
On Verification of Weak and Strong k-Step
Opacity for Discrete-Event Systems ?

Jiří Balun and Tomáš Masopust

Faculty of Science, Palacky University, Olomouc, Czechia
(e-mails: jiri.balun01@upol.cz, tomas.masopust@upol.cz)

Abstract: Opacity is an important property asking whether a passive observer (an intruder),
who knows the structure of the system but has only a limited observation of its behavior, may
reveal the secret of the system. Several notions of opacity have been studied in the literature,
including current-state opacity, k-step opacity, and infinite-step opacity. We investigate weak
and strong k-step opacity, the notions that generalize both current-state opacity and infinite-step
opacity, and ask whether the intruder is not able to decide, at any instant, when respectively
whether the system was in a secret state during the last k observable steps. We design a new
algorithm to verify weak k-step opacity, the complexity of which is lower than that of existing
algorithms and that does not depend on the parameter k. Then, we show how to use this
algorithm to verify strong k-step opacity by reducing the verification of strong k-step opacity to
the verification of weak k-step opacity. The complexity of the resulting approach is again better
than that of existing algorithms, and does not depend on the parameter k.

Keywords: Discrete event systems, finite automata, opacity, verification, complexity

1. INTRODUCTION

Opacity is an important information flow property that is
used to study security and privacy questions of discrete-
event systems, communication protocols, or computer sys-
tems. It guarantees that a system prevents an intruder
from revealing its secret. The intruder is a passive observer
that knows the structure of the system but that has only
a limited observation of system’s behavior.

The secret is modeled as a set of secret states or as a set
of secret behaviors. Modeling the secret as a set of secret
states results in state-based opacity, introduced by Bryans
et al. (2005, 2008) for Petri nets and transition systems,
and later adapted to automata by Saboori and Hadjicostis
(2007). Modeling the secret as a set of secret behaviors
results in language-based opacity, introduced by Badouel
et al. (2007) and Dubreil et al. (2008). We refer the reader
to the overview by Jacob et al. (2016) for more details.

Many different notions of opacity have been discussed in
the literature, including initial-state opacity and current-
state opacity. While initial-state opacity prevents the in-
truder from revealing, at any instant, whether the system
started in a secret state, current-state opacity prevents the
intruder “only” from revealing whether the current state
of the system is secret. The intruder may, however, later
realize that the system was in a secret state at a former
step of the computation. For example, if the intruder
estimates that the system is in one of two possible states
and, in the next step, the system proceeds by an observable

? Supported by MEYS under the INTER-EXCELLENCE project
LTAUSA19098 and by Palacky University project IGA PrF 2022 018.
T. Masopust is also with Institute of Mathematics of the Czech Acad.
Sci. supported by GAČR grant GC19-06175J and by RVO 67985840.

event enabled only from one of the states, then the intruder
reveals the state in which the system was one step ago.

This problem motivated Saboori and Hadjicostis (2007,
2012) to introduce the notion of weak k-step opacity, which
requires that the intruder is not able to ascertain the secret
in the current state and k subsequent observable steps.
Notice that the cases of k = 0 and k =∞ coincide with the
notions of current-state opacity and infinite-step opacity,
respectively, discussed in the literature.

The verification of weak k-step opacity has been inten-
sively studied in the literature. In particular, there are
five main approaches to verify weak k-step opacity based
on the secret observer with complexity O(`2n(k+3)), where
n is the number of states and ` is the number of observable
events, on the reverse comparison with complexity O((n+
m)(k + 1)3n), where m ≤ `n2, on the state estimator of
Saboori and Hadjicostis (2011) with complexity O(`(` +
1)k2n), on the two-way observer of Yin and Lafortune
(2017) with complexity O(min{n22n, n`k2n}), including a
minor correction by Lan et al. (2020), and on the projected
automaton of Balun and Masopust (2021) with complexity
O((k+1)2n(n+m`2)); see also Wintenberg et al. (2022) for
more details on the state complexity and an experimental
comparison.

