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Abstract

We investigate modular supervisory control of discrete-event systems composed of several groups of components, where each group
consists of similar modules. Because of the similar structures of the modules, such systems can be represented as a set of (group)
templates. Supervisory control can then be performed on these templates, resulting in a set of template supervisors. We propose a modular
approach to construct the template supervisors based on the local computation of supremal symmetric sublanguages and on the concept
of conditional decomposability. The supremal symmetric sublanguage of a decomposable language turns out to be decomposable, and can
thus be computed locally. It is proven that the local supervisors of the components of a group are similar and can thus be obtained by a
symmetry map from the template supervisor of the group.
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1 Introduction

In large-scale engineering systems, cf. Agarwal et al. (2019);
Ding et al. (2019); Du et al. (2020), multiple agents are often
divided into groups of subsystems according to their roles
as in Amini et al. (2020). Within each group, the agents
(such as robots or AGVs in Wu and Zhou (2007b); Luo
et al. (2015)) handle similar jobs, and have therefore similar
behaviors, cf. also Su and Lennartsson (2017); Wu and Zhou
(2007a); Wurman et al. (2008). Such multi-agent systems
are referred to as discrete-event systems (DES) with similar
components, see e.g. Rohloff and Lafortune (2006); Su and
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Lennartsson (2017); Wu and Zhou (2007a); Wurman et al.
(2008), where components in the same group have similar
state transition structures.

The control problems of DES with similar components have
been discussed in the literature. Eyzell and Cury (2001) in-
vestigated the symmetry of systems to reduce the complexity
of supervisory control by constructing a reduced automa-
ton. A quotienting technique has been recently presented
in Basu and Kumar (2021) for simplification of non deter-
ministic automata. Wang et al. (2019) studied blocking and
deadlocking for systems with isomorphic modules. Rohloff
and Lafortune (2006) explored the control and verification
problems of DES with similar components, and introduced
the concept of symmetry. They focused on existential results
and identified the necessary and sufficient conditions for the
existence of a set of similar local supervisors that enforce a
given specification. These conditions include, among others,
separability (also known as decomposability) and symmetry.

Since the monolithic synthesis becomes computationally ex-
pensive and infeasible for a large number of agents, modu-
lar methods have been proposed for systems with a similar
structure to avoid the synthesis of a monolithic system. Jiao
et al. (2017) considered systems consisting of groups of ma-
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chines having an isomorphic structure and extracted the con-
trol information with the help of the state tree structures. Liu
et al. (2019) investigated modular control of DES with simi-
lar components under some restrictive assumptions, such as
the agents do not share events and all events are observable.

Our contribution. In this paper, we use the symmetry map
of Rohloff and Lafortune (2006), which is better suited for
the case, where agents share some (global) events and for
the case of partial observation of events. Our work extends
the results of Rohloff and Lafortune (2006) by dropping the
assumptions that the specification is symmetric, decompos-
able, controllable, and normal. If the specification language
fails to be symmetric, we show that the supremal symmet-
ric sublanguage always exists, and we show how to compute
it in a modular way (Theorem 7). We use a more general
concept of conditional decomposability, which relaxes the
assumption that the given specification is decomposable ac-
cording to the alphabets of local agents. Concerning con-
trollability and normality, we make use of supremal control-
lable and relatively observable sublanguages, and of the fact
that supremal controllable and relatively observable sublan-
guages of a set of similar (local) specifications remain sim-
ilar. This observation allows us to base our template super-
visors on these notions. Moreover, Rohloff and Lafortune
(2006) assume that all local agents are similar, that is, they
considered only a single group of similar agents. We con-
sider a modular system that consists of several groups of
similar agents, that is, the agents from different groups need
not be similar. The relaxation of these four assumptions and
the similarity of all local plants lead to Theorem 10 where a
template supervisor is designed for each group. Local super-
visors of the subsystems within a group are obtained from
the template supervisor of the group with the help of a sym-
metry map that maps the events of the template supervisor
to the relevant global and private events of each subsystem.

2 Preliminaries

A generator G = (Z,Σ, δ, z0, Zm) is a quintuple, where Σ
is a finite set of events, Z is a finite set of states, z0 ∈ Z
is an initial state, Zm ⊆ Z is a set of marker states, and
δ : Z × Σ → Z is a (partial) transition function. As usual,
δ can be extended to δ : Z × Σ∗ → Z , where Σ∗ is the
set of all finite-length strings, including the empty string
ε. The closed behavior of G is the language L(G) = {s ∈
Σ∗ | δ(z0, s) ∈ Z}, and the marked behavior of G is the set
Lm(G) = {s ∈ L(G) | δ(z0, s) ∈ Zm}. The length of a string s
is denoted by |s |. The prefix closure of a language L is the set
of its prefixes. For a natural number n, let [1,n] = {1, . . . ,n}.

Let Σ be partitioned into the set of controllable events Σc
and the set of uncontrollable events Σu = Σ\Σc . A language
K ⊆ Σ∗ is controllable with respect to L(G) and Σu if KΣu∩
L(G) ⊆ K . Let C(K, L(G)) = {E ⊆ K | EΣu ∩ L(G) ⊆ E}
denote the set of all controllable sublanguages of K , and
supC(K, L(G)) = ∪ {E | E ∈ C(K, L(G))} its supremum.

To model partial observation, let Σ be further partitioned
into the set of observable events Σo and the set of un-
observable events Σuo = Σ \ Σo. Let Q : Σ∗ → Σ∗o de-
note the projection erasing all events from Σuo Cassan-
dras and Lafortune (2008). Let K ⊆ C ⊆ Lm(G) be lan-
guages. Then K is relatively observable with respect to
C, G, and Q, or C-observable, provided that, for every
s, s′ ∈ Σ∗ and every σ ∈ Σ, if sσ ∈ K , s′ ∈ C, s′σ ∈ L(G),
and Q(s) = Q(s′), then s′σ ∈ K Cai et al. (2015). Let
O(K, L(G)) = {E ⊆ K | E is K-observable with respect to
G and Q} denote the set of all K-observable sublanguages
of K , and supO(K, L(G)) = ∪{E | E ∈ O(K, L(G))} its
supremum.

Let CO(K, L(G)) = C(K, L(G)) ∩ O(K, L(G)) denote the
set of all sublanguages that are controllable with respect to
L(G) and Σu , and K-observable with respect to G and Q.
Then CO(K, L(G)) has supremum supCO(K, L(G)).

A language K ⊆ Σ∗ is decomposable with respect to alpha-
bets Σ1, . . . ,Σn if K = ‖n

i=1Pi(K), where Pi : Σ∗ → Σ∗i is the
projection and ‖ is the synchronous product, defined as fol-
lows. For local languages Li ⊆ Σ

∗
i , ‖

n
i=1Li = ∩

n
i=1P−1

i (Li) ⊆

Σ∗, where Σ = ∪n
i=1Σi is the global alphabet. For automata

definition and more details see the literature Wonham and
Cai (2019).

