
Another Approach to Conditional Decomposability
for Discrete-Event Systems

Tomáš Masopust and Laurie Ricker

Abstract— The notion of decomposability with respect to
alphabets E1 and E2 is well-known and important in modular
control of discrete-event systems. In coordination control, a
weakened version of decomposability, so-called conditional
decomposability, was introduced. A language is conditionally
decomposable with respect to alphabets E1, E2, Ek if it is
decomposable with respect to E1 ∪ Ek and E2 ∪ Ek. There
always exists such an alphabet Ek for which the language is
conditionally decomposable. However, when looking for the
alphabet Ek, the problematic events are identified and added
to Ek, but this means that instead of only the problematic
transitions we make all other transitions with the same label
observable. In this paper, we further weaken the condition
so that we identify the problematic transitions and define a
projection from transitions rather than from the events.

I. INTRODUCTION

Decomposability of a specification language K with re-
spect to alphabets E1 and E2 and the operation of parallel
composition is a well-known and very important property in
modular control of discrete-event systems. It was introduced
in [11], [10] and further studied in, e.g., [3]. Recently,
it has also been extended to automata as an automaton
decomposability in, e.g., [4]. Unfortunately, it is not always
the case that K is decomposable with respect to the given
alphabets. Recently, a weakened version of decomposability,
so-called conditional decomposability, has been introduced
in [9] and studied in [6], [8] in the context of coordination
supervisory control.

A language is conditionally decomposable with respect to
alphabets E1, E2, and Ek if it is decomposable with respect
to E1 ∪ Ek and E2 ∪ Ek. It is not hard to see that there
always exists such an alphabet Ek for which the language
is conditionally decomposable. Of course, we could take
Ek = E1 ∪E2, but this set should be the smallest one, or at
least reasonably small. Note that there exists a polynomial-
time algorithm for finding some alphabet Ek for which the
language is conditionally decomposable, see [7]; however,
the resulting alphabet is not always the minimal one. The
complexity of the computation of the minimal set Ek for
which the language is conditionally decomposable is an open
problem.

In the approach presented in [7], the computation of an
alphabet Ek, necessitates that when events that give rise to
the violation of conditional decomposability are identified,

T. Masopust is with the Institute of Mathematics, Academy of Sciences
of the Czech Republic, Žižkova 22, 616 62 Brno, Czech Republic. Email:
masopust@math.cas.cz

L. Ricker is with the Department of Mathematics & Computer
Science, Mount Allison University, Sackville, NB, Canada. Email:
lricker@mta.ca

the event is added to Ek. Thus, even though there may be
some occurrences of the event that do not affect whether or
not the language is conditionally decomposable, at an event
level, all occurrences of the event are made observable by
adding the event to Ek.

In this paper, we discuss this problem and suggest a
method to characterize the problematic transitions and add
only these occurrences of an event to Ek to resolve violations
of conditional decomposability. To consider only the relevant
transitions, we suggest the use of a homomorphism based
on the transitions rather than on the events. An equivalent
approach is to first identify the problematic transitions,
rename the transition labels with a unique identifier, using a
mask so that these new events are shared by both subsystems,
and then add the renamed events to the alphabet Ek. To
facilitate this, we use homomorphisms instead of projections.

II. PRELIMINARIES AND DEFINITIONS

In this paper, we assume that the reader is familiar
with the basic notions and concepts of supervisory control
theory, see [2], and with automata theory, see [12]. For an
alphabet (finite nonempty set) E, E∗ denotes the free monoid
generated by E, where the unit of E∗, the empty string, is
denoted by ε .

A natural projection P : E∗ → E∗o , where Eo ⊆ E are
alphabets, is a homomorphism defined so that P(a) = ε ,
for a ∈ E \Eo, and P(a) = a, for a ∈ Eo. In other words,
homomorphism is a concatenative mapping, that is, P(ε)= ε ,
and for any event a ∈ E and any string w ∈ E∗, P(aw) =
P(a)P(w). The inverse projection P−1 : E∗o → 2E∗ is then
naturally defined as P−1(s) = {t ∈ E∗ | P(t) = s}.

