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Abstract

Opacity is a general framework modeling security properties of systems interacting with a passive attacker. Initial-and-final-state opacity
(IFO) generalizes the classical notions of opacity, such as current-state opacity and initial-state opacity. In IFO, the secret is whether the
system evolved from a given initial state to a given final state or not. There are two algorithms for IFO verification. One arises from
a trellis-based state estimator, which builds a semigroup of binary relations generated by the events of the automaton, and the other is
based on the reduction to language inclusion. The time complexity of both algorithms is bounded by a super-exponential function, and
it is a challenging open problem to find a faster algorithm or to show that no faster algorithm exists. We discuss the lower-bound time
complexity for both general and special cases, and use extensive benchmarks to compare the existing algorithms.
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1 Introduction

Opacity is a framework to specify security properties of
systems interacting with a passive attacker. The attacker is
an observer with a complete knowledge of the structure of
the system and with a limited observation of its behavior.
The secret is given either as a set of states or as a set of
strings. The attacker estimates the behavior of the system
based on its observations, and the system is opaque if the
attacker never ascertains the secret. For more information,
we refer to Jacob et al. (2016).

For automata models, several notions of opacity have been
investigated in the literature, including current-state opacity
(CSO), initial-state opacity (ISO), and initial-and-final-state
opacity (IFO). Whereas CSO prevents the attacker from dis-
covering that the system is currently in a secret state, ISO
prevents the attacker from discovering that the system started
in a secret state. Wu and Lafortune (2013) introduced IFO
as a generalization of both CSO and ISO.

The applicability of theoretical results depends upon the
computational efficiency of the developed algorithms. The
fundamental question concerns the time complexity of the
algorithms. In particular, a tight complexity characteriza-
tion provides an insight into the size of instances the algo-
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rithms are able to handle in an acceptable time and helps
us understand the notion of an optimal algorithm. For (su-
per-)exponential algorithms, the question of the existence of
faster algorithms is particularly important, and lies in the
core of the P vs. NP problem.

For selected notions of opacity, Wintenberg et al. (2022) and
Balun et al. (2024) show that the existing algorithms can
handle models with a few hundreds or thousands of states,
which is far from industrial needs. For IFO, we show that
the existing algorithms can handle only very small instances.
In Figure 1, we give an example of an automaton with five
states and 13 events that our tools implementing current
algorithms are not able to solve in 48 hours.

One of the purposes of this paper is to show that the situa-
tion is not hopeless as the example suggests. By making use
of efficient tools for language-inclusion testing, we are able
to verify IFO for significantly larger instances. In particu-
lar, we are able to verify the example of Figure 1 in a few
milliseconds. To the best of our knowledge, no research on
efficiency and optimization of algorithms for opacity verifi-
cation has been done in the literature so far.

Whereas the worst-case time complexity to verify most of
the opacity notions is exponential, and tight under the as-
sumptions discussed below, the time complexity of current
algorithms to verify IFO is super-exponential and it is not
known whether there is an exponential-time algorithm or
whether the super-exponential time complexity is tight. We
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show that for the algorithms discussed so far in the litera-
ture, the super-exponential time complexity is tight.

The (non)existence of an exponential-time algorithm re-
mains a challenging open problem. If there were such an
algorithm, our results imply that it would require new ideas
and verification techniques. To prove the nonexistence of
such an algorithm is even more intricate, because no tech-
niques are known regarding how to show that there is no
algorithm of a given complexity; consider, for instance, the
questions of the separation of complexity classes in com-
plexity theory or of the existence of a polynomial algorithm
for prime factorization.

Current algorithms to verify IFO. There are two algo-
rithms verifying IFO in the literature—the trellis-based al-
gorithm of Wu and Lafortune (2013), and the algorithm us-
ing a reduction to language inclusion of Balun et al. (2023).

The trellis-based algorithm uses a state estimator of Saboori
and Hadjicostis (2013) building a semigroup of binary re-
lations defined by events of a given automaton. The inclu-
sion algorithm is based on the language inclusion of two au-
tomata. It computes the product of one automaton with the
complement of the other, and checks emptiness. For nonde-
terministic automata, the involved complementation requires
the construction of the observer.

Considering time complexity, the upper bounds on existing
algorithms are super-exponential of order 𝑂∗ (2𝑛2 ), where 𝑛

is the number of states of the automaton. The IFO verifica-
tion problem is PSpace-complete, and the generally accepted
assumption that PTime is different from PSpace implies that
there is no polynomial-time algorithm to verify IFO.

However, there could be a sub-exponential-time algorithm.
To (conditionally) exclude its existence, Impagliazzo and Pa-
turi (2001) formulated a strong exponential time hypothesis
motivated by the fact that there is so far no algorithm solving
SAT significantly faster than trying all possible truth assign-
ments. The hypothesis states that, for any constant 𝑐 < 2,
there is a sufficiently large 𝑘 such that 𝑘-SAT (SAT with
each clause of the formula containing no more than 𝑘 liter-
als) cannot be solved in time 𝑂 (𝑐𝑛), where 𝑛 is the number
of variables of the formula. Under this hypothesis, Balun
et al. (2023) showed that there is no algorithm to verify IFO
of an 𝑛-state automaton in time 𝑂∗ (2𝑛/(2+𝜀) ), for any 𝜀 > 0.

The question that remains is whether we can verify IFO
in exponential time 𝑂∗ (2𝑛) rather then in super-exponential
time 𝑂∗ (2𝑛2 ). This is a significant difference; compare, for
example, 25 = 32 and 252

= 33, 554, 432.

Our contributions. First, we discuss the time complexity of
both existing IFO-verification algorithms and show that their
tight time complexity is super-exponential. Then, we show
that the trellis-based algorithm is a special case of the other.

Lower bound Upper bound Condition

Ω(2𝑛2 ) 𝑂∗ (2𝑛2 ) none
𝑂∗ (2𝑛) 𝑂∗ (2𝑛) 𝑄𝑁𝑆 = 𝐼𝑁𝑆 × 𝐹𝑁𝑆

𝑂∗ (2𝑛 log 𝑛) 𝑂∗ (2𝑛 log 𝑛) deterministic
poly poly observer property

𝑂∗ (2𝑛(𝑛+1)/2) 𝑂∗ (2𝑛(𝑛+1)/2) self-loops nondet.
𝑂∗ ((𝑛 + 1)!) 𝑂∗ ((𝑛 + 1)!) self-loops det.

Table 1
Upper and lower bounds on the time complexity of existing al-
gorithms for IFO verification. If they coincide, then the bound is
tight. Here 𝑛 stands for the number of states of the automaton.