The reader can see that the complexity of all the above
algorithms depends on the parameter k. A partial excep-
tion is the two-way observer, which does not depend on
the parameter k if `k > 2n, that is, if k is larger than
the proportion of states to the logarithm of the number of
observable events.

In this paper, we design a new algorithm to verify weak
k-step opacity, the complexity bound of which does not
depend on the parameter k. In particular, the state com-

plexity of our algorithm is O(n2n) and the time complexity
is O((n + m)2n), where n is the number of states of the
input automaton and m ≤ `n2 is the number of transi-
tions of the projected input automaton. Our algorithm is,
therefore, in general faster than the existing algorithms.

Indeed, the exception is for the special case of a very small
parameter k; namely, if k is smaller than 2 log(n)/ log(`),
where n is the number of states of the input automaton and
` is its number of observable events, then the algorithms
based on the state estimator of Saboori and Hadjicostis
(2011) and on the two-way observer of Yin and Lafortune
(2017) are, in the worst-case, faster than our algorithm.

Later, Falcone and Marchand (2014) have shown that
even weak k-step opacity may not be as confidential as
intuitively expected. Namely, the intruder may realize
that the system was in a secret state, though it cannot
deduce the exact time when it happened (see an example
in Section 4 or in Falcone and Marchand (2014)).

This problem motivated Falcone and Marchand (2014) to
introduce the notion of strong k-step opacity as the notion
of k-step opacity with a higher level of confidentiality. The
idea is that, whereas weak k-step opacity prevents the
intruder from revealing the exact time when the system
was in a secret state during the last k observable steps,
strong k-step opacity prevents the intruder from revealing
that the system was in a secret state during the last k
observable steps.

Notice that the literature so far (and so do we) consider
only deterministic DES where states that are not secret are
nonsecret. In this settings, strong k-step opacity implies
weak k-step opacity. However, the verification of one type
of k-step opacity cannot be directly used for the verifi-
cation of the other. Nonetheless, we show how to do it
indirectly by constructing a polynomial-time transforma-
tion of an instance of the strong k-step opacity problem
to an instance of the weak k-step opacity problem, which
allows us to verify strong k-step opacity by the algorithms
for weak k-step opacity.

In particular, with the help of our new algorithm verifying
weak k-step opacity described in Section 3, we obtain a
new algorithm for the verification of strong k-step opacity
with a lower complexity than that of existing algorithms
that, in addition, does not depend on the parameter k.

An extended version containing all the missing details and
proofs will be available at the preprint sever arXiv (Balun
and Masopust, 2022).

2. PRELIMINARIES

We assume that the reader is familiar with discrete-event
systems (Cassandras and Lafortune, 2021). For a set S,
|S| denotes the cardinality of S, and 2S denotes the power
set of S. An alphabet Σ is a finite nonempty set of events.
A string over Σ is a sequence of events from Σ; the empty
string is denoted by ε. The set of all finite strings over
Σ is denoted by Σ∗. A language L over Σ is a subset
of Σ∗. The set of all prefixes of strings of L is the set
L = {u | there is v ∈ Σ∗ such that uv ∈ L}. For a string
u ∈ Σ∗, |u| denotes the length of u.

A nondeterministic finite automaton (NFA) over an alpha-
bet Σ is a structure G = (Q,Σ, δ, I, F), where Q is a finite
set of states, I ⊆ Q is a nonempty set of initial states,
F ⊆ Q is a set of marked states, and δ : Q × Σ → 2Q is
a transition function that can be extended to the domain
2Q×Σ∗ by induction. In addition, for a language S ⊆ Σ∗,
we define δ(Q,S) = ∪s∈S δ(Q, s). The language marked by
G is the set Lm(G) = {w ∈ Σ∗ | δ(I, w) ∩ F 6= ∅}, and
the language generated by G is the set L(G) = {w ∈ Σ∗ |
δ(I, w) 6= ∅}.
The NFA G is deterministic (DFA) if |I| = 1 and
|δ(q, a)| ≤ 1 for every q ∈ Q and a ∈ Σ. We also identify
the singleton I = {q0} with its element q0, and simply
write G = (Q,Σ, δ, q0, F) instead of G = (Q,Σ, δ, {q0}, F).

