state 1 and a b-transition to state 2. From every accepting state of A, we add an a- and a

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 29

Acc states of A

A over Σ

Non-acc states of A 12
a, b

Σ ∪ {a, b}

b

a

Σ ∪ {a, b}

Figure 10: The illustration from the proof of Theorem 5.5.

b-transition to 1. Finally, states 1 and 2 contain self-loops under all lettrers from Σ ∪ {a, b}.
The construction is illustrated in Figure 10. We now show that L(B) is piecewise testable if
and only if A is universal.

If L(A) = Σ∗, then L(B) = Σ∗(a+ b)(Σ ∪ {a, b})∗, because for every w ∈ L(A), the set
of reachable states in B under w contains an accepting state, and hence both wa and wb lead
to state 1. Language Σ∗(a+ b)(Σ∪{a, b})∗ is piecewise testable; it can be seen by computing
the two-state minimal DFA and verifying that it is partially ordered and confluent.

If L(A) is not universal, then there is a w ∈ Σ∗ \L(A). Then the set of states reachable
under w in B consists only of non-accepting states. By the construction, only state 1
is reachable under wa, and only state 2 is reachable under wb. Let L1 = wa(ba)∗ and
L2 = wb(ab)∗. Every word of L1 is accepted by B whereas none word of L2 is. If L(B)
was piecewise testable, then there would be k ≥ 0 such that for any words w1 and w2 with
w1 ∼k w2, either both words belong to L(B) or neither does. However, for every k ≥ 0,
we have that wa(ba)k ∼k wb(ab)k and the acceptance status of the two words is different.
Therefore, the language L(B) is not piecewise testable.

We now discuss the complexity of deciding piecewise testability for rpoNFAs over a
fixed (binary) alphabet.

Theorem 5.6. Let Σ be a fixed alphabet with at least two letters. Deciding piecewise
testability for rpoNFAs over Σ is coNP-complete.

Proof. To show membership in coNP, we proceed as follows. Let A = (Q,Σ, δA, Q0, F) be
an rpoNFA over a fixed alphabet Σ = {a1, a2, . . . , ac}, and consider the minimal DFA D
equivalent to A. Then L(A) is piecewise testable if and only if D satisfies the UMS property
(cf. Subsection 2.2). We proceed by first showing two auxiliary claims.

Claim 5.7. Every state of D is reachable by a word of polynomial length with respect to the
size of A.

Proof. To show this claim, we briefly recall basic definitions and results we need here. For
more details, we refer the reader to Krötzsch et al. [39].

Similarly to piecewise testable languages, R-trivial languages can be defined by a
congruence ∼Rk that considers subsequences of prefixes. For x, y ∈ Σ∗ and k ≥ 0, we define
x ∼Rk y if and only if (i) for each prefix u of x, there exists a prefix v of y such that u ∼k v,
and (ii) for each prefix v of y, there exists a prefix u of x such that u ∼k v. A regular
language is k-R-trivial if it is a union of ∼Rk classes, and it is R-trivial if it is k-R-trivial
for some k ≥ 0. Every ∼Rk class has a unique minimal representative [9]. It is known that

30 T. MASOPUST AND M. KRÖTZSCH

every k-R-trivial language is also (k + 1)-R-trivial, and that the language recognized by a
complete rpoNFA B is depth(B)-R-trivial.

Let d be the depth of (the completion of) A. Then, the language L(A) is d-R-trivial [39,
Theorem 8], and hence there is a congruence ∼Rd , where every ∼Rd class has a unique minimal
representative. Let s be a state of D and w a word reaching state s from the initial state
of D. Let w′ denote the unique minimal representative of the ∼Rd -class containing w. If w′
leads D to a state t 6= s, then there is u distinguishing s and t in D because D is minimal.
Since ∼Rd is a congruence and w ∼Rd w′, we have that wu ∼Rd w′u and wu ∈ L(A) if and
only if w′u /∈ L(A), which is a contradiction to the fact that L(A) is d-R-trivial, i.e., a union
of ∼Rd classes. Therefore, w′ leads D to state s. The length of w′ is polynomial, namely
O(dc), where c is the cardinality of Σ [39, Lemma 15].