In what follows, we use the notation Pi
j to denote the

projection from Ei to E j, that is, Pi
j : E∗i →E∗j . In addition, we

use the notation Ei+ j = Ei∪E j, and, thus, Pi+ j
k denotes the

projection from Ei+ j to Ek. If E = E1∪E2, then Pj denotes
the projection from E∗ to E∗j .

A generator is a quintuple G = (Q,Σ,δ ,q0,F), where Q
is a finite set of states, Σ is an input alphabet, δ : Q×Σ→Q
is a partial transition function, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of final or marked states. In the usual
way, the transition function δ is extended to a function from
Q×Σ∗ to Q. The language generated by G is defined as the
set L(G) = {w∈ Σ∗ | δ (q0,w)∈Q}, and the language marked
by G is defined as the set Lm(G) = {w ∈ Σ∗ | δ (q0,w) ∈ F}.
Moreover, we use the predicate δ (q,a)! to denote that the
transition δ (q,a) is defined in state q ∈ Q for event a ∈ Σ.

A (regular) language over an alphabet E is a subset of
E∗ such that there exists a generator G with Lm(G) = L. A

prefix closure L of a language L⊆E∗ is the set of all prefixes
of all words of L, i.e., it is defined as the set L = {w ∈ E∗ |
∃u ∈ E∗ : wu ∈ L}. A language L is said to be prefix-closed
if L = L.

Let L1 ⊆ E∗1 and L2 ⊆ E∗2 be two languages. The parallel
composition of L1 and L2 is defined as the language

L1 ‖ L2 = P−1
1 (L1)∩P−1

2 (L2) .

A similar definition in terms of generators follows. Let
G1 = (X1,E1,δ1,x01,Xm1) and G2 = (X2,E2,δ2,x02,Xm2) be
two generators. The parallel composition of G1 and G2 is
the generator G1 ‖ G2 defined as the accessible part of the
generator (X1×X2,E1∪E2,δ ,(x0,1,x0,2),Xm,1×Xm,2), where

δ ((x,y),e)=


(δ1(x,e),δ2(y,e)), if δ1(x,e)! & δ2(y,e)!
(δ1(x,e),y), if δ1(x,e)! & e /∈ E2
(x,δ2(y,e)), if e /∈ E1 & δ2(y,e)!
undefined, otherwise.

The automata definition is related to the language defini-
tion by the following properties: L(G1 ‖G2)= L(G1) ‖ L(G2)
and Lm(G1 ‖ G2) = Lm(G1) ‖ Lm(G2), see, e.g., [2].

Let G be a generator and P be a projection, then the
projected generator P(G) is defined as the minimal generator
such that Lm(P(G)) = P(Lm(G)) and L(P(G)) = P(L(G)).
For a construction of P(G), the reader is referred to [2] or
[13].

A. Conditional decomposability

Now, we recall the main concept of interest of this paper,
the concept of conditional decomposability. See also [5], [8],
[6], [9] for the applications and further discussion concerning
this concept.

Definition 1 (Conditional decomposability): A language
K ⊆ (E1 ∪E2)

∗ is conditionally decomposable with respect
to alphabets E1, E2, Ek, where E1∩E2 ⊆ Ek ⊆ E1∪E2, if

K = P1+k(K) ‖ P2+k(K) .

It can easily be shown that if the language K is given as
a parallel composition of two languages (over the required
alphabets), then it is conditionally decomposable. Thus, if K
is conditionally decomposable, the pair of languages P1+k(K)
and P2+k(K) is the smallest decomposition of K with respect
to the corresponding alphabets.

On the other hand, when a language K is not conditionally
decomposable, it is always possible to update Ek with
events from E such that K is subsequently conditionally
decomposable, cf. [7]. Here we take a different approach
to making the language conditionally decomposable. When
K is not conditionally decomposable with respect to E1, E2
and Ek, we consider the addition of specific occurrences of
events in δ (i.e., transitions that violate the property of con-
ditional decomposability and their observationally equivalent
counterparts) to the set of transition labels made observable
through Ek.