Second, we discuss several special cases. Namely, we show
that (i) for the set of nonsecret pairs in the form of a Carte-
sian product, the complexity drops to 𝑂∗ (2𝑛), (ii) for deter-
ministic automata, the complexity drops to 𝑂∗ (2𝑛 log 𝑛), (iii)
for automata satisfying the observer property of Wong and
Wonham (1996), the complexity is polynomial, and (iv) for
automata where all cycles are in the form of self-loops, the
complexity drops to 𝑂∗ (2𝑛(𝑛+1)/2), resp. to 𝑂∗ ((𝑛 + 1)!) for
deterministic automata, see Table 1.

Third, we design new algorithms using advanced tools for
language-inclusion testing and create extensive benchmarks,
based on real data, to compare the existing and our new IFO-
verification algorithms. Our results show that the new algo-
rithms perform better and are able to verify larger instances.
The algorithms and benchmarks are available at https://
apollo.inf.upol.cz:81/masopust/ifo-benchmarks.

2 Preliminaries

We assume that the reader is familiar with automata theory,
see Hopcroft and Ullman (1979). For a set 𝑆, the cardinality
of 𝑆 is denoted by |𝑆 | and the power set of 𝑆 by 2𝑆 . An
alphabet Σ is a finite nonempty set of events, partitioned
into Σ𝑜 and Σ𝑢𝑜, of the observable and unobservable events,
respectively. A string over Σ is a finite sequence of events
from Σ. The set of all strings over Σ is denoted by Σ∗, and
𝜀 denotes the empty string. A language 𝐿 over Σ is a subset
of Σ∗.

Automata. An automaton over an alphabet Σ is a triple A =

(𝑄, Σ, 𝛿), where 𝑄 is a finite set of states and 𝛿 : 𝑄×Σ → 2𝑄
is a transition function that can be extended to the domain
2𝑄 × Σ∗ by induction. The language accepted by A from
a set of states 𝐼 ⊆ 𝑄 by a set of states 𝐹 ⊆ 𝑄 is the set
𝐿𝑚 (A, 𝐼, 𝐹) = {𝑤 ∈ Σ∗ | 𝛿(𝐼, 𝑤)∩𝐹 ≠ ∅} and the language
generated by A from 𝐼 is the set 𝐿 (A, 𝐼) = 𝐿𝑚 (A, 𝐼, 𝑄).
The automaotn A is deterministic if |𝛿(𝑞, 𝑎) | ≤ 1 for every
state 𝑞 ∈ 𝑄 and every event 𝑎 ∈ Σ.

For two sets 𝐼 and 𝐹 of states, we use the notation A[𝐼, 𝐹] to
denote a copy of A where 𝐼 is the set of initial states and 𝐹

is the set of final states. Notice that A[𝐼, 𝐹] is the classical
nondeterministic finite automaton (NFA), and that it is a
deterministic finite automaton (DFA) if it is deterministic
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and has a single initial state. To specify the components of
A[𝐼, 𝐹], we use the standard notation A = (𝑄, Σ, 𝛿, 𝐼, 𝐹). If
a set is a singleton, we simply write its element; for instance,
if 𝐼 = {𝑖}, we write A = (𝑄, Σ, 𝛿, 𝑖, 𝐹).

For automata A𝑖 = (𝑄𝑖 , Σ𝑖 , 𝛿𝑖), for 𝑖 = 1, . . . , 𝑛 and 𝑛 ≥ 2,
if the sets 𝑄𝑖 and 𝑄 𝑗 are disjoint whenever 𝑖 ≠ 𝑗 , then the
nondeterministic union of A1, . . . ,A𝑛 is the automaton A =

(⋃𝑛
𝑖=1 𝑄𝑖 ,

⋃𝑛
𝑖=1 Σ𝑖 ,

⋃𝑛
𝑖=1 𝛿𝑖) formed by union of components;

since every function is a relation by definition, we can view
the transition function 𝛿𝑖 as a subset of 𝑄𝑖 × Σ𝑖 ×𝑄𝑖 , which
justifies the definition of A. Then, for every subsets 𝐼 and
𝐹 of

⋃𝑛
𝑖=1 𝑄𝑖 , we have 𝐿 (A, 𝐼) = ⋃𝑛

𝑖=1 𝐿 (A𝑖 , 𝐼 ∩ 𝑄𝑖) and
𝐿𝑚 (A, 𝐼, 𝐹) = ⋃𝑛

𝑖=1 𝐿𝑚 (A𝑖 , 𝐼 ∩𝑄𝑖 , 𝐹 ∩𝑄𝑖).

The disjoint union of automata A1, . . . ,A𝑛 first makes the
state sets of the automata pairwise disjoint by a suitable re-
naming of the states, together with the corresponding ad-
justment of the transition functions, and then performs the
nondeterministic union on the resulting automata.

Projections of strings, languages, and automata. A pro-
jection 𝑃 : Σ∗ → Σ∗

𝑜 is a morphism for concatenation defined
by 𝑃(𝑎) = 𝜀, for 𝑎 ∈ Σ \Σ𝑜, and 𝑃(𝑎) = 𝑎, for 𝑎 ∈ Σ𝑜. Intu-
itively, the action of 𝑃 is to erase all unobservable events. We
lift projections from strings to languages in the usual way.

Let A be an automaton over Σ, and let 𝑃 : Σ∗ → Σ∗
𝑜 be a pro-

jection. The projected automaton of A, denoted by 𝑃(A),
is obtained from A by replacing every transition (𝑞, 𝑎, 𝑟)
with (𝑞, 𝑃(𝑎), 𝑟), and by using the classical elimination of
𝜀-transitions. Then 𝑃(A) is an automaton over Σ𝑜, preserv-
ing the same observable behavior as A, and with the same
set of states as A. The automaton 𝑃(A) can be constructed
from A in polynomial time (Hopcroft and Ullman, 1979).

For an NFA A, the reachable part of the DFA constructed
from 𝑃(A) by the standard subset construction is called the
observer of A. In the worst case, the observer of A has
exponentially many states compared with A; see Jirásková
and Masopust (2012).

IFO. An automaton A = (𝑄, Σ, 𝛿) is initial-and-final-state
opaque (IFO) with respect to sets𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄×𝑄 of secret
and nonsecret pairs of states, respectively, and a projection
𝑃 : Σ∗ → Σ∗

𝑜, if for every secret pair (𝑠, 𝑡) ∈ 𝑄𝑆 and every
string 𝑤 ∈ 𝐿𝑚 (A, 𝑠, 𝑡), there is a nonsecret pair (𝑠′, 𝑡′) ∈
𝑄𝑁𝑆 and a 𝑤′ ∈ 𝐿𝑚 (A, 𝑠′, 𝑡′) such that 𝑃(𝑤) = 𝑃(𝑤′).