3 Modular control of DES with similar components

We investigate modular supervisory control for DES with
` ≥ 1 groups of similar agents, {G1, . . . ,G`}, i.e. for i =
1, . . . , `, Gi = {Gi1, . . . ,Gini }, where Gi j, j = 1, . . . ,ni , are
similar as defined below. For all i, Gi j are over Σi j of the
same cardinality that are decomposed as Σi j = Σpij ∪ Σgi ,
where Σgi is the global (shared) alphabet of the group Gi ,
and Σpij is the private alphabet of Gi j . Since Σpij are of the
same cardinality for the group Gi , we denote the “rewriting”
bijection by ψi

j j′ : Σpij → Σpij′ . The set of all events in the
system is denoted by Σ = ∪i=1Σi , where Σi = ∪nij=1Σi j is the
alphabet of group Gi . The group symmetry map Ψi

j j′ : Σ→
Σ for group Gi is defined as

Ψ
i
j j′(σ) =

{
ψi
j j′(σ) if σ ∈ Σpij ∪ Σpij′

σ if σ ∈ Σ \ (Σpij ∪ Σpij′)
(1)

Note that Ψi
j j′ interchanges the private events of agents Gi j

and Gi j′ in the i-th group, while all the other events are kept
unchanged. For instance, if i = 1 and Σ1j = {aj,a}, j =
1, . . . ,n1, with a being the shared event, then Ψ1

j j′(aj) = aj′ ,
Ψ1

j j′(aj′) = aj , Ψ1
j j′(a) = a and Ψ1

j j′(ak) = ak for all k <
{ j, j ′}. We extend Ψi

j j′ to Ψ
i
j j′ : Σ

∗ → Σ∗ in a usual way,
i.e. Ψi

j j′(ε) = ε and Ψi
j j′(wa) = Ψi

j j′(w)Ψ
i
j j′(a) for a ∈ Σ

and w ∈ Σ∗. Moreover, Ψi
j j′ is extended to languages by

Ψi
j j′(L) = {Ψ

i
j j′(w) ∈ Σ

∗ |w ∈ L}, L ⊆ Σ∗.
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For any j, j ′ ∈ [1,ni], Ψi
j j′ = Ψ

i
j′ j , (Ψ

i
j j′)
−1 = Ψi

j′ j = Ψ
i
j j′ ,

and Ψi
j j = Ψ

i
j j′ ◦Ψ

i
j′ j is the identity. Moreover, Ψi

j j′ is mono-
tone, i.e. for K ⊆ K ′, Ψi

j j′(K) ⊆ Ψ
i
j j′(K

′).

A group of agents Gi is said to be similar under Ψi
j j′ if

(∀ j, j ′ ∈ [1,ni]) L(Gi j) = Ψ
i
j j′(L(Gi j′)) .

Note that this means that every agent can be obtained from
another by interchanging their corresponding private events.
The following property is often used. If for all j, j ′ ∈ [1,ni],
Ψi

j j′(L(Gi j) ⊆ L(Gi j′), then the agents in Gi are similar.
Indeed, the other inclusion follows by applying Ψi

j j′ on both
sides from monotonicity and

Ψ
i
j j = Ψ

i
j j′ ◦ Ψ

i
j′ j is the identity. (2)

We assume that each group of agents Gi is composed of
similar generators under Ψi

j j′ , that is, Gi = {Gi1, . . . ,Gini },
where L(Gi j) = Ψ

i
j j′(L(Gi j′)), for all j, j ′ ∈ [1,ni].

The plant G is the synchronous product of all agents:

G = ‖`i=1Gi, where Gi = ‖
ni
j=1Gi j . (3)

Since G is decomposed in a top-down way, we conditionally
decompose a global specification K in the top-down way as
well. Let ∪i,j∈[1,`](Σi ∩ Σj) ⊆ Σk ⊆ Σ and

Σgi ⊆ Σki ⊆ Σi ,

where Σgi are low-level global alphabets and Σki are low-
level coordinator alphabets. A language K is two-level condi-
tionally decomposable with respect to alphabets Σ1, . . . ,Σ` ,
a high-level coordinator alphabet Σk , and the low-level co-
ordinator alphabets Σk1 , . . . , Σk` if

K = ‖`i=1Pi+k(K) , and (4)
Pi+k(K) = ‖

ni
j=1Pi j+ki+k(K) , (5)

where Pi+k : Σ∗ → (Σi ∪ Σk)
∗ = (∪

ni
j=1Σi j ∪ Σk)

∗ and
Pi j+ki+k : Σ∗ → (Σi j ∪ Σki ∪ Σk)∗, i = 1, . . . , `, j = 1, . . . ,ni .
Here we consider the coordinated group alphabets Σi ∪ Σk ,
where Σk is the top coordinator alphabet. Note that the
coordinator alphabet Σki of the group coordinator Gki con-
tains all shared events of the group, i.e. Σki ⊇ Σgi . The
two-level conditional decomposability extends conditional
decomposability to large plants structured into groups and
enables to consider a non-decomposable specification as
decomposable over extended local alphabets (enriched by
coordinator events).

We say that a two-level conditionally decomposable lan-
guage K is symmetric by group (according to the alphabets

inside groups) if for every group i = 1, . . . , ` we have

(∀ j, j ′ ∈ [1,ni]) Pi j+ki+k(K) = Ψ
i
j j′(Pi j′+ki+k(K)) ,

that is, the languages Pi1+ki+k(K), . . . ,Pini+ki+k(K) are sim-
ilar under Ψi

j j′ . We point out that the specification K ⊆
Lm(G) does not need to be symmetric and decomposable.
If the specification is not decomposable, then the two-level
conditional decomposability can be used to decompose the
specification according to the two-level (group) structure of
subsystems.

Now we recall the multilevel coordination control synthe-
sis Komenda et al. (2013) for groups of local subsystems,
under the assumption that K is two-level conditionally de-
composable. The local supervisors Si1, . . . ,Sini for genera-
tors extended by the coordinator events are computed by

Lm(Si j) = supCO(Pi j+ki+k(K), L(Gi j ‖Gki ‖Gk)) (6)

where Gk = ‖
`
i=1Pk(Gi) is the high-level coordinator, Gki =

‖
ni
j=1Pki (Gi j) are the low-level (group) coordinators for i =

1, . . . , `, Pk : Σ∗ → Σ∗
k
and Pki : Σ∗i → Σ

∗
ki
. Let us write

equation (6) as

Si j = supCO(Pi j+ki+k(K), Li j+ki+k), (7)

where Si j = Lm(Si j) and Li j+ki+k = L(Gi j)‖L(Gki )‖L(Gk).