III. TRANSITION-BASED CONDITIONAL
DECOMPOSABILITY

In this section, we present a structure on which we
can identify the transitions that give rise to violations of
conditional decomposability. First, recall from [7] the result
from which we will build our new approach.

Theorem 2: Let G be a generator. Language Lm(G) is
conditionally decomposable with respect to alphabets E1,
E2, and Ek if and only if Lm(G̃)⊆ P̃−1(Lm(G)), where G̃ =
f1+k(G) ‖ f2+k(G), for some homomorphisms fi+k, i = 1,2,
and a projection P̃ : (E ∪ Ẽ1+k ∪ Ẽ2+k)

∗→ E∗.

A. An auxiliary structure U

The main idea of our approach is that instead of adding
all occurrences of an event to Ek, we want to select only a
subset of the occurrences of events that lead to violations of
conditional decomposability.

To do this, consider a language L over an alphabet E,
marked by a generator G. We assume that we are given
alphabets E1, E2, and Ek such that E1∩E2 ⊆ Ek ⊆ E1∪E2,
where E = E1∪E2.

It will be useful to augment each alphabet with the
addition of the empty string ε , where such an addition is
denoted by a superscript of ε (e.g., Eε = E ∪{ε}).

To detect violations of conditional decomposability, we
first update the transition function δ in G so that there are
self-loops of ε at each state, thus requiring the alphabet to
be Eε . Next, we construct two copies of the generator Gε =
(Q,Eε ,δ ,q0,F), denoted Gε

1+k and Gε
2+k, with alphabets

Eε
1+k and Eε

2+k, respectively, from which we build a product

U = Gε ×Gε
1+k×Gε

2+k = (X,E,∆,x0,F,XconD) ,

where X⊆ (Q∪{�})3 is a finite set of states and the symbol
� represents a destination state for an undefined transition;
E⊆ Eε×Eε×Eε is a finite alphabet of synchronization vec-
tors (defined below); ∆ is the transition relation (also defined
below); x0 = (q0,q0,q0) is the initial state; F ⊆ Q×F ×F
is a set of final states; and XconD = {x ∈ X | x(0) =�} is a
set of illegal configurations of states that encode violations
of conditional decomposability.

B. Alphabet of U

The alphabet E⊆ Eε×Eε×Eε of the structure U is a set
of synchronization vectors, cf. [1]. Synchronization vectors
are based on the synchronization of an event in E and the
same event in each of the local alphabets Ei+k, for i = 1,2.
Each vector is represented by a triple of events

v = 〈v(0),v(1),v(2)〉 .

There are two different categories of vectors to construct,
corresponding to (a) events in E but not in Ei+k; and (b)
events in E1+k and/or E2+k.

For all e ∈ E \Ei+k (for i = 1,2) and for j = 0,1,2:

v(j) =
{

e , if j = i,
ε , otherwise .

Similarly, for all e ∈ Ei+k (for i = 1,2) and for j = 0,1,2:

v(j) =
{

e , if e ∈ E j+k(j 6= 0) or j = 0,
ε , otherwise .

C. Transition function of U

The transition relation ∆ : X×E→ X is defined for all
v ∈ E as follows:

∆(x,v) =



(
δ (x(0),v(0)),δ (x(1),v(1)),δ (x(2),v(2))

)
,

if δ (x(0),v(0))!
∧δ (x(1),v(1))!
∧δ (x(2),v(2))!;(

�,δ (x(1),v(1)),δ (x(2),v(2))
)
,

if ¬δ (x(0),v(0))!
∧δ (x(1),v(1))!
∧δ (x(2),v(2))!;

undefined, otherwise.

Moreover, note that the marked states of this structure are
only those of the form Q×F×F . Using these marked states,
we employ the standard trim procedure to remove all states
from which no marked state is reachable.