Asymptotic complexity. Let 𝑔 : R → R be a real func-
tion. The class 𝑂 (𝑔(𝑛)) = { 𝑓 : R → R | there are 𝑐, 𝑛0 >

0 such that 0 ≤ 𝑓 (𝑛) ≤ 𝑐𝑔(𝑛), for every 𝑛 ≥ 𝑛0} con-
sists of functions that do not grow asymptotically faster
than 𝑔; intuitively, 𝑂 (𝑔(𝑛)) neglects constant factors. Anal-
ogously, 𝑂∗ (𝑔(𝑛)) = 𝑂 (𝑔(𝑛)poly(𝑛)) neglects constant
and polynomial factors. The class 𝑜(𝑔(𝑛)) = { 𝑓 : R →
R | for every 𝑐 > 0 there is 𝑛0 > 0 such that | 𝑓 (𝑛) | <

𝑐𝑔(𝑛), for every 𝑛 ≥ 𝑛0} consists of functions that grow

asymptotically strictly slower than 𝑔; that is, 𝑓 (𝑛) ∈ 𝑜(𝑔(𝑛))
if and only if lim𝑛→∞ 𝑓 (𝑛)/𝑔(𝑛) = 0. The class of functions
that do not grow asymptotically slower than 𝑔 is denoted
by Ω(𝑔(𝑛)) and defined by 𝑓 (𝑛) ∈ Ω(𝑔(𝑛)) if and only if
𝑔(𝑛) ∈ 𝑂 ( 𝑓 (𝑛)).

A function 𝑓 (𝑛) is super-exponential if it grows faster than
any exponential function of the form 𝑐𝑛, where 𝑐 is a con-
stant; formally, lim𝑛→∞ 𝑓 (𝑛)/𝑐𝑛 = ∞ for all constants 𝑐 > 1.

Semigroup theory and automata. A semigroup is a set 𝑆
together with a binary operation · on 𝑆 that is associative,
i.e., 𝑎 · (𝑏 · 𝑐) = (𝑎 · 𝑏) · 𝑐.

For an automaton A = (𝑄, Σ, 𝛿) with 𝑛 states, every event
𝑎 ∈ Σ defines a binary relation on 𝑄 that can be represented
by an 𝑛 × 𝑛 binary matrix (𝑎𝑖 𝑗 ), where 𝑎𝑖 𝑗 = 1 if 𝑗 ∈
𝛿(𝑖, 𝑎), and 𝑎𝑖 𝑗 = 0 otherwise. A boolean multiplication
of binary matrices (𝑎𝑖 𝑗 ) and (𝑏𝑖 𝑗 ) is defined as the matrix
(𝑐𝑖 𝑗 ), where 𝑐𝑖 𝑗 = max{𝑎𝑖𝑘𝑏𝑘 𝑗 | 𝑘 = 1, . . . , 𝑛}, that is, as
the classical matrix multiplication where addition is replaced
by maximum. The set of all 𝑛 × 𝑛 binary matrices together
with the boolean matrix multiplication forms a semigroup
B𝑛 containing 2𝑛2 elements.

Consider the set of binary matrices GA = {(𝑎𝑖 𝑗 ) | 𝑎 ∈ Σ}
corresponding to the events of A, and denote by BA the
semigroup containing all possible finite products of elements
of GA . Then, BA is a subsemigroup of B𝑛, and GA is a
set of generators of BA . In particular, every string 𝑤 ∈ Σ∗

defines a binary matrix (𝑤𝑖 𝑗 ) ∈ BA representing the relation
on 𝑄 such that 𝑤𝑖 𝑗 = 1 if and only if 𝑗 ∈ 𝛿(𝑖, 𝑤).

A fundamental question in semigroup theory is the minimum
number of generators of a semigroup. Despite an intensive
study of this question for the semigroup B𝑛 for more than 60
years, the answer is known only for 𝑛 ≤ 8, see Hivert et al.
(2021) or the sequence A346686 of the On-Line Encyclo-
pedia of Integer Sequences (OEIS). Although the minimum
number of generators of B𝑛 is unknown for 𝑛 ≥ 9, De-
vadze (1968) claimed without proof, and Konieczny (2011)
proved, that it grows super-exponentially with respect to
𝑛. A lower bound on the number of generators of B𝑛 is
2𝑛2/4−𝑂 (𝑛)/(𝑛!)2, see (Hivert et al., 2021, Corollary 3.1.8).

Proposition 6 and Theorem 7 in Kim and Roush (1978)
further show that (i) for every odd natural number 𝑛, there
are two binary matrices generating a subsemigroup of B𝑛

with ((𝑛2 − 1)/4) · 2(𝑛2−1)/4 elements, and (ii) for every
integer-valued function 𝑓 such that 𝑓 (𝑛) > 𝑛 and 𝑓 (𝑛)/𝑛2

tends to zero, the average size of the semigroup generated
by two randomly chosen 𝑛 × 𝑛 binary matrices, each with
𝑓 (𝑛) ones, is at least 2(𝑛2/4)+𝑜 (𝑛2 ) .

Semigroup theory and deterministic automata. Similarly
as strings over an automaton correspond to binary rela-
tions on its states, the strings over a deterministic automa-
ton A = (𝑄, Σ, 𝛿) correspond to partial functions on states.
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Algorithm 1. Semigroup-based IFO verification
Input: An automaton A = (𝑄, Σ, 𝛿),

sets 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄 ×𝑄 of secret and nonsecret pairs,
and an alphabet Σ𝑜 ⊆ Σ of observable events.

Output: true iff A is IFO wrt 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 : Σ∗ → Σ∗
𝑜.

1: Construct the projected automaton 𝑃(A)
2: Compute the elements of the semigroup B𝑃 (A) , gener-

ated by the events of Σ𝑜, one by one
3: for every newly generated element (𝑤𝑖 𝑗 ) ∈ B𝑃 (A) do
4: for every secret pair (𝑠, 𝑓 ) ∈ 𝑄𝑆 do
5: if 𝑤𝑠 𝑓 = 1 and there is no nonsecret pair
6: (𝑠′, 𝑓 ′) ∈ 𝑄𝑁𝑆 such that 𝑤𝑠′ 𝑓 ′ = 1 then
7: return false
8: return true

Namely, every 𝑤 ∈ Σ∗ defines a partial function 𝛿𝑤 on 𝑄

as follows: for every 𝑞 ∈ 𝑄, 𝛿𝑤 (𝑞) = 𝛿(𝑞, 𝑤). Partial func-
tions on 𝑄 are called partial transformations and, together
with the composition of functions, form a so-called partial-
transformation semigroup denoted by PT 𝑛. The semigroup
PT 𝑛 has (𝑛 + 1)𝑛 elements and is generated by four trans-
formations, see (Howie, 1995, Exercises 12–13, page 41).