Since the underlying plants are given by synchronous prod-
ucts of the plants with the group coordinator and the top
coordinator, the products Gi j ‖Gk ‖Gki play the role of the
local plants Gi j . If the specification is not symmetric, then
we can compute the supremal symmetric sublanguage of K
by Theorem 7.

Because global coordinator events from Σk might belong to
different group alphabets, we need Ψi

j j′ to be defined on the
whole alphabet Σ. Indeed, in the group specification Pi+k(K)
there can be high-level coordinator events from Σ \ Σi , and
hence in (1) we consider the whole alphabet Σ and not just
Σi . If local specification languages of the group Gi , namely
Pi j+ki+k(K), j = 1, . . . ,ni are not similar with respect toΨi

j j′ ,
we first compute the set of similar sublanguages for this
(coordinated) group, which needs the transitivity property
of the group symmetry map.

Note that transitivity of the group symmetry map does not
hold, i.e., Ψi

j j′Ψ
i
j′`
, Ψi

j`
. The problem is that in conditional

decompositions the local alphabets extended by coordinator
events are in general larger than the private alphabets, while
we insist on keeping the symmetry for the originally given
distribution of local alphabets Σi j = Σpij ∪ Σgi into private
alphabets and global alphabets. To make sure that the transi-
tivity of the symmetric map holds for two-level conditional
decomposable languages, we give the following lemma with
a condition that guarantees transitivity.
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Lemma 1 Consider the local specification languages Kil ⊆

(Σil ∪ Σki ∪ Σk)
∗ of the group Gi for some l ∈ {1, . . . ni}.

Assume that for all j, j ′ ∈ {1, . . . ni} such that j , l and j ′ ,
l we have Ψi

j j′(Kil) = Kil . Then Ψi
j j′Ψ

i
j′l
(Kil) = Ψ

i
jl
(Kil).

PROOF. We first show that the assumption implies that
for all j, j ′ ∈ [1,ni] such that j , l and j ′ , l we
haveΨi

j j′Ψ
i
j′l
(s) = Ψi

jl
Ψi

j j′(s). We apply Ψi
jl
on both sides of

Ψi
j j′(Kil) = Kil and for all j, j ′ ∈ {1, . . . ni} such that j , l

and j ′ , l we obtainΨi
jl
Ψi

j j′(Kil) = Ψ
i
jl
(Kil). Now we need

to show thatΨi
j j′Ψ

i
j′l
(Kil) = Ψ

i
jl
Ψi

j j′(Kil) for all j, j ′ ∈ [1,ni]
such that j , l and j ′ , l. We use induction to prove it.
Assume s ∈ Kil . We will show that Ψi

j j′Ψ
i
j′l
(s) = Ψi

jl
Ψi

j j′(s).

The base step is immediate, for s = ε the claim holds
true. Assume that the claim holds for all strings s of
length n > 0, i.e. Ψi

j j′Ψ
i
j′l
(s) = Ψi

jl
Ψi

j j′(s). Now we
show that for every a ∈ Σ such that sa ∈ Kil we
have Ψi

j j′Ψ
i
j′l
(sa) = Ψi

jl
Ψi

j j′(sa). Since Ψi
j j′Ψ

i
j′l
(sa) =

Ψi
j j′Ψ

i
j′l
(s)Ψi

j j′Ψ
i
j′l
(a) = Ψi

jl
Ψi

j j′(s)Ψ
i
j j′Ψ

i
j′l
(a), we prove

that for every a ∈ Σ, Ψi
j j′Ψ

i
j′l
(a) = Ψi

jl
Ψi

j j′(a). We distin-
guish the following cases:

If a = aj ∈ Σpij , then since sa ∈ Kil , it follows from the
assumption Ψi

j j′(Kil) = Kil for all j, j ′ , l that Ψi
j′l
(aj) = aj

in case j ′ , j. Therefore, Ψi
j j′Ψ

i
j′l
(aj) = Ψ

i
j j′(aj) = aj′

and Ψi
jl
Ψi

j j′(aj) = Ψ
i
jl
(aj′) = aj′, as well, where aj′ =

ψi
j j′ ∈ Σpij′ and Ψ

i
jl
(aj′) = aj′ follows again from our as-

sumption and j ′ , l. If j ′ = j and j ′ , l then we have
Ψi

j′l
(aj) = al , but also Ψi

j j′Ψ
i
j′l
(aj) = Ψ

i
j j′(al) = al and

Ψi
jl
Ψi

j j′(aj) = Ψ
i
jl
(aj) = al .

If a = al ∈ Σpil , then since sa ∈ Kil , it follows from
the assumption that Ψi

j j′(al) = al . Therefore, Ψi
j j′Ψ

i
j′l
(al) =

Ψi
j j′(aj′) = aj and Ψi

jl
Ψi

j j′(al) = Ψ
i
jl
(al) = aj, where aj =

ψi
jl
(a) ∈ Σpij . In case j ′ = j nothing is changed in the above

case, both sides equal aj ;

If a = aj′ ∈ Σpij′ , then Ψi
j j′Ψ

i
j′l
(aj′) = Ψ

i
j j′(al) = al and

Ψi
jl
Ψi

j j′(aj′) = Ψ
i
jl
(aj) = al, where al = ψi

jl
(aj) ∈ Σpil . In

case j ′ = j both sides equal al .

If a ∈ Σ \ (Σpij ∪ Σpij′ ∪ Σpil), then Ψi
j j′Ψ

i
j′l
(a) = Ψi

j j′(a) =
a = Ψi

jl
Ψi

j j′(a), because a is not changed by the definition of
the group symmetry map. We thus prove that for all j, j ′ ∈
[1,ni] such that j , l and j ′ , l we have Ψi

j j′Ψ
i
j′l
(s) =

Ψi
jl
Ψi

j j′(s).

The cases l = j and l = j ′ do not require any as-
sumption. If l = j then Ψi

j j′Ψ
i
j′l
(Kil) = Ψ

i
j j′Ψ

i
j′ j(Ki j) =

Ψi
j j(Ki j) = Ψ

i
jl
(Kil). Similarly, If l = j ′ then Ψi

j j′Ψ
i
j′l
(Kil) =

Ψi
j j′Ψ

i
j′ j′(Ki j′) = Ψ

i
j j′(Ki j′) = Ψ

i
jl
(Kil). That is, s ∈

∩
ni
l=1Ψ

i
jl
(Kil). This completes the proof of transitivity. �

The assumption in Lemma 1 requires that coordinated events
from Σki∪Σk are added to local alphabets Σil such that do not
alter symmetry. It might look at first sight that the assumption
is not restrictive at all and it always holds true, but remem-
ber that Kil ⊆ (Σil ∪ Σki ∪ Σk)

∗, because Kil = Pil+ki+k(K)
contains in general events from Σi j for some j , l. The
meaning of our assumption is that after coordinator events
are added to the local alphabets (as proposed in the algo-
rithms for computing coordinator alphabets, see Komenda
et al. (2012, 2013)), the local specifications remain similar.