Claim 5.8. If s is a state of D reachable by a word w, and {b1, . . . , bm} ⊆ Σ(s), then,
for v = b1b2 · · · bm, δA(Q0, wv

n) = δA(Q0, wv
n+1), where n is the number of states of A.

Moreover, {b1, . . . , bm} ⊆ Σ(δA(Q0, wv
n)) ⊆ Σ(s).

Proof. Let Q denote the set of states of A and extend the partial order of A to a linear
order. Let Q′ ⊆ Q be the set of all states with self-loops under all letters of {b1, . . . , bm},
and let Q′′ = Q \Q′ = {p1, . . . , pn′}. We assume that p1 < p2 < . . . < pn′ in the linear order.
Let δA(Q0, w) = X1 ∪ Z1, where X1 ⊆ Q′′ and Z1 ⊆ Q′. Then X1 ⊆ {pi, pi+1, . . . , pn′} for
some i such that pi ∈ X1. Let X1

v−→ X2. Then the minimal state pj of X2 is strictly greater
than pi, since A is an rpoNFA, and hence X2 ⊆ {pj , . . . , pn′} with j > i. By induction, we
have that X1

vn

−→ Z2, where Z2 ⊆ Q′. Let Z = Z2 ∪Z1. Then δA(Q0, w) = X1 ∪Z1
vn

−→ Z =
δA(Q0, wv

n) v−→ Z = δA(Q0, wv
n+1).

Since {b1, . . . , bm} ⊆ Σ(Z), it remains to show that Σ(Z) ⊆ Σ(s). For the sake of
contradiction, assume that there is a ∈ Σ(Z) \ Σ(s). Then we have that Z a−→ Z, and hence,
for any u ∈ Σ∗, wvnu belongs to L(A) if and only if wvnau does. However, in D, s a−→ s′

for some s′ 6= s, and hence, since vn ∈ Σ(s)∗, there is u ∈ Σ∗ such that wvnu belongs to
L(D) = L(A) if and only if wvnau does not; a contradiction.

Now, L(A) = L(D) is not piecewise testable if and only if there are states s 6= t in D such
that s and t are two maximal states of the connected component of G(D,Σ(s)) containing s;
that is, Σ(s) ⊆ Σ(t). By Claim 5.7, there are two words ws and wt of polynomial length
with respect to the size of A reaching the states s and t of D, respectively. Then, in A,
Q0

ws−→ S for some S ⊆ Q. If Σ(s) = {b1, . . . , bc′}, let v = b1 · · · bc′ . Then, by Claim 5.8,
S

vn

−→ Xs
v−→ Xs, where n is the number of states of A, and Σ(Xs) = Σ(s). Analogously,

Q0
wt−→ T

vn

−→ Xt
v−→ Xt with Σ(Xs) ⊆ Σ(Xt) ⊆ Σ(t). Furthermore, since the length of vn

is nc′, which is polynomial in the size of A, the length of the two words w1 = wsv
n and

w2 = wtv
n is polynomial in the size of A.

Altogether, we have shown that the language of A is not piecewise testable if and only
if there are two different words w1 and w2 of polynomial length in the size of A such that
• Q0

w1−→ Xs and Q0
w2−→ Xt,

• Xs and Xt are maximal with respect to Σ(Xs), and
• Xs and Xt are non-equivalent as states of the subset automaton – which can be checked

by guessing a word that distinguishes them; by Claim 5.7 applied to A with the set of
initial states Xs (resp. Xt) instead of Q0, which results in a subautomaton of D, and the

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 31

existence of unique minimal representatives of the equivalence classes, cf. the proof of the
claim, such a word is of polynomial length.

This shows that non-piecewise testability of an rpoNFA-language over a fixed alphabet is in
NP, which was to be shown.