The reader can find more information on the size of the sub-
semigroups of PT 𝑛 generated by less than four transforma-
tions in Holzer and König (2004) and Krawetz et al. (2005).
For total transformations, we refer to Salomaa (1960) or
Dénes (1966).

3 Trellis-Based IFO Verification

In this section, we reformulate the trellis-based algorithm of
Wu and Lafortune (2013) in terms of semigroups of binary
relations, see Algorithm 1.

Given an automaton A over Σ, sets 𝑄𝑆 and 𝑄𝑁𝑆 of secret
and nonsecret pairs of states, and a set of observable events
Σ𝑜 ⊆ Σ, the algorithm checks whether every matrix (𝑤𝑖 𝑗 ) ∈
BA generated by the events of A satisfies the condition: If
there is 1 at a position 𝑤𝑠 𝑓 corresponding to a secret pair
(𝑠, 𝑓 ) ∈ 𝑄𝑆 , then there is 1 at a position 𝑤𝑠′ 𝑓 ′ for some
nonsecret pair (𝑠′, 𝑓 ′) ∈ 𝑄𝑁𝑆 .

Considering the worst-case time complexity of Algorithm 1,
the construction of the projected automaton 𝑃(A) is poly-
nomial in the number of states of A, whereas the computa-
tion of the semigroup B𝑃 (A) depends on the structure of A
and may vary significantly. Taking the size of B𝑃 (A) as a
parameter, the time complexity of Algorithm 1 is dominated
by the cycle on lines 3–7, giving the overall time complexity
𝑂 ( |B𝑃 (A) | · 𝑛2), where 𝑛 is the number of states of A; in-
deed, the inner loop on lines 4–7 may be verified by a single
scan of all elements of the matrix (𝑤𝑖 𝑗 ).

Before we discuss the maximal size of the semigroup B𝑃 (A) ,
notice that for instances that are IFO, the algorithm has to
build the whole semigroup B𝑃 (A) , whereas for instances

that are not IFO, the algorithm terminates as soon as a matrix
that fails the condition is generated.

We now discuss the lower-bound complexity of Algorithm 1.

Theorem 1. For every 𝑛 ≥ 1, there is an automaton A𝑛

with 𝑛 states and 2𝑛2 events, all of which are observable, for
which Algorithm 1 needs at least 2𝑛2 steps.

Proof. For every 𝑛 ≥ 1, the automaton A𝑛 = (𝑄𝑛, Σ𝑛, 𝛿𝑛)
is constructed from the semigroup B𝑛 by taking, for every
matrix (𝑎𝑖 𝑗 ) of B𝑛, an event 𝑎 that connects state 𝑖 to state
𝑗 if and only if 𝑎𝑖 𝑗 = 1. Formally, 𝑄𝑛 = {1, 2, . . . , 𝑛}, Σ𝑛 =

{𝑎 | (𝑎𝑖 𝑗 ) ∈ B𝑛}, and for 𝑖, 𝑗 ∈ 𝑄𝑛 and 𝑎 ∈ Σ𝑛, we define
𝑗 ∈ 𝛿𝑛 (𝑖, 𝑎) if and only if 𝑎𝑖 𝑗 = 1. Then, the semigroup BA𝑛

coincides with the semigroup B𝑛. Consequently, if the IFO
instance for the automaton A𝑛 is positive, then Algorithm 1
has to verify all matrices of B𝑛, of which there are 2𝑛2 . □

From the construction, we may observe that Algorithm 1
has to make at least 2𝑛2 steps even if we define an event for
every generator of B𝑛 rather than for every element of B𝑛.

For an illustration, consider the semigroup B2 with its three
generators (𝑎𝑖 𝑗 ) =

( 0 1
1 0

)
, (𝑏𝑖 𝑗 ) =

( 1 0
1 1

)
, and (𝑐𝑖 𝑗 ) =

( 1 0
0 0

)
.

Then, the automaton A2 constructed in Theorem 1 contains
two states, 𝑄2 = {1, 2}, three events, Σ2 = {𝑎, 𝑏, 𝑐}, and the
transition function 𝛿2 is obtained from the matrices as fol-
lows: the matrix (𝑎𝑖 𝑗 ) results in the transitions 𝛿(1, 𝑎) = {2}
and 𝛿(2, 𝑎) = {1}, the matrix (𝑏𝑖 𝑗 ) results in the transitions
𝛿(1, 𝑏) = {1} and 𝛿(2, 𝑏) = {1, 2}, and the matrix (𝑐𝑖 𝑗 )
results in the transition 𝛿(1, 𝑐) = {1}. Since the matrices
(𝑎𝑖 𝑗 ), (𝑏𝑖 𝑗 ), (𝑐𝑖 𝑗 ) are generators of the semigroup B2, each
of the 16 elements of B2 can be written as a multiplica-
tions of (some of) the generators. For example, the matrix( 1 1

1 1
)
= (𝑎𝑖 𝑗 ) (𝑏𝑖 𝑗 ) (𝑎𝑖 𝑗 ) (𝑏𝑖 𝑗 ). This matrix corresponds to the

relation on states of A2 defined by the string 𝑎𝑏𝑎𝑏; indeed,
we have 𝛿(𝑖, 𝑎𝑏𝑎𝑏) = {1, 2}, for 𝑖 ∈ {1, 2}. Consequently,
BA2 = B2, and if A2 satisfies IFO, then Algorithm 1 gen-
erates all elements of B2 and requires thus at least 16 steps
to verify each of the 16 elements of B2.

Analogously, considering B5 with its 13 generators results in
the automaton A5 with five states and 13 events depicted in
Figure 1. This automaton is of particular interest, because a
tool implementing Algorithm 1 with the automaton A5, sets
𝑄𝑆 = 𝑄𝑁𝑆 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}, and the
alphabet Σ𝑜 = Σ as input does not terminate in 48 hours. 1

Recall that every semigroup B𝑛 has a minimum number of
generators, which are known for 𝑛 ≤ 8. For larger 𝑛, neither
the generators nor their minimum number is known. How-
ever, the number is at least 2𝑛2/4−𝑂 (𝑛)/(𝑛!)2, which improves

1 The choice of 𝑄𝑆 = 𝑄𝑁𝑆 only ensures that A5 satisfies IFO.
The same behavior would be observed for any other choice of the
sets 𝑄𝑆 and 𝑄𝑁𝑆 for which the automaton A5 satisfies IFO.
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Figure 1. The automaton A5 on which Algorithm 1 makes at least
225 steps and fails to terminate in 48 hours.