Now we show how to obtain sets of similar specification
languages in the groups.

Proposition 2 Let us consider the framework introduced
in (4) and (5), let K = ‖`

i=1Pi+k(K) be a two-level de-
composable language with Pi+k(K) = ‖

ni
j=1Pi j+ki+k(K) and

denote Kil = Pil+k+ki (K). Let K ′i j = ∩
n
j′=1Ψ

i
j j′(Ki j′) =

∩n
j′=1Ψ

i
j j′(Pi j′+ki+k(K)). If Ψi

j j′(Kil) = Kil for all j, j ′ ∈
{1, . . . ni} such that j , l and j ′ , l, then for all j, j ′ ∈ [1,ni]
we have K ′i j = Ψ

i
j j′(K

′
i j′) , i.e.

∩
ni
l=1Ψ

i
jl(Kil) = Ψ

i
j j′

(
∩
ni
l=1Ψ

i
l j′(Kil)

)
.

Stated in words, the new local specification languages
K ′
i1, . . . ,K

′
in in group Gi are similar.

PROOF. Let s ∈ Ψi
j j′

(
∩
ni
l=1Ψ

i
l j′
(Kil)

)
. Then, there exists a

string s′ ∈ ∩ni
l=1Ψ

i
l j′
(Kil) such that Ψi

j j′(s
′) = s. We have

s′ ∈ ∩ni
l=1Ψ

i
l j′
(Kil) = ∩

ni
l=1Ψ

i
j′l
(Kil), thus s′ ∈ Ψi

j′l
(Kil) for

l = 1, . . . ,ni . Consequently, s = Ψi
j j′(s

′) ∈ Ψi
j j′Ψ

i
j′l
(Kil) =

Ψi
jl
(Kil), where Lemma 1 is used in the last equality. Thus,

Ψi
j j′(∩

ni
l=1Ψ

i
l j′
(Kil)) ⊆ ∩

ni
l=1Ψ

i
jl
(Kil). Since for similarity one

inclusion is enough, see (2), K ′i j for all j, j ′ ∈ [1,ni] are
similar. �

To prove the equivalence relationship between symmetry of
a language and similarity of its local projections, we need
Lemma 3 and Lemma 4. The following lemma relates the
local projections to symmetry maps.

Lemma 3 Let s ∈ Σ∗. If s = Ψi
j j′(s

′), then Ψi
j j′(Pj(s)) =

Pj′(s′) and Ψi
j j′(Pj′(s)) = Pj(s′). Moreover, s = Ψi

j j′(s
′)

implies that Pl(s) = Pl(s′) for l , j and l , j ′.
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PROOF. Note that s = Ψi
j j′(s

′) means that s and s′ are
of the same length. We use induction on the length of s.
The base step is immediate, because for s = s′ = ε the
claim holds true. Assume that the claim holds for strings of
length n > 0, and consider two strings s = ta and s′ = t ′b
for which s = Ψi

j j′(s
′). Then, a = Ψi

j j′(b). According to
the definition of Ψi j , we have the following cases: (1) if
b ∈ Σgi ∪ (Σ \ (Σi j ∪ Σi j′)), then b = a and the claim holds
by induction; (2) if b ∈ Σi j and a ∈ Σi j′ , then Ψi

j j′(Pj(ta)) =
Pj′(t ′b) and Ψi

j j′(Pj′(ta)) = Pj(t ′b), which follows from the
induction hypothesis and the fact that both the projections
and the symmetry maps are catenative; (3) the case where
b ∈ Σi j′ and a ∈ Σi j is analogous to (2). The last claim that
s = Ψi

j j′(s
′) implies Pl(s) = Pl(s′), for l , j and l , j ′,

follows directly from the definition of Ψi
j j′ . �

We also need in the proof of Proposition 5 a lemma about
distributivity of Ψj j′ with the synchronous product.

Lemma 4 Let Kl ⊆ Σ
∗
il
, for l = 1, . . . ,n. ThenΨi

j j′(‖
n
l=1Kl) =

‖n
l=1Ψ

i
j j′(Kl).

PROOF. Let s ∈ Ψi
j j′(‖

n
l=1Kl). Then there is s′ ∈ ‖n

l=1Kl

such that s = Ψi
j j′(s

′). We show that s ∈ ‖n
l=1Ψ

i
j j′(Kl). By

definition of Ψi
j j′ , we distinguish three cases.

(1) If j , l , j ′, then Ψi
j j′(Kl) = Kl ⊆ Σ

∗
il
. Hence, we

show that Pl(s) ∈ Ψi
j j′(Kl) = Kl . Since s = Ψi

j j′(s
′),

we have that Pl(s) = Pl(s′) ∈ Pl(‖
n
r=1Kr ) ⊆ Kl .

(2) If l = j, then Ψi
j j′(Kj) ⊆ Σ

∗
i j′ . Hence, we show that

Pi j′(s) ∈ Ψi
j j′(Kj). However, from Lemma 3 we have

that s = Ψi
j j′(s

′) implies Pj′(s) = Ψi
j j′(Pj(s′)) ∈

Ψi
j j′(Pj(‖

n
l=1Kl)) ⊆ Ψ

i
j j′(Kj).

(3) The case l = j ′ is symmetric to the previous case.

Let s ∈ ‖n
l=1Ψ

i
j j′(Kl). We show that s ∈ Ψi

j j′(‖
n
l=1Kl). We

again distinguish three cases.

(1) If j , l , j ′, then Ψi
j j′(Kl) = Kl ⊆ Σ

∗
il
, i.e s ∈

‖n
l=1Ψ

i
j j′(Kl) implies that Pl(s) ∈ Ψi

j j′(Kl) = Kl .
(2) If l = j then Ψi

j j′(Kj) ⊆ Σ
∗
i j′ . Hence, s ∈ ‖n

l=1Ψ
i
j j′(Kl)

implies that Pj′(s) ∈ Ψi
j j′(Kj). This means that Pj′(s) =

Ψi
j j′(s

′
j) for some s′j ∈ Kj .

(3) Case l = j ′ is symmetric to l = j.

We need to show that s = Ψi
j j′(s

′) for some s′ ∈ ‖n
l=1Kl ,

i.e. Pl(s′) ∈ Kl for all l = 1, . . . ,n. For s′ = Ψi
j j′(s),

Ψi
j j′(s

′) = Ψi
j j′Ψ

i
j j′(s) = s, and we can see that s′ ∈

(‖n
l=1Kl). Indeed, for j , l , j ′, Pl(s) ∈ Kl , i.e.,

Pl(s′) = Pl(s) ∈ Kl as well. Lemma 3 and s = Ψi
j j′(s

′)

imply that Pj(s′) = Ψi
j j′Pj′(s) = Ψi

j j′Ψ
i
j j′(s

′
j) = s′j ∈ Kj ,

and Pj′(s′) = Ψi
j j′Pj(s) = Ψi

j j′Ψ
i
j j′(s

′
j′) = s′j′ ∈ Kj′ . Hence,

s′ ∈ ‖n
l=1Kl and s ∈ Ψi

j j′(‖
n
l=1Kl). �

We recall from Rohloff and Lafortune (2006) that symmetric
languages over group alphabets are fixpoints of all symmetry
maps. A language K is symmetric if, for every j, j ′ ∈ [1,n],
K = Ψj j′(K).