A discrete-event system (DES) G over Σ is an NFA over
Σ together with the partition of Σ into Σo and Σuo of
observable and unobservable events, respectively. If we
want to specify that the DES is modeled by a DFA, we
talk about a deterministic DES. If the marked states are
irrelevant, we omit them and simply write G = (Q,Σ, δ, I).

State estimation is modeled by projection P : Σ∗ → Σ∗o,
which is a morphism for concatenation defined by P (a) = ε
if a ∈ Σuo, and P (a) = a if a ∈ Σo. The action of P on a
string a1a2 · · · an is to erase all unobservable events, that
is, P (a1a2 · · · an) = P (a1)P (a2) · · ·P (an). The definition
can be readily extended to languages.

Let G be a DES over Σ, and let P : Σ∗ → Σ∗o be the corre-
sponding projection. The projected automaton of G is the
NFA P (G) obtained from G by replacing every transition
(p, a, q) by (p, P (a), q), and by the standard elimination of
ε-transitions. In particular, if δ is the transition function
of G, then the transition function γ : Q×Σo → 2Q of P (G)
is defined as γ(q, a) = δ(q, P−1(a)). Then, the projected
automaton P (G) is an NFA over Σo with the same states
as G that recognizes the language P (Lm(G)) and that can
be constructed in polynomial time (Hopcroft et al., 2006).

We call the DFA constructed from P (G) by the standard
subset construction a full observer of G. The accessible
part of the full observer of G is called an observer of G in
the literature, cf. (Cassandras and Lafortune, 2021). The
full observer has exponentially many states compared with
G. In the worst case, the same holds for the observer as
well, cf. Jirásková and Masopust (2012); Wong (1998).

Transitions of the product of two DESs do not depend
on the initial states of the particular automata (Hopcroft
et al., 2006). Therefore, we disregard the initial states in
the considered DESs and simply write two DESs over the
alphabet Σ as Gi = (Qi,Σ, δi), for i = 1, 2. The product
automaton of G1 and G2 is defined as the DES G1×G2 =
(Q1 ×Q2,Σ, δ), where δ((q1, q2), a) = (δ1(q1, a), δ2(q2, a)),
for every (q1, q2) ∈ Q1 × Q2 and a ∈ Σ. This definition
captures the concept of the product automaton, and allows
us to take any subset of Q1×Q2 as initial states of G1×G2,
which is useful in our algorithm.

3. VERIFICATION OF WEAK K-STEP OPACITY

In this section, we design a new algorithm for the verifi-
cation of weak k-step opacity. Compared with the existing
algorithms, our algorithm does not depend on the param-

eter k, and its complexity is, in general, lower than that
of existing algorithms.

Before we recall the definition of weak k-step opacity, we
denote the set of all nonnegative integers with their limit
by N∞ = N∪{∞}. Then, for k ∈ N∞, weak k-step opacity
is a property whether the intruder is not able to reveal the
secret of a system in the current and k subsequent states.
Definition 1. Given a DES G = (Q,Σ, δ, I) and k ∈ N∞.
System G is weakly k-step opaque (k-SO) with respect to
the sets QS of secret and QNS of nonsecret states and
projection P : Σ∗ → Σ∗o if for every string st ∈ L(G) with
|P (t)| ≤ k and δ(δ(I, s) ∩QS , t) 6= ∅, there exists a string
s′t′ ∈ L(G) such that P (s) = P (s′), P (t) = P (t′), and
δ(δ(I, s′) ∩QNS , t

′) 6= ∅.

The complexity of existing algorithms verifying weak
k-step opacity is exponential and depends on the pa-
rameter k. The exponential complexity seems unavoidable
because the problem is PSpace-complete, see Balun and
Masopust (2021) for more details, and it is a long-standing
open problem of computer science if PSpace-complete
problems can be solved in polynomial time.