D. Informal explanation

For w ∈ E∗, where w = v0v1 . . .vr, we will find it conve-
nient to denote the sequence generated by component j in
U by w(j) = v0(j) . . .vr(j), for j = 0,1,2.

What we need to check here is that we have Lm(G) =
P1+k(Lm(G)) ‖ P2+k(Lm(G)). However, it is always true that
Lm(G)⊆ P1+k(Lm(G)) ‖ P2+k(Lm(G)). Therefore, we need to
verify the opposite inclusion, namely

Lm(G)⊇ P1+k(Lm(G)) ‖ P2+k(Lm(G)) .

Intuitively, we use the structure U to simulate the compu-
tation of all three subsystems at the same time and to verify
that whenever the components G1+k and G2+k, corresponding
to the right-hand side of the inclusion, can make a step, this
step must also be possible in G.

A violation of conditional decomposability is then detected
in U when XconD 6= /0, that is, there are accessible states in
x ∈ X such that x(0) = �. This corresponds to a situation
when there are no more strings that can be generated by G,
but at least one of Gi+k (for i = 1,2) continues to generate
sequences based on what it considers to be the current state
of G. Furthermore, these sequences are not part of the marked
language of G.

Transitions that lead to a violation of conditional decom-
posability can be identified as follows. Let

δ (x, `) = x′

be an incoming transition to a state in x′ ∈ XconD 6= /0. We
add the occurrence of the transition

(x(j), `(j),x′(j))

where `(j) 6= ε (for j ∈ {1,2}) to the set of problematic
transitions of Gi+k, where i = {1,2} \ { j}, and relabel the
event `(j) with a new event˜̀(j) ,

add this event to the alphabet Ẽi+k = Ei+k ∪ {˜̀(j)}, and,
further, define Pi(˜̀(j)) = `(j).

IV. EXAMPLE

We now illustrate our approach via an example.
Example 3: Consider the language Lm(G) generated by G

depicted in Fig. 1, where E1 = {a,b,d}, E2 = {a,c,d}, and
Ek = {a,d}. Then the automata G1+k and G2+k are as in
Fig. 2 and 3.

Fig. 1. Generator G.

Fig. 2. Generator G1+k .

Fig. 3. Generator G2+k .

Based on alphabets E1, E2 and Ek, we can construct the
alphabet of synchronization vectors:

E= {〈a,a,a〉,〈b,b,ε〉,〈ε,ε,b〉,〈ε,c,ε〉,〈c,ε,c〉,〈d,d,d〉} .
and the structure U for this example is shown in Fig. 4.

We have XconD = {(�,5,8),(�,5,9)}. To see why these
states encode violations of conditional decomposability, con-
sider the sequence that leads to state x = (�,5,9), namely

w = 〈c,ε,c〉〈a,a,a〉〈c,ε,c〉〈b,b,ε〉 .
Note that while both w(1) = ab and w(2) = cac are possible
in Lm(G), it is the case that the interleaving of the contribu-
tions of Eε

1+k and Eε
2+k produce w(0) = cacb that is not in

0,0,0

4,4,4

〈a,a,a〉

7,0,7
〈c,

ε,c
〉

0,7,0

〈ε,c,ε〉
8,4,8

〈a,a,a〉

1,1,1

〈d,
d,
d〉

2,2,2
〈a,a,a〉

2,2,3
〈ε,ε,b〉

3,3,2

〈b,b,ε〉

3,3,3

〈b,b,ε〉

〈ε,ε,b〉

7,7,7

〈ε,c,ε〉 〈c,ε,c〉

4,8,4
〈a,a,a〉

4,9,4
〈ε,c,ε〉

4,8,5
〈ε,ε,b〉

4,9,5

〈ε,
c,

ε〉

〈ε,ε,b〉

8,8,8

〈a,a,a〉

9,8,9

〈c,ε,c〉

8,9,8

〈ε,c,ε〉

9,9,9
〈c,ε,c〉〈ε,c,ε〉

5,5,4

〈b,b,ε〉

4,4,5
〈ε,ε,b〉

5,5,5

〈b,b,ε〉

〈ε,ε,b〉

6,6,6

〈d,d,d〉

9,4,9
〈c,ε,c〉

�,5,9

〈b,b,ε〉

�,5,8

〈b,b,ε〉

〈c,ε,c〉

Fig. 4. U for Example 3, where violations of conditional decomposability are indicated in red.