Theorem 1 by decreasing the number of events of the au-
tomaton A𝑛 from 2𝑛2 to an unknown number lower-bounded
by the super-exponential function 2𝑛2/4−𝑂 (𝑛)/(𝑛!)2.

The reader may wonder whether the complexity of Algo-
rithm 1 drops if the number of events grows asymptotically
slower in the number of states than super-exponentially. Un-
fortunately, Proposition 6 of Kim and Roush (1978) implies
that the complexity remains super-exponential even if we
consider only automata with two observable events.

Corollary 2. For every odd 𝑛 ≥ 1, there is an automaton
A𝑛 with 𝑛 states and two observable events, for which Al-
gorithm 1 runs in time Ω(𝑛22(𝑛2−1)/4). □

The results so far consider the worst-case time complexity.
From the practical point of view, it is of interest to consider
the average time complexity of Algorithm 1. As an imme-
diate consequence of Theorem 7 of Kim and Roush (1978),
we obtain the following result.

Theorem 3. Let 𝑓 be an integer-valued function satisfying
𝑓 (𝑛) > 𝑛 and lim𝑛→∞ 𝑓 (𝑛)/𝑛2 = 0. Consider the set A𝑛 of
all automata with the state set {1, . . . , 𝑛} and two observable
events where either event appears on 𝑓 (𝑛) transitions. Then,
the average runtime of Algorithm 1 on an automaton chosen
uniformly at random from A𝑛 is Ω(2𝑛2/4+𝑜 (𝑛2 ) ). □

We further discuss experimental results on an extensive num-
ber of data in Section 6. (Results of experiments on randomly
generated data are available in the git repository.)

4 Inclusion-Based IFO Verification

The algorithm of Balun et al. (2023) reduces the IFO verifi-
cation to language inclusion: given two NFAs A1 and A2,

Algorithm 2. Classical observer-based IFO verification
Input: An automaton A = (𝑄, Σ, 𝛿),

sets 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄 × 2𝑄 of secret and nonsecret pairs,
and the alphabet Σ𝑜 ⊆ Σ of observable events.

Output: true iff A is IFO wrt 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 : Σ∗ → Σ∗
𝑜.

1: Let A𝑆 be disjoint union of A[𝑠, 𝑇], for (𝑠, 𝑇) ∈ 𝑄𝑆 .
2: Let A𝑁𝑆 be disjoint union of A[𝑠, 𝑇], for (𝑠, 𝑇) ∈ 𝑄𝑁𝑆 .
3: Compute the observer A𝑜𝑏𝑠

𝑁𝑆
of A𝑁𝑆

4: return 𝐿𝑚 (A𝑆) × 𝐿𝑚 (A𝑜𝑏𝑠
𝑁𝑆

) = ∅?

is 𝐿𝑚 (A1) ⊆ 𝐿𝑚 (A2)? Although there are different opti-
mization techniques discussed in the literature, all existing
algorithms for language inclusion are based on the classical
observer (aka subset or powerset) construction.

For an automaton A = (𝑄, Σ, 𝛿) and a relation 𝑆 ⊆ 𝑄 ×𝑄,
we denote by 𝑆′ the relation over 𝑄 × 2𝑄 defined by

𝑆′ = {(𝑠, 𝑇) | 𝑓 ∈ 𝑇 if and only if (𝑠, 𝑓 ) ∈ 𝑆} (1)

that clusters the elements of 𝑆 with respect to the domain.
To reduce IFO to language inclusion, let 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄 ×𝑄

be the sets of secret and nonsecret pairs, respectively. These
sets can be clustered as shown in (1), resulting in the sets
𝑄′

𝑆
and 𝑄′

𝑁𝑆
. Based on these sets, we define the languages

𝐿𝑆 :=
⋃

(𝑠,𝑇 ) ∈𝑄′
𝑆

𝐿𝑚 (A, 𝑠, 𝑇) and

𝐿𝑁𝑆 :=
⋃

(𝑠,𝑇 ) ∈𝑄′
𝑁𝑆

𝐿𝑚 (A, 𝑠, 𝑇) .
(2)

The verification of IFO now reduces to the verification of
the inclusion 𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆), see Balun et al. (2023).

In the sequel, we distinguish two cases of the verification of
language inclusion: (i) the classical approach based on the
observer construction, and (ii) approaches reducing the state
space of the constructed observer.

Observer-based IFO verification. The languages 𝐿𝑆 and
𝐿𝑁𝑆 of (2) can be represented by NFAs A𝑆 and A𝑁𝑆 , re-
spectively, consisting of no more than 𝑛 copies of the au-
tomaton A, with possibly different initial and final states; see
Algorithm 2. As a result, the NFAs A𝑆 and A𝑁𝑆 have no
more than 𝑛2 states each, and the classical verification of the
language inclusion 𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆) based on the observer
construction is of time complexity 𝑂 (𝑛22𝑛2 ) = 𝑂∗ (2𝑛2 ).

Note that the upper bound on the time complexity of Algo-
rithm 2 coincides with the upper bound on the time com-
plexity of Algorithm 1. It is not a coincidence. We show that
Algorithm 1 is a special case of Algorithm 2.

Lemma 4. For every automaton A = (𝑄, Σ, 𝛿), an alphabet
Σ𝑜 ⊆ Σ of observable events, and sets 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄 × 2𝑄
of secret and nonsecret pairs of states, respectively, there is
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an automaton A′ and a bijection between the elements of
the semigroup B𝑃 (A) and the states of the observer of A′.

Proof. Let 𝑃 : Σ∗ → Σ∗
𝑜 be the projection erasing unobserv-

able events, and let GA = {(𝑎𝑖 𝑗 ) | 𝑎 ∈ Σ𝑜, and 𝑎𝑖 𝑗 = 1 if
and only if 𝑗 ∈ 𝛿(𝑖, 𝑎)} be the set of binary matrices cor-
responding to the events of Σ𝑜. Then, GA is a set of gen-
erators of B𝑃 (A) , and hence every matrix (𝑚𝑖 𝑗 ) ∈ B𝑃 (A)
is a product of some of the matrices of GA ; say (𝑚𝑖 𝑗 ) =

(𝑎1) (𝑎2) · · · (𝑎𝑘). Let 𝑚 = 𝑎1𝑎2 · · · 𝑎𝑘 be the corresponding
string over Σ𝑜. We denote the 𝑖th row of the matrix (𝑚𝑖 𝑗 )
by (𝑚𝑖∗). For 𝑖 ∈ 𝑄, let A𝑖 denote a copy of A with 𝑖 being
the single initial state. Then, the positions of ones in (𝑚𝑖∗)
correspond to the states of A𝑖 reachable from the state 𝑖 un-
der the strings from 𝑃−1 (𝑚), which corresponds to the state
of the observer of A𝑖 reachable from the state {𝑖} under the
string 𝑚.