To show hardness, we reduce the DNF validity. Let U = {x1, . . . , xn} be a set of
variables and ϕ = ϕ1 ∨ . . . ∨ ϕm be a formula in DNF, where every ϕi is a conjunction of
literals. We assume that no ϕi contains both x and ¬x. For every i = 1, . . . ,m, we define
βi = βi,1βi,2 . . . βi,n, where

βi,j =

0 + 1 if neither xj nor ¬xj appear in ϕi
0 if ¬xj appears in ϕi
1 if xj appears in ϕi

for j = 1, 2, . . . , n. Let β =
∑m
i=1 βi. Then w ∈ L(β) if and only if w satisfies some ϕi, that

is, L(β) = {0, 1}n if and only if ϕ is valid.
We construct an rpoNFA M as follows. For every βi, we construct a deterministic path

qi,0
βi,1−−→ qi,1

βi,2−−→ qi,2 . . .
βi,n−−→ qi,n

0,1−−→ qi,n with a self-loop at the end; if βi,k = 0 + 1, the
notation means that there are two transitions under both letters 0 and 1. Then we add a
path α1

0,1−−→ α2
0,1−−→ . . .

0,1−−→ αn to accept all words of length less than n. The automaton
M consists of these paths, where the initial states are {qi,0 | i = 1, . . . ,m} ∪ {α1} and
the accepting states are {qi,n | i = 1, . . . ,m} ∪ {α1, . . . , αn}. Notice that M is an rpoNFA
accepting the language L(M) = L(β){0, 1}∗ ∪ {w ∈ {0, 1}∗ | |w| < n}.

If L(β) = {0, 1}n, then L(M) = {0, 1}∗ is piecewise testable.
If L(β) 6= {0, 1}n, we show that L(M) is not piecewise testable using the UMS property

on the minimal DFA equivalent to M. Since M is an rpoNFA, the minimal DFA is
partially ordered. By the assumption that L(β) 6= {0, 1}n, there is a w ∈ {0, 1}n such that
w{0, 1}∗ ∩L(M) = ∅. Since L(β) 6= ∅ by the construction, there is w′ ∈ L(β), which implies
that w′{0, 1}∗ ⊆ L(M). Since no word of w{0, 1}∗ is accepted by M, there is a path from
the initial state of the minimal DFA to a rejecting state, say qr, that is maximal under {0, 1}.
Similarly, since all words of w′{0, 1}∗ are accepted by M, there is a path in the minimal
DFA to an accepting state, say qa, that is maximal with respect to {0, 1}. But then qa and
qr are two maximal states violating the UMS property of the minimal DFA.

Thus, L(M) is piecewise testable if and only if ϕ is valid.

6. Inclusion and Equivalence

A consequence of the complexity of universality is the worst-case lower-bound complexity for
the inclusion and equivalence problems. These problems are of interest, e.g., in optimization.
The problems ask, given languages K and L, whether K ⊆ L, resp. K = L. Although
equivalence means two inclusions, complexities of these two problems may differ significantly,
e.g., inclusion is undecidable for deterministic context-free languages [22] while equivalence
is decidable [71].

Since universality can be expressed as the inclusion Σ∗ ⊆ L or the equivalence Σ∗ = L,
we immediately obtain the hardness results for inclusion and equivalence from the results
for universality. Therefore, it remains to show memberships of our results summarized in
Tables 9 and 10.

32 T. MASOPUST AND M. KRÖTZSCH

B

A DFA ptNFA & rpoNFA poNFA NFA

DFA L/NL NL/coNP/PSpace NL/PSpace coNP/PSpace
ptNFA NL NL/coNP/PSpace NL/PSpace coNP/PSpace
rpoNFA NL NL/coNP/PSpace NL/PSpace coNP/PSpace
poNFA NL NL/coNP/PSpace NL/PSpace coNP/PSpace
NFA NL NL/coNP/PSpace NL/PSpace coNP/PSpace

Table 9: Complexity of deciding inclusion L(A) ⊆ L(B) (unary/fixed[/growing] alphabet),
all results are complete for the given class.