We now design our algorithm, described as Algorithm 1,
verifying weak k-step opacity with the time complexity
O((n + m)2n), where n is the number of states of the
automaton and m is the number of transitions of the
projected automaton.

Algorithm 1: Verification of weak k-step opacity
Input : A DES G = (Q,Σ, δ, I), QS , QNS ⊆ Q,

Σo ⊆ Σ, and k ∈ N∞.
Output: true iff G is weakly k-step opaque with

respect to QS , QNS , and P : Σ∗ → Σ∗o
1 Set Y := ∅
2 Compute the observer Gobs of G
3 Compute the projected automaton P (G) of G
4 for every reachable state X of Gobs do
5 for every state x ∈ X ∩QS do
6 add state (x,X ∩QNS) to set Y
7 Construct H as the part of the full observer of G

accessible from the states of the second
components of Y

8 Compute the product automaton C = P (G)×H
with the states of Y as initial states

9 Use BFS to mark states of C reachable from Y in
at most k steps

10 if C contains a marked state of the form (q, ∅)
then return false else return true

The steps of the algorithm are quite intuitive, including
the use of the Breadth-First Search (BFS) as described
in detail in Cormen et al. (2009), which is used to search
the underlying graph structure of the automaton C and
to mark all its states that are reachable from an initial
state in at most k steps. The correctness of the algorithm
follows from the fact that the BFS search visits all nodes at
distance d from the initial nodes before visiting any nodes
at distance d+ 1, and hence the distance (aka the number
of hops) is bounded by the number of states, and not by
the parameter k.

1

2 3

4 5

QS

QNS

a

a

b

u

a, b

b

Fig. 1. A DES G.

However, the algorithm of Cormen et al. (2009) maintains
an array to store the shortest distances of every node to an
initial node. Since storing a number less than or equal to k
requires log(k) bits, we need the space of size O(log(k)n2n)
to store the shortest distance of every state of C to an
initial state of C, because C has O(n2n) states.

In fact, we do not need to store the shortest distance
of every state to an initial state of C, but rather to
keep track of the number of hops from the initial states
made so far. We can achieve this by modifying the BFS
of Cormen et al. (2009) so that we do not store the
shortest distances for every state of C, but only the current
distance. We store the current distance in the queue used
by the algorithm. In particular, after pushing all the initial
states of C to the queue, we push number 0 in binary
to the queue, representing that no hop has been done so
far. When processing the initial states from the queue,
number 0 separates the nonprocessed initial states of C
from the noninitial states reachable in one hop from the
processed initial states, which all appear in the queue after
the number 0. After processing all the initial states, the
BFS removes the separator 0 from the queue and pushes
number 1 to the queue. At this point, the queue contains
all noninitial states of C that are reachable from the initial
states in one hop, followed by the separator 1, saying that
the states of the queue are exactly those states that are at
distance one from the states of the set Y and not less.

The algorithm proceeds this way, increasing the separator
one by one every time the separator is processed, until it
has either visited all the states of C or the separator stored
in the queue is the number k in binary. All and only visited
states of C are marked. Notice that this approach requires
to store only one log(k)-bit number rather than n2n such
numbers.

To illustrate Algorithm 1, we consider weak one-step
opacity of the DES G depicted in Fig. 1, where events
a, b are observable, u is unobservable, state 2 is secret, and
state 4 is nonsecret; the other states are neutral, meaning
that they are neither secret nor nonsecret. The meaning
of neutral states is not yet clear in the literature. They
are fundamental in language-based opacity, but lose its
meaning in state-based opacity. In any case, we cannot
simply handle neutral states as nonsecret states.

The projected automaton P (G) and the observer Gobs are
depicted in Figs. 2 and 3, respectively. By the definition
of the (full) observer, all the missing transitions in Fig. 3
indeed lead to state ∅, e.g., δ({1}, b) = δ({5}, a) = ∅. To
keep the figures clear, we do not depict these transitions.