We define the automaton A′ as a disjoint union of automata
A𝑖 , for all 𝑖 ∈ 𝑄, and denote by 𝐼 ′ the initial states of A′

formed by the initial states of individual A𝑖’s as renamed
by the operation of disjoint union. Then, the positions of
ones in (𝑚𝑖 𝑗 ) correspond to the state of the observer of A′

reachable from 𝐼 ′ under the string 𝑚.

On the other hand, the state of the observer of A′ reachable
from the initial state 𝐼 ′ under a string 𝑚 corresponds to the
ones in the matrix (𝑚𝑖 𝑗 ).

Thus, there is a one-to-one correspondence between the el-
ements of B𝑃 (A) and the states of the observer of A′. □

As a consequence of Lemma 4, we obtain for Algorithm 2
the same results as for Algorithm 1. Namely, for every
𝑛 ≥ 1, there is an automaton A𝑛 with 𝑛 states and super-
exponentially many events with respect to 𝑛 such that the
observer of the NFA A𝑁𝑆 of Algorithm 2 has 2𝑛2 states;
hence, Algorithm 2 has to make at least 2𝑛2 steps. Further, the
worst-case time complexity of Algorithm 2 isΩ(𝑛22(𝑛2−1)/4)
even if the automata are over a binary alphabet, and its av-
erage time complexity is super-exponential in the number of
states of the automaton if the number of transitions grows
with the number of states. Similarly to the tool implement-
ing Algorithm 1, our tool implementing Algorithm 2 fails
to terminate on the automaton of Figure 1 in 48 hours.

Inclusion-based IFO verification. The reduction to lan-
guage inclusion is of independent interest, and we formulate
it as Algorithm 3. The inclusion problem has been widely in-
vestigated in the literature, resulting in many techniques and
tools. Algorithm 3 is thus a class of algorithms using differ-
ent tools on line 3. We consider the state-of-the-art tools in
Section 6. For an illustration, these tools require less than
a second to verify whether the five-state automaton of Fig-
ure 1 is IFO; recall that the tools implementing Algorithms 1
and 2 failed to terminate in 48 hours.

Algorithm 3. General inclusion-based IFO verification
Input: An automaton A = (𝑄, Σ, 𝛿), sets 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄 ×

2𝑄, and Σ𝑜 ⊆ Σ.
Output: true iff A is IFO wrt 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 : Σ∗ → Σ∗

𝑜.
1: Let A𝑆 be disjoint union of A[𝑠, 𝑇], for (𝑠, 𝑇) ∈ 𝑄𝑆 .
2: Let A𝑁𝑆 be disjoint union of A[𝑠, 𝑇], for (𝑠, 𝑇) ∈ 𝑄𝑁𝑆 .
3: return 𝐿𝑚 (A𝑆) ⊆ 𝐿𝑚 (A𝑜𝑏𝑠

𝑁𝑆
)?

The main idea of the tools is to cut the state space of the con-
structed observer by keeping only selected states. Imagine,
for instance, two sets of states 𝑋 ⊆ 𝑌 computed by the ob-
server. We can keep only 𝑌 with the justification that what-
ever can be computed from 𝑋 can also be computed from 𝑌 .

Although the language-inclusion tools are quite efficient in
practice, see Section 6, they are still based on the observer
construction. Consequently, the upper bound on the time
complexity of Algorithm 3 coincides with that of Algo-
rithms 1 and 2. However, compared with Algorithms 1 and 2,
it is an open problem whether this time complexity is also
tight for Algorithm 3.

5 Special Cases

In this section, we discuss the worst-case time complexity
of Algorithms 1 and 2 for several special cases.

Nonsecret pairs in the form of a Cartesian product. As an
immediate consequence of Algorithm 2, we obtain that if the
set 𝑄𝑁𝑆 is a Cartesian product of states, i.e., 𝑄𝑁𝑆 = 𝐼 × 𝐹,
then the NFA for 𝐿𝑁𝑆 coincides with the input automaton
A where the states of 𝐼 are initial and the states of 𝐹 are
final, i.e., with A[𝐼, 𝐹]. In particular, the NFA recognizing
the language 𝑃(𝐿𝑁𝑆) has 𝑛 states, and hence the inclusion
𝑃(𝐿𝑆) ⊆ 𝑃(𝐿𝑁𝑆) can be tested in time 𝑂 (𝑛22𝑛) = 𝑂∗ (2𝑛).
Thus, we have the following result of Balun et al. (2023),
which improves a similar result of Wu and Lafortune (2013).

Corollary 5. The IFO property of an automaton A =

(𝑄, Σ, 𝛿) with respect to secret pairs 𝑄𝑆 ⊆ 𝑄×𝑄, nonsecret
pairs 𝑄𝑁𝑆 = 𝐼 × 𝐹 ⊆ 𝑄 ×𝑄, and a projection 𝑃 : Σ∗ → Σ∗

𝑜

can be verified in time 𝑂 (𝑛22𝑛). □

Deterministic automata. Another special case arises for
deterministic automata with full observation. Given a deter-
ministic automaton A = (𝑄, Σ, 𝛿) and a set 𝑆 ⊆ 𝑄 ×2𝑄, we
first study the number of states of the minimal DFA recog-
nizing the language

⋃
(𝑠,𝑇 ) ∈𝑆 𝐿𝑚 (A, 𝑠, 𝑇).

Lemma 6. For a deterministic automaton A with an 𝑛-
element state set 𝑄 and a set 𝑆 ⊆ 𝑄 × 2𝑄, the minimal DFA
recognizing the language

⋃
(𝑠,𝑇 ) ∈𝑆 𝐿𝑚 (A, 𝑠, 𝑇) has no more

than (𝑛 + 1)𝑛 states.