DFA ptNFA & rpoNFA poNFA NFA

DFA L/NL NL/coNP/PSpace NL/PSpace coNP/PSpace
ptNFA NL/coNP/PSpace NL/PSpace coNP/PSpace
rpoNFA NL/coNP/PSpace NL/PSpace coNP/PSpace
poNFA NL/PSpace coNP/PSpace
NFA coNP/PSpace

Table 10: Complexity of deciding equivalence (unary/fixed[/growing] alphabet), the problems
are complete for the given classes.

6.1. Proofs. Let A be an automaton of any of the considered types. We now discuss the
cases depending on the type of B. We assume that both automata are over the same
alphabet specified by B.

If B is a DFA, then L(A) ⊆ L(B) if and only if L(A)∩L(B) = ∅, which can be checked
in NL (or in L if both automata are unary DFAs), where B denotes the DFA obtained by
complementing B. This covers the first column of Table 9.

If B is an rpoNFA over a fixed alphabet, then deciding L(A) ⊆ L(B) is in coNP [39,
Theorem 23]. Furthermore, the case of a unary alphabet follows from the case of unary
poNFAs, and the case of a growing alphabet from the case of general NFAs discussed below.

If B is a unary poNFA, we distinguish several cases. First, deciding whether the language
of an NFA is finite is in NL. Thus, if L(A) is infinite and L(B) finite, the inclusion does not
hold. If both the languages are finite, then the number of words is bounded by the number
of states, and hence the inclusion can be decided in NL. If L(B) is infinite, then there is n
bounded by the number of states of B such that L(B) contains all words of length at least
n. Thus, the inclusion does not hold if and only if there is a word of length at most n in
L(A) that is not in L(B), which can again be checked in NL.

If B is an NFA, then deciding L(A) ⊆ L(B) is in PSpace using the standard on-the-fly
computation of B and deciding L(A) ∩ L(B) = ∅.

If B is a unary NFA, then if L(B) is finite, we proceed as in the case of B being a unary
poNFA. Therefore, assume that L(B) is infinite and B has n states. Then the minimal DFA
recognizing L(B) has at most 2n states (a better bound is given by Chrobak [14]). If the

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 33

inclusion L(A) ⊆ L(B) does not hold and A has m states, then there exists k ≤ m · 2n, the
number of states of A×B, such that ak ∈ L(A) \L(B). We can guess k in binary and verify
that the inclusion does not hold in polynomial time by computing the reachable states under
ak using the matrix multiplication. Hence, checking that the inclusion holds is in coNP.

Notice that the upper-bound complexity for equivalence follows immediately from the
upper-bound complexity for inclusion, which completes this section.

7. Conclusion

We studied the complexity of deciding universality for ptNFAs, a type of nondeterministic
finite automata the expressivity of which coincides with level 1 of the Straubing-Thérien
hierarchy. Our proof showing PSpace-completeness required a novel and nontrivial extension
of our recent construction for self-loop-deterministic poNFAs. Consequently, we obtained
PSpace-completeness for several restricted types of poNFAs for problems including inclusion,
equivalence, and (k-)piecewise testability.

Acknowledgements. We thank O. Kĺıma, M. Kunc and L. Polák for providing us with
their manuscript [34], and we gratefully acknowledge very useful suggestions and comments
of the anonymous referees.

References
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.
[2] J. Almeida, J. Bartoňová, O. Kĺıma, and M. Kunc. On decidability of intermediate levels of concatenation

hierarchies. In Developments in Language Theory (DLT), volume 9168 of LNCS, pages 58–70. Springer,
2015.

[3] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
[4] P. Barceló, L. Libkin, and J. L. Reutter. Querying regular graph patterns. Journal of the ACM,

61:8:1–8:54, 2014.
[5] M. Bojańczyk. The common fragment of ACTL and LTL. In Foundations of Software Science and

Computational Structures (FOSSACS), volume 4962 of LNCS, pages 172–185. Springer, 2008.
[6] M. Bojańczyk, L. Segoufin, and H. Straubing. Piecewise testable tree languages. LMCS, 8, 2012.
[7] A. Bouajjani, A. Muscholl, and T. Touilim. Permutation rewriting and algorithmic verification. Informa-

tion and Computation, 205:199–224, 2007.
[8] J. W. Bryans, M. Koutny, and P. Y. A. Ryan. Modelling opacity using petri nets. Electronic Notes in