Lm(G). We know that this string is not possible in G because
x(0) =�.

To identify the transition(s) responsible for a violation, we
examine incoming transitions to states in XconD. For illegal
configuration (�,5,9), the incoming transition from state
(9,4,9) with label 〈b,b,ε〉 leads to a violation of conditional
decomposability. In G1+k, a transition from state 4 with b is
still possible, and since G2+k cannot observe occurrences of
b, it cannot determine that b should not be allowed to occur
at this point. If this occurrence of b was added to the alphabet
of G2+k, then the transition of 〈b,b,ε〉 from (9,4,9) would
never be defined. (By symmetry, we can determine the same
transition is responsible for giving rise to state (�,5,8).)

We want to add the occurrence of b via transition (4,b,5)
and any observationally-equivalent occurrences of b to E2+k.
To facilitate this, we relabel (4,b,5) as (4, b̃,5) in G, add b̃ to
E2+k with the understanding that Pi+k(b̃) = b, for i ∈ {1,2},
and Pk(b̃) = b, see Fig. 5.

Fig. 5. Generator G with the relabelled problematic transition (4,b,5).

We now define the projection P from transitions to the
alphabet Ek ∪{b̃} as follows, see Fig. 6 and Fig. 7.

Then we can see that Lm(P1+k(G) ‖ P2+k(G)) = Lm(G) as
illustrated in Fig. 8 because the set XconD = /0. �

Fig. 6. Generator G1+k .

Fig. 7. Generator G2+k .

Now we formally prove the correctness of our approach.

Theorem 4: XconD = /0 if and only if Lm(G) is condition-
ally decomposable with respect to alphabets E1,E2,Ek.

Proof: (⇒) For the sake of contradiction, suppose
that the set XconD = /0 and that the language Lm(G) is not
conditionally decomposable. Then there exist two shortest
strings t1 ∈ L(P1+k(G)) and t2 ∈ L(P2+k(G)) such that the
interleaving of t1 and t2 results in a prefix t of some sequence
in Lm(P1+k(G)‖P2+k(G)) \ Lm(G). By construction of the
alphabet E, there exists a string w = v1v2 . . .v|w| ∈ E∗ such
that w(0) = t, w(1) = t1, and w(2) = t2. Let δ (q0, t1) = q1

0,0,0

4,4,4 〈a,a,a〉

7,0,7

〈c,
ε,c
〉

0,7,0

〈ε,c,ε〉
8,4,8

〈a,a,a〉

1,1,1

〈d,
d,
d〉

2,2,2
〈a,a,a〉

2,2,3
〈ε,ε,b〉

3,3,2

〈b,b,ε〉

3,3,3

〈b,b,ε〉

〈ε,ε,b〉

7,7,7

〈ε,c,ε〉 〈c,
ε,
c〉

8,8,8

〈a,a,a〉

9,8,9

〈c,ε,c〉

8,9,8

〈ε,c,ε〉

9,9,9
〈c,ε,c〉〈ε,c,ε〉

5,5,5
〈b,b,b〉

6,6,6

〈d,d,d〉

9,4,9
〈c,ε,c〉

4,8,4
〈a,a,a〉

4,9,4
〈ε,c,ε〉

Fig. 8. U built with updated alphabets.

and δ (q0, t2) = q2. Then, in U , ∆(x0,w) = (�,q1,q2). Thus
we have x ∈ XconD, which is a contradiction.