Example 1 As a running example, let Σ1 = {a1, c}, Σ2 =
{a2, c} for K = {a1a2c,a2a1c}∗, cf. right of figure 1. Since
Ψ12(c) = c, Ψ12(a1) = a2, and Ψ12(a2) = a1, we have K =
Ψ12(K), i.e. K is symmetric.

The relationship between symmetry of a language and sim-
ilarity of its local projections is needed for investigation of
existence and computation of supremal symmetric sublan-
guages, but it is interesting by itself that a language over
global alphabet is symmetric iff its local projections form a
set of similar languages.

Proposition 5 1. Let K = ‖n
j=1Pj(K). Then, K is symmetric

iff the languages P1(K), . . . ,Pn(K) are similar.
2. For a general decomposition K = ‖n

j=1Kj for some Kj ⊆

Σ∗j , j ∈ [1,n], if the languages K1, . . . ,Kn are similar, then
K is symmetric.

PROOF. 1. "⇒ " Assume that K is symmetric. We need to
show that for all i, j ∈ [1,n], Pj(K) = Ψj j′(Pj′(K)). However,
Lemma 4 implies that K = Ψj j′(K) = ‖n`=1Ψj j′(P`(K)) for
all j, j ′ ∈ [1,n] is a decomposition of K . We know that
Pj′(K) ⊆ Ψj j′(Pj(K)), cf. Willner and Heymann (1991).
Then, Ψj j′(Pj′(K)) ⊆ Ψj j′Ψj j′(Pj(K)) = Pj(K).

"⇐" We need to show that, for all j, j ′ ∈ [1,n], if Pj(K) =
Ψj j′(Pj′(K)), then K is symmetric. However, Ψj j′(K) =
Ψj j′(‖

n
`=1P`(K)) = ‖n`=1Ψj j′(P`(K)), by Lemma 4, which is

equal to ‖n
`=1P`(K) by the similarity assumption, and hence

it is equal to K .

2. The same proof as in "⇐" above can be used with the only
difference that Pj(K) is replaced by arbitrary local languages
Kj for all j ∈ [1,n], because Lemma 4 holds for arbitrary
decompositions. �

Returning to the running example we check that lo-
cal projections of K are similar languages. Indeed,
Ψ12(P1(K)) = Ψ12({a1c}∗) = {a2c}∗ = P2(K), which is
to be expected from Proposition 5 given that we estab-
lished K = P1(K)‖P2(K) = {a1a2c,a2a1c}∗ as a symmetric
language.
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Finally, we will show that supremal symmetric sublanguages
always exist. Let K ⊆ Σ∗i be a group specification and

S(K) = {K ′ ⊆ K | K ′ is symmetric under
the symmetric maps Ψi

j j′ for all j, j ′} .

Theorem 6 The set S(K) is nonempty and closed under
arbitrary unions. In particular, S(K) contains a (unique)
supremal element, supS(K), that is equal to

supS(K) = ∪{K ′ | K ′ ∈ S(K)} .

PROOF. The set S(K) is nonempty, because the empty
language is symmetric and included in S(K). To show that
S(K) is closed under arbitrary unions, let I be an index set
such that K l ∈ S(K) for every l ∈ I, that is, K l = Ψi

j j′(K
l)

for all j, j ′ ∈ [1,ni]. We show that M = ∪l∈IK l is symmetric,
that is, M = Ψi

j j′(M) for every j, j ′ ∈ [1,n]. To show that
Ψi

j j′(M) ⊆ M , let s ∈ Ψi
j j′(M). Then, there exists l ∈ I and

s′ ∈ K l such that s = Ψi
j j′(s

′), and therefore s = Ψi
j j′(s

′) ∈

Ψi
j j′(K

l) = K l ⊆ M . The other inclusion is not needed cf.
(2). �

It follows from Theorem 7 below that ‖ni
j=1 K ′i j is the

supremal sublanguage of Pi+k(K) that is symmetric ac-
cording to Ψi

j j′ . For simplicity we omit in this theorem
the group index i and replace conditional decomposabil-
ity with standard decomposability, namely the role of
Pi+k(K) = ‖

ni
j=1Pi j+ki+k(K) is played by K = ‖n

j=1Kj .

Theorem 7 Let K = ‖n
j=1Kj be a decomposable language.

Then, the supremal symmetric sublanguage of K is equal to
the synchronous product of local similar sublanguages, i.e.,

supS(K) = ‖nj=1

(
∩nj′=1Ψj j′(Kj)

)
. (8)

PROOF. We note that ‖n
j=1

(
∩n
j′=1Ψj j′(Kj′)

)
is symmetric.

From Proposition 2, the languages

K ′j = ∩
n
j′=1Ψj j′(Kj′), j = 1, . . . ,n (9)

form a similar set, and ‖n
j=1

(
∩n
j′=1Ψj j′(K ′j )

)
is sym-

metric by Proposition 5. In order to simplify the proof
of supremality we first show that the right hand side
of (8) simplifies to ∩n

j , j′=1Ψj j′(K). It amounts to show

that ‖n
j=1

(
∩n
j′=1Ψj j′(Kj′)

)
= ∩n

j , j′=1Ψj j′(K). We have
∩n
j , j′=1Ψj j′(K) = ∩j< j′Ψj j′(K). Furthermore, by Lemma 4,

∩j< j′Ψj j′(K) = ∩j< j′Ψj j′(‖
n
l=1Kl) = ∩j< j′ ‖

n
l=1Ψj j′(Kl).

(10)

1

2

3

4

1

2

3

4

a1 b1

b2

b2
a2

a2

a1 b1c a1

a2

a2

a1c

Figure 1. Generators for R (left) and K = supS(R)(right).

By definition of the symmetry maps we have that

Ψj j′(Kl) =


Kl ⊆ Σ

∗
l

if l , j and l , j ′

Ψj j′(Kj) ⊆ Σ
∗
j′ if l = j and

Ψj j′(Kj′) ⊆ Σ
∗
j if l = j ′

Therefore, for any j < j ′ we get that ‖n
l=1Ψj j′(Kl) =

K1‖ . . . ‖Kj−1‖Ψj j′(Kj′)‖Kj+1‖ . . . ‖Ψj j′(Kj)‖ . . . ‖Kn.

Note that we have already put Ψj j′(Kj′), resp. Ψj j′(Kj), to
their corresponding places by taking into account that these
languages are over alphabets Σj , resp. Σj′ .