Theoretical Computer Science, 121:101–115, 2005.
[9] J. A. Brzozowski and F. E. Fich. Languages of R-trivial monoids. Journal of Computer and System

Sciences, 20:32–49, 1980.
[10] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite. Journal of

Computer and System Sciences, 16:37–55, 1978.
[11] P. E. Caines, R. Greiner, and S. Wang. Dynamical logic observers for finite automata. In Conference on

Decision and Control (CDC), pages 226–233, 1988.
[12] D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on regular path queries. ACM

SIGMOD Record, 32:83–92, 2003.
[13] S. Cho and D. T. Huynh. Finite-automaton aperiodicity is PSPACE-complete. Theoretical Computer

Science, 88:99–116, 1991.
[14] M. Chrobak. Finite automata and unary languages. Theoretical Computer Science, 47:149–158, 1986.

Errata: Theoretical Computer Science 302 (2003) 497-498.
[15] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of Computer and System

Sciences, 5:1–16, 1971.

34 T. MASOPUST AND M. KRÖTZSCH

[16] W. Craig. Linear reasoning. A new form of the herbrand-gentzen theorem. Journal of Symbolic Logic,
22(3):250–268, 1957.

[17] W. Czerwiński, W. Martens, and T. Masopust. Efficient separability of regular languages by subsequences
and suffixes. In International Colloquium on Automata, Languages, and Programming (ICALP), volume
7966 of LNCS, pages 150–161, 2013.

[18] C. Dax and F. Klaedtke. Alternation elimination by complementation (extended abstract). In Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR), volume 5330 of LNCS, pages 214–229.
Springer, 2008.

[19] V. Diekert, P. Gastin, and M. Kufleitner. A survey on small fragments of first-order logic over finite
words. Int. J. Found. Comput. Sci., 19:513–548, 2008.

[20] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi. Supervisory control and reactive synthesis: a
comparative introduction. Discrete Event Dynamic Systems, 27(2):209–260, 2017.

[21] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-Wei Wang. Regular expressions: New results and
open problems. J. Autom. Lang. Comb., 10:407–437, 2005.

[22] E. P. Friedman. The inclusion problem for simple languages. Theoretical Computer Science, 1:297–316,
1976.

[23] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[24] C. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Theory of Computing Systems, 42:256–286, 2008.
[25] J. A. Green. On the structure of semigroups. Ann. of Math. (2), 54:163–172, 1951.
[26] N. Grosshans, P. McKenzie, and L. Segoufin. The power of programs over monoids in DA. In Mathematical

Foundations of Computer Science (MFCS), volume 83 of LIPIcs, pages 2:1–2:20. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[27] D. Harel and A. Pnueli. On the development of reactive systems. In Logics and Models of Concurrent
Systems, pages 477–498, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[28] P.-C. Héam. A note on partially ordered tree automata. Inform. Process. Lett., 108:242–246, 2008.
[29] P. Hofman and W. Martens. Separability by short subsequences and subwords. In International Conference

on Database Theory (ICDT), volume 31 of LIPIcs, pages 230–246, 2015.
[30] H. B. Hunt III. On the Time and Tape Complexity of Languages. PhD thesis, Department of Computer

Science, Cornell University, Ithaca, NY, 1973.
[31] R. Jacob, J.-J. Lesage, and J.-M. Faure. Overview of discrete event systems opacity: Models, validation,

and quantification. Annual Reviews in Control, 41:135–146, 2016.
[32] N. D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Computer and

System Sciences, 11:68–85, 1975.
[33] P. Karandikar and Ph. Schnoebelen. The height of piecewise-testable languages and the complexity of

the logic of subwords. Logical Methods in Computer Science, 15(2), 2019.
[34] O. Kĺıma, M. Kunc, and L. Polák. Deciding k-piecewise testability. Manuscript, 2014.
[35] O. Kĺıma and L. Polák. Alternative automata characterization of piecewise testable languages. In

Developments in Language Theory (DLT), volume 7907 of LNCS, pages 289–300, 2013.
[36] J. Komenda and T. Masopust. Computation of controllable and coobservable sublanguages in de-

centralized supervisory control via communication. Discrete Event Dynamic Systems, 27(4):585–608,
2017.