Proof. The language
⋃

(𝑠,𝑇 ) ∈𝑆 𝐿𝑚 (A, 𝑠, 𝑇) can be repre-
sented by an NFA A′ constructed as a disjoint union of
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A[𝑠, 𝑇], for (𝑠, 𝑇) ∈ 𝑆. Without loss of generality, we as-
sume that |𝑆 | ≤ |𝑄 |; if there were two pairs (𝑠, 𝑇1), (𝑠, 𝑇2) ∈
𝑆, we could replace them by a single pair (𝑠, 𝑇1 ∪𝑇2). Thus,
A′ consists of |𝑆 | deterministic components, and hence the
state set of the observer of A′ consists of |𝑆 |-tuples, where
on each position, we have either the state of that component,
or the information that the component is no longer active.
Therefore, the observer of A′ has at most (𝑛 + 1)𝑛 states.
Since the minimal DFA that is language equivalent to A′

does not have more states than the observer of A′, the proof
is complete. □

Analogously as the semigroup B𝑛 is related to automata, is
the partial-transformation semigroup PT 𝑛 related to deter-
ministic automata without unobservable events. Therefore,
replacing the semigroup B𝑛 in Algorithm 1 by the semi-
group PT 𝑛 implies that the tight worst-case time complex-
ity of Algorithm 1 for deterministic automata with full ob-
servation is 𝑂 ((𝑛 + 1)𝑛).

Similarly, we immediately have the following theorem giving
us the worst-case time complexity of Algorithm 2.

Theorem 7. If A is an 𝑛-state deterministic automaton with-
out unobservable events, then the time complexity of Algo-
rithm 2 is bounded from above by 𝑂 (𝑛2 (𝑛 + 1)𝑛) and from
below by (𝑛 + 1)𝑛.

Proof. Consider the languages 𝐿𝑆 and 𝐿𝑁𝑆 as defined in
(2). Lemma 6 shows that the number of states of the observer
of the automaton for the language 𝐿𝑁𝑆 is at most (𝑛 + 1)𝑛.
Since the number of states of the automaton for 𝐿𝑆 is at most
𝑛2, the time complexity of Algorithm 2 is 𝑂 (𝑛2 (𝑛 + 1)𝑛).

For the other part, we consider the semigroup PT 𝑛 gener-
ated by four transformations, say 𝑡1, 𝑡2, 𝑡3, 𝑡4. We construct
a deterministic automaton A with 𝑛 states 𝑄 = {1, . . . , 𝑛}
by defining the alphabet Σ = {𝑡1, 𝑡2, 𝑡3, 𝑡4} and the transi-
tion function 𝛿(𝑞, 𝑡𝑖) = 𝑡𝑖 (𝑞), for every 𝑞 ∈ 𝑄 and every
𝑡𝑖 ∈ {𝑡1, 𝑡2, 𝑡3, 𝑡4}. Since every transformation 𝑡 ∈ PT 𝑛 is a
composition of the four transformations 𝑡1, 𝑡2, 𝑡3, 𝑡4, we can
see 𝑡 as a string 𝑤𝑡 over Σ, and hence 𝛿(𝑞, 𝑤𝑡 ) = 𝑡 (𝑞), for
every 𝑞 ∈ 𝑄. Then, for 𝑄𝑁𝑆 = {(𝑖, 𝑖) | 𝑖 ∈ 𝑄}, the automa-
ton A𝑁𝑆 of Algorithm 2 is a disjoint union of automata
A1, . . . ,A𝑛, where A𝑖 = A[𝑖, 𝑖] is a copy of A with state
𝑖 initial and final. Then, the observer of A𝑁𝑆 has as many
states as there are transformations in PT 𝑛, which is (𝑛+1)𝑛,
and hence Algorithm 2 makes at least that many steps. □

Observer property. The observer property was introduced
by Wong and Wonham (1996) and, as pointed out by Feng
and Wonham (2010), is equivalent to the observation equiv-
alence in Hennessy and Milner (1980). Given a DFA A
over Σ generating the language 𝐿 and accepting the language
𝐿𝑚, and a set of observable events Σ𝑜 ⊆ Σ, the projection
𝑃 : Σ∗ → Σ∗

𝑜 is an 𝐿𝑚-observer if for all strings 𝑡 ∈ 𝑃(𝐿𝑚)

and 𝑠 ∈ 𝐿, whenever the string 𝑃(𝑠) is a prefix of 𝑡, then
there exists a string 𝑢 ∈ Σ∗ such that 𝑠𝑢 ∈ 𝐿𝑚 and 𝑃(𝑠𝑢) = 𝑡.

Wong (1998) has shown that, under the observer property,
the observer of A does not have more states than the automa-
ton A itself, and that the observer of A may be computed
in polynomial time with respect to the size of A; see also
Wong and Wonham (2004) and Feng and Wonham (2010).
In combination with Algorithm 2, we have the following.

Theorem 8. Given a deterministic automaton A over Σ, the
sets 𝑄𝑆 and 𝑄𝑁𝑆 of secret and nonsecret pairs, and a set
of observable events Σ𝑜 ⊆ Σ, let A𝑁𝑆 be the disjoint union
of automata A[𝑠, 𝑇], for (𝑠, 𝑇) ∈ 𝑄𝑁𝑆 . If the projection
𝑃 : Σ∗ → Σ∗

𝑜 is an 𝐿𝑚 (A𝑁𝑆)-observer, then the time to
verify IFO is polynomial. □

Remark 9. Although the definition of the observer prop-
erty is for DFAs, it can be applied to NFAs. Indeed, every
nondeterministic choice (𝑝, 𝑎, 𝑞) and (𝑝, 𝑎, 𝑟), with 𝑞 ≠ 𝑟,
can be replaced by three transitions (𝑝, 𝑢, 𝑝′), (𝑝′, 𝑎, 𝑞), and
(𝑝, 𝑎, 𝑟), where 𝑝′ is a new state and 𝑢 is a new unobserv-
able event. The construction results in a DFA, the observer
of which is isomorphic to the observer of the original au-
tomaton.

Partially ordered automata. Partially ordered automata,
aka 1-weak, very weak, linear, acyclic, or extensive au-
tomata, see, e.g., Masopust and Krötzsch (2021), are au-
tomata where the transition relation induces a partial order
on states. This restriction implies that as soon as a state is
left during the computation, it is never visited again. Said
differently, the only cycles in the automaton are self-loops.
Let A = (𝑄, Σ, 𝛿) be an automaton. The reachability rela-
tion ≤ on states is defined by setting 𝑝 ≤ 𝑞 if there is a string
𝑤 ∈ Σ∗ such that 𝑞 ∈ 𝛿(𝑝, 𝑤). The automaton A is partially
ordered if the reachability relation ≤ is a partial order.