(⇐) On the other hand, suppose that the language Lm(G)
is conditionally decomposable and that the set XconD 6= /0. Let
x ∈ XconD. Let w = v1v2 . . .v|w| ∈ E∗ such that ∆(x0,w) = x.
Let t = w(0) and ti = w(i), for i = 1,2. Note that since
x(0) =�, we have ¬δ (q0,w(0))!. The only vectors on which
t and ti synchronize are those derived from events in E∩Ei+k
and therefore Pi+k(t) = Pi+k(ti) = ti, for i ∈ {1,2}. Because
Lm(G) is conditionally decomposable, t ∈ P−1

1+k[P1+k(t)] ∩
P−1

2+k[P2+k(t)]∩ Lm(G) and it follows that δ (q0, t)!, a con-
tradiction.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a new approach to conditional de-
composability, where we can construct a potentially smaller
observable alphabet Ek (in terms of the cardinality of the set
of observable transition labels) than was presented in [7]. The
computational complexity of both the event-based approach
and the transition-based approach is polynomial when we
have n= 2 subalphabets and exponential when these concepts
are extended for n > 2. The finite structure U , which can
be constructed in O(|Q|n+1|Σε |n+1), is easily extended to
handle n > 2 subalphabets; however, we would like to avoid
the explicit calculation of this structure, which requires
additional study on the efficient implementation of these
types of algorithmic techniques.

Subsequent work also includes a study of how to incorpo-
rate our approach into coordination control and other aspects
of supervisory control of discrete-event systems that rely on
the concept of decomposability.

ACKNOWLEDGMENTS

The research by T. Masopust was supported by the GAČR
grant no. P202/11/P028, and by RVO: 67985840. L. Ricker
was partially supported by NSERC. The authors extend their
thanks to P. Darondeau for motivating and useful discussions.

REFERENCES

[1] A. Arnold, Finite transition systems. Prentice–Hall, 1994.
[2] C. G. Cassandras and S. Lafortune, Introduction to discrete event

systems, 2nd ed. Springer, 2008.
[3] S. Jiang and R. Kumar, “Decentralized control of discrete event

systems with specializations to local control and concurrent systems,”
IEEE Trans Syst Man Cybern B, vol. 30, no. 5, pp. 653–660, 2000.

[4] M. Karimadini and H. Lin, “Decomposability of global tasks for multi-
agent systems,” in Proc. of CDC, 2010, pp. 4192–4197.

[5] J. Komenda, T. Masopust, and J. H. van Schuppen, “Synthesis of
safe sublanguages satisfying global specification using coordination
scheme for discrete-event systems,” in Proc. of WODES, 2010, pp.
436–441. [Online]. Available: http://www.ifac-papersonline.net/

[6] ——, “Synthesis of controllable and normal sublanguages for discrete-
event systems using a coordinator,” Systems Control Lett., vol. 60,
no. 7, pp. 492–502, 2011.

[7] ——, “On conditional decomposability,” CoRR, vol. abs/1201.1733,
2012. [Online]. Available: http://arxiv.org/abs/1201.1733

[8] ——, “Supervisory control synthesis of discrete-event systems using a
coordination scheme,” Automatica, vol. 48, no. 2, pp. 247–254, 2012.

[9] J. Komenda and J. H. van Schuppen, “Coordination control of discrete
event systems,” in Proc. of WODES, 2008, pp. 9–15.

[10] K. Rudie and W. M. Wonham, “Think globally, act locally: Decen-
tralized supervisory control,” IEEE Trans. Autom. Control, vol. 37,
no. 11, pp. 1692–1708, 1992.

[11] K. Rudie and W. Wonham, “Supervisory control of communicating
processes,” in Protocol Specification, Testing and Verification, X,
H. Ural, P. R. L., and L. Logrippo, Eds. Elsevier Science Publishers
B. V., 1990, pp. 243–257.

[12] A. Salomaa, Formal languages. New York: Academic Press, 1973.
[13] W. M. Wonham, “Supervisory control of discrete-event systems,”

http://www.control.utoronto.ca/cgi-bin/dldes.cgi, July 2011, Lecture
notes, Department of Electrical and Computer Engineering, University
of Toronto.