[37] J. Komenda, T. Masopust, and J. H. van Schuppen. Coordination control of discrete-event systems
revisited. Discrete Event Dynamic Systems, 25(1-2):65–94, 2015.

[38] D. Kozen. Lower bounds for natural proof systems. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 254–266. IEEE Computer Society, 1977.

[39] M. Krötzsch, T. Masopust, and M. Thomazo. Complexity of universality and related problems for
partially ordered NFAs. Information and Computation, 255:177–192, 2017.

[40] M. Kufleitner and A. Lauser. Partially ordered two-way Büchi automata. Int. J. Found. Comput. Sci.,
22:1861–1876, 2011.

[41] O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak. ACM Trans. Comput.
Log., 2(3):408–429, 2001.

[42] F. Lin. Opacity of discrete event systems and its applications. Automatica, 47(3):496–503, 2011.

PARTIALLY ORDERED AUTOMATA AND PIECEWISE TESTABILITY 35

[43] K. Lodaya, P. K. Pandya, and S. S. Shah. Marking the chops: an unambiguous temporal logic. In IFIP
International Conference On Theoretical Computer Science (TCS), volume 273 of IFIP, pages 461–476.
Springer, 2008.

[44] K. Lodaya, P. K. Pandya, and S. S. Shah. Around dot depth two. In Developments in Language Theory
(DLT), volume 6224 of LNCS, pages 303–315. Springer, 2010.

[45] M. Maidl. The common fragment of CTL and LTL. In Foundations of Computer Science (FOCS), pages
643–652. IEEE Computer Society, 2000.

[46] W. Martens, F. Neven, M. Niewerth, and T. Schwentick. Bonxai: Combining the simplicity of DTD
with the expressiveness of XML schema. In Principles of Database Systems (PODS), pages 145–156.
ACM, 2015.

[47] W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for XML schemas and chain
regular expressions. SIAM J. Comput., 39:1486–1530, 2009.

[48] W. Martens and T. Trautner. Evaluation and enumeration problems for regular path queries. In
International Conference on Database Theory (ICDT), volume 98 of LIPIcs, pages 19:1–19:21. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[49] T. Masopust. Piecewise testable languages and nondeterministic automata. In Mathematical Foundations
of Computer Science (MFCS), volume 58 of LIPIcs, pages 67:1–67:14, 2016.

[50] T. Masopust. Complexity of deciding detectability in discrete event systems. Automatica, 93:257–261,
2018.

[51] T. Masopust. Separability by piecewise testable languages is PTime-complete. Theoretical Computer
Science, 711:109–114, 2018.

[52] T. Masopust and M. Krötzsch. Deciding universality of ptNFAs is PSpace-complete. In International
Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), volume 10706
of LNCS, pages 413–427. Springer, 2018.

[53] T. Masopust and M. Thomazo. On boolean combinations forming piecewise testable languages. Theoretical
Computer Science, 682:165–179, 2017.

[54] T. Masopust and X. Yin. Complexity of detectability, opacity and A-diagnosability for modular discrete
event systems. Automatica, 101:290–295, 2019.

[55] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with squaring
requires exponential space. In Symposium on Switching and Automata Theory (STOC), pages 125–129.
IEEE Computer Society, 1972.

[56] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak monadic theory of trees and
its complexity. Theor. Comput. Sci., 97(2):233–244, 1992.

[57] C. M. Ozveren and A. S. Willsky. Observability of discrete event dynamic systems. IEEE Transactions
on Automatic Control, 35(7):797–806, 1990.

[58] J.-E. Pin. Mathematical foundations of automata theory. http://www.irif.fr/ jep/PDF/MPRI/MPRI.pdf,
2019.

[59] J.-E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory Comput. Syst., 30(4):383–
422, 1997.