Partially ordered automata recognize a subclass of regular
languages strictly included in star-free languages, see Brzo-
zowski and Fich (1980) and Krötzsch et al. (2017). Star-free
languages are languages definable by linear temporal logic,
which is a logic widely used as a specification language in
automated verification.

When we order the states of a partially ordered automaton by
the reachability relation ≤, the matrices of binary relations
corresponding to strings over the partially ordered automaton
are upper triangular. Upper triangular binary matrices form
a semigroup, denoted by UT 𝑛, that has 2𝑛(𝑛+1)/2 elements
and a (unique) minimal generating set with 𝑛(𝑛+1)/2+1 ele-
ments; one of the generators is the identity matrix, see Hivert
et al. (2021). Therefore, for every 𝑛 ≥ 1, there is a partially
ordered automaton A𝑛 with 𝑛 states and 𝑛(𝑛 + 1)/2 events
(we do not need an event corresponding to the identity ma-
trix) such that (i) the semigroup B𝑃 (A𝑛 ) constructed in Al-
gorithm 1 has 2𝑛(𝑛+1)/2 elements, and (ii) the observer con-
structed in Algorithm 2 has 2𝑛(𝑛+1)/2 states. Consequently,
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Negative instances Positive instances

Tool 1 min. 5 min. 1 min. 5 min.

vata 769 583 671 518
trellis 120 64 867 720
faudes 485 71 402 58
mata 467 55 397 49
limi 47 1 56 4

Table 2
The numbers of instances not solved within a given time.

we have the following super-exponential worst-case time
complexity of the algorithms.

Theorem 10. The worst-case time complexity of Al-
gorithms 1 and 2 for partially ordered automata is
𝑂∗ (2𝑛(𝑛+1)/2), and this result is tight. □

Similarly, we could discuss deterministic partially ordered
automata, the strings over which correspond to binary upper-
triangular matrices with up to one nonzero element in each
row. The semigroup of such matrices has (𝑛 + 1)! elements
and 𝑛(𝑛 − 1)/2 generators, resulting in the tight worst-case
time complexity 𝑂∗ ((𝑛 + 1)!) of Algorithms 1 and 2 for de-
terministic partially ordered automata. Note that determin-
istic partially ordered automata are weaker than their non-
deterministic counterpart, see Krötzsch et al. (2017).

6 Experimental Comparison – Benchmarks

We implemented Algorithm 1 in the trellis tool and Algo-
rithm 2 in the faudes tool. We call the latter tool faudes be-
cause it uses the core of the C++ library libFAUDES. 2 Al-
gorithm 3 is a schema implemented as a transducer taking
an IFO instance and creating a language-inclusion instance
that is subsequently verified by an external tool. Included
tools are vata of Abdulla et al. (2010), limi of Černý et al.
(2017), and mata of Chocholatý et al. (2024). 3

We ran experiments on an Ubuntu 22.04.3 LTS machine
with 32 Intel(R) Xeon(R) CPU E5-2660 v2@2.20GHz pro-
cessors and 246 GB memory, executing 30 experiments in
parallel, using the parallel tool of Tange (2023). Each
tool was given a timeout of five minutes. The data and
tools are available at https://apollo.inf.upol.cz:81/
masopust/ifo-benchmarks, where we further present re-
sults of experiments on random data.

Table 2 summarizes the number of instances the tool did not
solve within the given timeout. The best performance is ob-
tained by limi, which solved almost all instances within five
minutes. It is worth noticing that trellis performs very well

2 https://fgdes.tf.fau.de/faudes/index.html
3 For technical problems and memory consumptions, we excluded
hkc of Bonchi and Pous (2013) and rabit of Clemente and Mayr
(2019).

Tool Negative instances Positive instances

vata 51.233 / 298.907 / 0.004 58.317 / 289.707 / 0.005
trellis 14.985 / 298.882 / 0.003 91.045 / 294.742 / 0.004
faudes 102.447 / 295.533 / 0.006 82.658 / 297.417 / 0.006
mata 81.044 / 299.024 / 0.006 60.948 / 291.438 / 0.005
limi 20.555 / 135.465 / 0.188 18.652 / 291.571 / 0.205

Table 3
Average/maximum/minimum computation times in seconds.

for negative instances, but very badly for positive instances.
This observation is in accordance with theoretical results
where, for negative instances, the computation of trellis stops
as soon as a counterexample is found, whereas for positive
instances, each element of the semigroup has to be verified.

The average, maximum, and minimum computation times of
the tools are summarized in Table 3. On average, limi per-
forms the best on both negative and positive instances, while
trellis performs the best for negative instances. The reason
why the performance of trellis is bad for positive instances
was discussed above. Its success for negative instances, on
the other hand, may come from the possibility of quickly ar-
riving at a counterexample if IFO is not satisfied. However,
the question why limi performs so well on both types of in-
stances is an open problem that may suggest the existence
of a theoretically faster algorithm for IFO verification.

Figure 2 shows the number of instances solved by the tools
in five minutes. It confirms that limi is the best tool to verify
IFO, perhaps run with trellis in parallel to quickly catch
negative instances. It is a challenging question whether the
combination of the algorithms behind these tools may result
in a better algorithm or help us answer the open problem of
the complexity of the IFO-verification problem.

Figure 3 shows the time to solve instances of particular sizes.
Except for the case of trellis for negative instances, the plots
in a sense confirm the theoretical (super)exponential worst-
case time complexity. Indeed, the reader can see that the plots
resemble the positive part of the graph of an exponential
function. The growth of the function is fastest for vata and
for positive instances of trellis. On the other hand, for limi,
the growth is very slow, which makes the tool very attractive
for the IFO verification.

We would like to point out that the results on random data,
presented at the git repository, show the same results. There,
we generated uniformly at random 300 IFO instances for
each of 250, 500, 750, . . . , 6000 states, which resulted in
7200 random IFO instances.

Quite an efficient behavior of the advanced inclusion-based
tools, in particular of the limi tool, compared with the trellis
tool, is of particular significance, namely if the reader real-
izes that the inputs for the inclusion-based tools are of size
quadratically larger than the inputs for trellis. In many cases,
they have millions of states and even more transitions.
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(a) Negative instances.
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(b) Positive instances.

Figure 2. Instances computed in five minutes. The 𝑥-axis displays
the time (0–300 seconds), and the 𝑦-axis displays the number of
solved instances in that time (0–994 for negative and 0–1001 for
positive instances).

Finally, we would like to mention that the trellis and faudes
tools implementing the textbook algorithms (Algorithm 1
and Algorithm 2) are on purpose without any optimizations.
Our results thus in no way say anything about (in)efficiency
of the libFAUDES library.
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