Since the synchronous product distributes with the language
intersection we can collect in all the components the inter-
sections (over j, j ′ = 1, . . . ,n such that j < j ′) of all lan-
guages over the same alphabets. By collecting the terms over
the alphabet Σl, l ∈ [1,n] we obtain the language Ψ1l(K1) ∩
· · · ∩Ψ1l−1(Kl−1) ∩Kl ∩Ψll+1(Kl+1) ∩ · · · ∩Ψln(Kn) = K ′

l
=

Kl ∩ ∩j′,lΨl j′(Kj′). Therefore, we obtain ∩n
j , j′=1Ψj j′(K) =

∩j< j′ ‖
n
l=1Ψj j′(Kl) = ‖

n
l=1K ′

l
= ‖n

l=1

(
∩n
j′=1Ψl j′(Kj′)

)
, where

the first equality is (10).

It remains to show supremality. Let M ⊆ K be such that
M = Ψj j′(M) for all j, j ′ ∈ [1,n]. By monotonicity of Ψj j′

we have Ψj j′(M) ⊆ Ψj j′(K). Since M = Ψj j′(M), we obtain
that M ⊆ Ψj j′(K) for all j, j ′ ∈ [1,n], and hence M ⊆

K ∩ ∩j,j′Ψj j′(K). �

The formula presented in Theorem 7 is only valid for lan-
guages that are decomposable according to the alphabets
from the symmetry map. It is an open problem how to com-
pute the supremal symmetric sublanguage of indecompos-
able languages.

Let us return once more to the running example. Consider
language R = {a1b∗2a2c,a2a1c,a1b1, b∗2}

∗ depicted on figure
1, where b1 ∈ Σ1 \ Σ2 is another private event of the first
alphabet and b2 ∈ Σ2 \Σ1 is the corresponding private event
of Σ2. Note that R = P1(R)‖P2(R) is decomposable with
P1(R) = {a1c,a1b1}

∗ and P2(R) = {a2c, b2}
∗. Therefore,

according to Theorem 7 we have the following formula for
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the supremal symmetric sublanguage of R:

supS(R) = (P1(R) ∩ Ψ12(P1(R))) ‖ (P2(R) ∩ Ψ21(P2(R))) .

Note that we have supS(R) = K with K from Example 1.

From now on we can assume without loss of generality
that K is conditionally symmetric by group, i.e. for each
group i = 1, . . . , ` and for all local specifications Ki j =

Pi j+k+ki (K), j = 1, . . . ,ni , we have Ki j = Ψ
i
j j′(Ki j′), because

otherwise we can compute sublanguages K ′i j ⊆ Ki j, j =
1, . . . ,ni , as in Proposition 2 that are similar. We recall the
assumption that the group of agents Gi is symmetric under
Ψi

j j′ , namely that

(∀ j, j ′ ∈ [1,ni]) L(Gi j) = Ψ
i
j j′(L(Gi j′)) .

Following the classical synthesis method given in (7), the
local supervisors Si j can be designed for agents Gi j individ-
ually. The computation is, however, intractable without an
upper bound on the number of agents. If local supervisors in
the same group are similar then one may synthesize a tem-
plate supervisor for all local supervisors in one group. The
local supervisors in this group can be obtained by replacing
the private events of the template by the private events of
the corresponding component. To prove similarity of local
supervisors in the same group, we need the following re-
sult stating that the symmetry map commutes with natural
projection.

Lemma 8 Let s ∈ Σ∗i = (∪
ni
j=1Σi j)

∗, Σi jo ⊆ Σi j be the ob-
servable alphabets, and let Q : Σ∗i → Σ∗io = (∪

ni
j=1Σi jo)

∗

be the projection. Assume that Σi jo = Ψi
j j′(Σi j′o). Then,

Ψi
j j′(Q(s)) = Q(Ψi

j j′(s)).

PROOF. We show that Ψi
j j′(Q(s)) = Q(Ψi

j j′(s)) by induc-
tion. Let s = ε , then Ψi

j j′(Q(ε)) = ε = Q(Ψi
j j′(ε)).

Now, we assume that Ψi
j j′(Q(s)) = Q(Ψi

j j′(s)) holds, and
show that Ψi

j j′(Q(sa)) = Q(Ψi
j j′(sa)). Since Ψi

j j′(Q(sa)) =
Ψi

j j′(Q(s))Ψ
i
j j′(Q(a)) = Q(Ψi

j j′(s))Ψ
i
j j′(Q(a)), we need to

show that Ψi
j j′(Q(a)) = Q(Ψi

j j′(a)). We have the following
cases.

Case 1: If a ∈ Σi \ (Σi j ∪ Σi j′), then Ψi
j j′(Q(a)) = Q(a) and

Q(Ψi
j j′(a)) = Q(a). Hence, Ψi

j j′(Q(a)) = Q(Ψi
j j′(a)).

Case 2: If a ∈ (Σi j ∪ Σi j′) ∩ Σio and a ∈ Σi jo ∩ Σgi , then
a ∈ Σi j′o, and we thus have that Ψi

j j′(Q(a)) = Ψ
i
j j′(a) = a

and Q(Ψi
j j′(a)) = Q(a) = a. If a ∈ Σi jo \Σgi , let Ψi

j j′(a) = b.
It then follows from Σi jo = Ψi

j j′(Σi j′o) that b ∈ Σi j′o. Then

Ψi
j j′(Q(a)) = Ψ

i
j j′(a) = b and Q(Ψi

j j′(a)) = Q(b) = b, which
proves that Ψi

j j′(Q(a)) = Q(Ψi
j j′(a)).

Case 3: If a ∈ (Σi j ∪Σi j′)∩(Σi \Σio). If a ∈ (Σi j \Σi jo∩Σgi ,
then a ∈ Σi j′\Σi j′o, and we get that Ψi

j j′(Q(a)) = Ψ
i
j j′(ε) = ε

and Q(Ψi
j j′(a)) = Q(a) = ε . If a ∈ (Σi j \ Σi jo) \ Σgi , we

assume that Ψi
j j′(a) = b, and we have that b ∈ Σi j′ \ Σi j′o

by the assumption that Σi jo = Ψi
j j′(Σj′o). Then Ψj j′(Q(a)) =

Ψj j′(ε) = ε andQ(Ψj j′(a)) = Q(b) = ε . Hence,Ψi
j j′(Q(a)) =

Q(Ψi
j j′(a)).

Therefore, we have Ψi
j j′(Q(s)) = Q(Ψi

j j′(s)). �

Finally, we need a lemma stating that if we have a set of
similar plants, the underlying coordinated plant languages
form a set of similar languages. We introduce notation Li j for
group languages L(Gi j), Lk for the top coordinator language
L(Gk), Lki for the group coordinator language L(Gki ), and
finally Li j+k+ki for the coordinated systems Li j ‖Lk ‖Lki in
the group Gi .