[60] T. Place. Separating regular languages with two quantifiers alternations. In LICS, pages 202–213. IEEE
Computer Society, 2015.

[61] T. Place. Separating regular languages with two quantifier alternations. Logical Methods in Computer
Science, 14(4), 2018.

[62] T. Place, L. van Rooijen, and M. Zeitoun. On separation by locally testable and locally threshold testable
languages. Logical Methods in Computer Science, 10(3), 2014.

[63] T. Place and M. Zeitoun. Separation and the successor relation. In STACS, volume 30 of LIPIcs, pages
662–675, 2015.

[64] T. Place and M. Zeitoun. The covering problem. Logical Methods in Computer Science, 14(3), 2018.
[65] P. J. Ramadge. Observability of discrete event systems. In Conference on Decision and Control (CDC),

pages 1108–1112, 1986.
[66] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. Journal of Symbolic

Computation, 45(11):1212–1233, 2010.
[67] A. Saboori and C. N. Hadjicostis. Notions of security and opacity in discrete event systems. In Conference

on Decision and Control (CDC), pages 5056–5061, 2007.

36 T. MASOPUST AND M. KRÖTZSCH

[68] A.-K. Schmuck, Th. Moor, and R. Majumdar. On the relation between reactive synthesis and supervisory
control of input/output behaviours. IFAC-PapersOnLine, 51(7):31–38, 2018.

[69] M. P. Schützenberger. Sur le produit de concatenation non ambigu. Semigroup Forum, 13:47–75, 1976.
[70] T. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata: A new characterization

of DA. In Developments in Language Theory (DLT), volume 2295 of LNCS, pages 239–250, 2001.
[71] G. Sénizergues. The equivalence problem for deterministic pushdown automata is decidable. In Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP), volume 1256 of LNCS, pages
671–681, 1997.

[72] S. Shu and F. Lin. Generalized detectability for discrete event systems. Systems & Control Letters,
60(5):310–317, 2011.

[73] S. Shu, F. Lin, and H. Ying. Detectability of discrete event systems. IEEE Transactions on Automatic
Control, 52(12):2356–2359, 2007.

[74] I. Simon. Hierarchies of Events with Dot-Depth One. PhD thesis, University of Waterloo, Canada, 1972.
[75] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for büchi automata with

appplications to temporal logic. Theor. Comput. Sci., 49:217–237, 1987.
[76] G. Stefanoni, B. Motik, M. Krötzsch, and S. Rudolph. The complexity of answering conjunctive and

navigational queries over OWL 2 EL knowledge bases. Journal of Artificial Intelligence Research,
51:645–705, 2014.

[77] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary report. In
ACM Symposium on the Theory of Computing (STOC), pages 1–9, 1973.

[78] H. Straubing. A generalization of the Schützenberger product of finite monoids. Theoretical Computer
Science, 13:137–150, 1981.

[79] H. Straubing. Finite semigroup varieties of the form V*D. J. Pure Appl. Algebra, 36:53–94, 1985.
[80] D. Thérien. Classification of finite monoids: The language approach. Theoretical Computer Science,

14:195–208, 1981.
[81] D. Thérien and Th. Wilke. Over words, two variables are as powerful as one quantifier alternation. In

ACM Symposium on the Theory of Computing (STOC), pages 234–240. ACM, 1998.
[82] A. N. Trahtman. Piecewise and local threshold testability of DFA. In International Symposium on

Fundamentals of Computation Theory (FCT), volume 2138 of LNCS, pages 347–358, 2001.
[83] K. W. Wagner. Leaf language classes. In MCU, volume 3354 of LNCS, pages 60–81, 2004.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Basic Definitions
	2.2. Partially Ordered Automata
	2.3. The Unique Maximal State Property

	3. Complexity of Deciding Universality for ptNFAs
	3.1. Partially Ordered DFA Union Universality
	3.2. Complexity of Deciding Universality for ptNFAs

	4. Complexity of Deciding k-Piecewise Testability
	5. Complexity of Deciding Piecewise Testability
	6. Inclusion and Equivalence
	6.1. Proofs

	7. Conclusion
	Acknowledgements.

	References