Lemma 9 Assume that plant languages L(Gi j) of group Gi
are similar. If the combined coordinator Gk ‖Gki is symmet-
ric for group symmetry maps Ψi

j j′ , then coordinated plant
languages of group Gi remain similar, i.e. Ψi

j j′(Li j+k+ki ) =

Li j′+k+ki , where Li j+k+ki = L(Gi j)‖L(Gk)‖L(Gki ).

PROOF. According to Lemma 4 we have Ψi
j j′(Li j+k+ki ) =

Ψi
j j′(Li j)‖Ψ

i
j j′(Lk ‖Lki ) = Li j′ ‖Lk ‖Lki = Li j′+k+ki ,

where the symmetry of the combined coordinator, i.e.
Ψi

j j′(Lk ‖Lki ) = Lk ‖Lki is used. �

We are now ready to shown that local supervisors in the
same group are similar, which means that it is sufficient to
apply the group symmetry map Ψi

j1 to compute (j-th) local
supervisor Si j, j = 1, . . . ,ni of group i from the first (tem-
plate) local supervisor Si1 of group i. Note that algorithmi-
cally we simply need to replace the local (private events) of
Si1, i.e. every σ ∈ Σpij , by its corresponding local event of
Si j , which is defined the rewriting bijection ψi

j j′(σ).

Theorem 10 Consider a DES similar by groups {G1,G2, . . . ,
G`} with Gi = {Gi1,Gi2, . . . ,Gini } and global specification
K ⊆ Lm(G) that is two-level conditional decomposable with
respect to alphabets Σ1,Σ2, . . . ,Σ` , Σki , and Σk , and condi-
tionally symmetric by group. Assume that Σi jo = Ψi

j j′(Σi j′o)

and Σi jc = Ψi
j j′(Σi j′c). Then the local supervisors in the

same group are similar and can be obtained by a symmetry
mapping from a template Si1 for i ∈ [1, `], i.e.,

(∀ j ∈ [1,ni]) Si j = Ψ
i
j1(Si1), (11)
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where Lm(Si1) = supCO(Pi1+k+ki (K), Li1+k+ki ).

PROOF. Recall from (7) the expression for Si j . We first
show Ψi

j1(supCO(Pi1+k+ki (K), Li1+k+ki )) ⊆ Pi j+k+ki (K) ∩
Li j+k+ki and then that Ψi

j1(supCO(Pi1+k+ki (K), Li1+k+ki ))

is controllable and relatively observable with respect to
Li j+k+ki .

Let s ∈ Ψi
j j′(Si1). By Ψi

j1(supCO(Pi1+k+ki (K), Li1+k+ki )) ⊆

Ψi
j1(Pi1+k+ki (K) ∩ Li1+k+ki ) we have s ∈ Ψi

j1(Pi1+k+ki (K) ∩
Li1+k+ki ). Since K is symmetric by group, we have that s ∈
Ψi

j1(Pi1+k+ki (K)) = Pi j+k+ki (K) by definition. By the group
similarity of local plants and symmetry of the coordinators,
Lemma 9 gives that s ∈ Ψi

j1(Li1+k+ki ) = Li j+k+ki . Thus we
have s ∈ Pi j+k+ki (K) ∩ Li j+k+ki .

Next we prove that Ψi
j1(supCO(Pi1+k+ki (K), Li1+k+ki )) is

controllable with respect to Li j+k+ki .

Let s ∈ Ψi
j1(supCO(Pi1+k+ki (K), Li1+k+ki )) and sσ ∈

Li j+k+ki for σ ∈ Σu . Then

s ∈ Ψi
j1(supCO(Pi1+k+ki (K), Li1+k+ki ))

⇒ Ψi
1j(s) ∈ Ψ

i
1jΨ

i
j1(supCO(Pi1+k+ki (K), Li1+k+ki ))

⇒ Ψi
1j(s) ∈ (supCO(Pi1+k+ki (K), Li1+k+ki ))

From sσ ∈ Li j+k+ki we obtain Ψi
1j(sσ) ∈ Ψ

i
1j(Li j+k+ki ) =

Li1+k+ki . Since supCO(Pi1+k+ki (K), Li1+k+ki ) is con-
trollable with respect to Li1+k+ki and Ψi

1j(σ) is un-
controllable due to the assumption that controllabil-
ity status is preserved by symmetry map, we have that
Ψi

1j(s)Ψ
i
1j(σ) = Ψ

i
1j(sσ) ∈ supCO(Pi1+k+ki (K), Li1+k+ki ).

Thus

Ψ
i
j1(Ψ

i
1j(sσ)) = sσ ∈ Ψi

j1(supCO(Pi1+k+ki (K), Li1+k+ki ))

= Ψi
j1(supCO(Pi1+k+ki (K), Li1+k+ki )).

Now we show that Ψi
j1(supCO(Pi1+k+ki (K), Li1+k+ki ))

is relatively observable with respect to Li j+k+ki and
Q. Let sa ∈ Ψi

j1(supCO(Pi1+k+ki (K), Li1+k+ki )) and
s′ ∈ Pi j+k+ki (K) such that Q(s) = Q(s′) and s′a ∈ Li j+k+ki .
We show that s′a ∈ Ψi

j1(supCO(Pi1+k+ki (K), Li1+k+ki )).
Then, there exist a string s̃ ∈ Σ∗ and a string ã ∈ Σ such
that s̃ã ∈ supCO(Pi1+k+ki (K), Li1+k+ki ) and Ψi

j1(s̃ã) = sa.
Since K is symmetric by group, we have Pi j+k+ki (K) =
Ψi

j1(Pi1+k+ki (K)). Since s′ ∈ Pi j+k+ki (K), there exists a
string s̃′ ∈ Pi1+k+ki (K) with Ψi

j1(s̃
′) = s′. The agents in the

same group are similar and the combined coordinator is

symmetric, so we obtain by Lemma 9 that Ψi
j1(s
′a) = s̃′ã ∈

Ψi
j1(Li j+k+ki ) = Li1+k+ki . By Lemma 8 and Q(s) = Q(s′),

it follows that Ψi
j1(Q(s)) = Q(Ψi

j1(s)) = Q(s̃) = Q(s̃′) =
Q(Ψi

j1(s
′)) = Ψi

j1(Q(s
′)). It follows from relative observabil-

ity of supCO(Pi1+k+ki (K), Li1+k+ki ) with respect to Li1+k+ki
and Q that s̃′ã ∈ supCO(Pi1+k+ki (K), Li1+k+ki ). Therefore,
Ψi

j1(s̃
′ã) = s′a ∈ Ψi

j1(supCO(Pi1+k+ki (K), Li1+k+ki )). Thus,
Si j ⊆ Ψ

i
j1(Si1) is now proved. Recall that due to (2) this

completes the proof. �

Notice that the computations of local supervisors involved
in the above theorem are independent of the number ni .
By (11), computing Si j for all j ∈ [1,ni] requires the com-
puting of Si1, which requires the computing of Pi1+k+ki (K)
and Li1+k+ki , both of which are independent of ni . There-
fore, the computation of the local supervisors Si1, . . . ,Sini is
independent of the number ni of agents, and thus solves the
state explosion problem of the supervisory control theory.
Moreover, the template Si1 in Theorem 10 can be replaced
by an arbitrary local supervisor Si j in group i. Namely, we
can compute an arbitrary local supervisor in one group and
take this local supervisor as a template.

Remark 11 Theorem 10 requires that the global specifica-
tion K should be two-level conditional decomposable and
symmetric by group. Two-level conditional decomposability
for K is not restrictive since there always exist alphabets
Σki ⊆ Σi and Σk ⊆ Σ such that the global specification is
two-level conditionally decomposable. For the symmetry by
group condition, if K is not symmetric by group, according
to Proposition 2 the set of similar sublanguages for each
group can be computed in a modular way under a given
condition. Therefore, given a similar discrete-event system
and a specification that is symmetric by group, we can get
that the local supervisors in the same group are similar.

4 Illustrative example

Consider a small factory system, adapted from Wonham
and Cai (2019). As displayed in Fig. 2 small factory con-
sists of three input machines G1, G2, G3 and two output
machines G4 and G5 linked by a buffer with capacities
three in the middle. The generators are shown in Fig. 2. Let
Σ = Σc Û∪Σuc = {l1, l3,3} Û∪{l2} for l ∈ [1,5], Σ = Σo Û∪Σuo =
{l1, l3,3} Û∪{l2}, and Σg = {3}. The alphabet of agents in the
input group is Σ1 = ∪

3
j=1Σ1j = ∪

3
j=1{ j1, j2, j3,3} and the

alphabets of agents in the output group are Σ2 = ∪
5
j=4Σ2j =

∪5
j=4{ j1, j2, j3,3}. Based on their different roles, the ma-

chines are divided into two groups: G1 = {G1,G2,G3} and
G2 = {G4,G5}. For different groups, the group symmetry
map is given below.

Ψ
1
j j′( j0) = j ′0;Ψ1

j j′( j1) = j ′1;Ψ1
j j′( j2) = j ′2; j, j ′ = 1,2,3;
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Figure 2. System configuration and plant generator models

Ψ
2
j j′( j0) = j ′0;Ψ2

j j′( j1) = j ′1;Ψ2
j j′( j2) = j ′2; j, j ′ = 4,5;

Ψ
1
j j′(3) = Ψ

2
j j′(3) = 3;

The control specifications are as follows:
1. Agents in the input group to input a workpiece have pri-
ority over agents in the output group to take a workpiece if
an emergency stop happens.
2. The agent in the output group that first requests to take a
workpiece is first granted the workpiece.
These specifications K1 and K2 are in Fig.3. The meanings
of each state of K1 are: state x means all agents are in normal
state; state y denotes agents in the input group have priority
to take a workpiece (by events 11, 21, 31) after emergency
stop (event 3) happens. The meanings of each state of K2
are: state 1 means two agents in the output group are allowed
to take the workpiece; state 2 means agent G4 or G5 request
to take a workpiece (event 43 or 53 happens); state 3 means
agent G4 requests to take a workpiece from the buffer (event
43) since G5 has requested to take a workpiece at state 2,
which leads to that G5 is first granted the workpiece (event
51 is enabled at state 3); similarly, at state 4, G4 is first
granted the workpiece (event 41 is enabled) since G4 first
requests to take a workpiece (event 43 happens at state 2).

The global specification is K = K1‖K2. Let Σk = {3,41,51}.
We have K = K1‖K2 = P1+k(K)‖P2+k(K), where
Pi+k : Σ∗ → (Σi ∪ Σk)∗ for i = 1,2. The high-level coor-
dinator Gk is Gk = Pk(G1)‖Pk(G2), cf. Fig.4. Then we
need to compute the low-level coordinators for each group.
For the input group, let Σk1 = {3,11,21,31}. We thus
get that K1 = P11+k+k1 (K1)‖P12+k+k1 (K1)‖P13+k+k1 (K1),
where P1j+k+k1 (K1) are the local specifications for the
input group with P1j+k+k1 : Σ∗ → (Σ1j ∪ Σk ∪ Σk1 )

∗

and j = 1,2,3, cf. Fig. 4. The corresponding low-

3

11, 21, 31, 41, 51

K1

11, 21, 31

∗ = 12, 22, 32, 42, 52,
13, 23, 33, 43, 53

*
*

43, 53

∗∗

41, 51

∗∗ = 12, 22, 32, 42, 52

** 43

51

**

53

41

**

K2

x y 1

2

3

4

Figure 3. Specification generator models

3
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43, 53

j2

K1

41, 51

j2 43

51

j2

53

41
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Pj+k+k2(K2); j = 4, 5

3,11,21,31

Gk1

3,41,51
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Gk2

3

53 43

43

43

43,53
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Figure 4. Coordinators and local specification generator models

level coordinator Gk1 for the input group is Gk1 =
Pk1 (G1)‖Pk1 (G2)‖Pk1 (G3), cf. Fig.4. It is symmetric. For
the output group, we choose Σk2 = {3,43,53} and have
that K2 = P21+k+k2 (K2)‖P22+k+k2 (K2), where P2j+k+k2 (K2)
are the local specifications, where P2j+k+k1 : Σ∗ →
(Σ2j ∪ Σk ∪ Σk2 )

∗ and j = 4,5, cf. Fig. 4. The coordinator
Gk2 for the output group is Gk2 = Pk2 (G4)‖Pk2 (G5), cf.
Fig.4. It is also symmetric. Since Ψ1

23(P11+k+k1 (K1)) =

P11+k+k1 (K1), Ψ1
13(P12+k+k1 (K1)) = P12+k+k1 (K1), and

Ψ1
12(P13+k+k1 (K1)) = P13+k+k1 (K1), the input group spec-

ification P11+k+k1 (K1), P12+k+k1 (K1), and P13+k+k1 (K1)

are similar. Since Ψ2
45(P24+k+k2 (K2)) = P25+k+k2 (K2),

P24+k+k2 (K2) and P25+k+k2 (K2) are similar. Thus, K is sym-
metric by group. By Theorem 10 local supervisors in each
group are similar, i.e. it suffices to compute one per group,
cf. Fig. 5..

5 Conclusion

An efficient modular approach to compute a set of template
supervisors for plants composed of systems similar by group
is proposed based on local computations of supremal sym-
metric sublanguages and on decomposing specifications. It
is shown that local supervisors for the components of a group
are similar, and can be computed by a symmetry map from
a template supervisor. In a future we plan to extend our ap-
proach to real-time systems.
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