The only reachable state of Gobs that contains a secret
state of G is the state X = {2, 4, 5}, and therefore we get

1

2 3

4 5

a

a

b

b

a

a, b

b

Fig. 2. The automaton P (G).

{1} {2, 4, 5} {3, 5}

{4} {5} {3}

a b

b

b

a

a, bb

Fig. 3. The automaton Gobs (solid part) and the automa-
ton H. The automaton H forming the relevant part of
the full observer of G is obtained from Gobs by adding
the dashed part.

2,{4} 3,{5} 3,∅b

b

a

a, b

Fig. 4. The reachable part of C.

that the set Y = {(2, {4})}. Notice that state {4} is not
in the observer Gobs, and therefore we need to add it to H
together with all the states reachable from state {4} in the
full observer of G. That is, we construct the relevant part
H of the full observer of G by extending Gobs by state {4}
and by all the reachable states from this state. The result
(without the transitions to state ∅) is depicted in Fig. 3;
both, the solid and the dashed part.

The marked part of C = P (G) ×H is depicted in Fig. 4.
Since no state of the form (·, ∅) is marked in C, the DES
G is one-step opaque.

The following result formally justifies the correctness of
Algorithm 1.
Theorem 2. A DES G is weakly k-step opaque with re-
spect to QS , QNS , and P iff Algorithm 1 returns true. 2

Considering the time and space complexity of Algorithm 1,
we can show the following.
Theorem 3. The space and time complexity of Algorithm 1
is O(n2n) and O((n+m)2n), respectively, where n is the
number of states of the input DES G and m is the number
of transitions of P (G). In particular, m ≤ `n2, where ` is
the number of observable events. 2

4. VERIFICATION OF STRONG K-STEP OPACITY

Weak k-step opacity could seem confidential enough. How-
ever, Falcone and Marchand (2014) pointed out that it is
not as confidential as intuitively expected. In particular,
the intruder may realize that the system previously was
in a secret state, although it is not able to deduce the
exact time when that happened, see Falcone and Marc-
hand (2014) for more details and examples. As a result,
they defined strong k-step opacity as a variation of k-step
opacity with a higher level of confidentiality.

1 2 3 4
a u a

Fig. 5. A deterministic DES that is not confidential
enough. The secret state is double circled.

Before we recall the definition of strong k-step opacity as
formulated by Falcone and Marchand (2014), we illustrate
the problem of weak k-step opacity in an example.

We consider the system depicted in Fig. 5, where state 2
is secret and the other states are nonsecret, and where
the event a is observable and the event u is unobservable.
Then, observing the sequence aa, the intruder realizes that
the system previously was in the secret state 2, though it
cannot say the exact time when that happened.

In the sequel, in accordance with the setting of Falcone
and Marchand (2014), we consider strong k-step opacity
only for deterministic DES where all states that are not
secret are nonsecret, that is, QNS = Q − QS . That is,
every state has its secret/nonsecret status and there are
no neutral states.
Definition 4. Given a deterministic DES G = (Q,Σ, δ, q0)
and k ∈ N∞. System G is strongly k-step opaque (k-SSO)
with respect to the set QS of secret states and observation
P : Σ∗ → Σ∗o if for every string s ∈ L(G), there exists
a string w ∈ L(G) such that P (s) = P (w) and for every
prefix w′ of w, if |P (w)|−|P (w′)| ≤ k, then δ(q0, w′) /∈ QS .

For an illustration, we again consider the system depicted
in Fig. 5, where state 2 is secret and the event u is
unobservable. The system is weakly one-step opaque, but
not strongly one-step opaque, because, for s = aua, the
only w with the same observation as s is w = aua, and
hence the prefixes w′ for which |P (w)| − |P (w′)| ≤ 1 are
the strings w′ = a, w′ = au, and w′ = aua. However, for
w′ = a, we obtain that δ(1, a) = 2 ∈ QS , which violates
the definition of strong one-step opacity.

It can be shown that the system of Fig. 5 is not strongly
0-step opaque, but it is weakly 0-step (current-state)
opaque. Hence, the notions of strong 0-step opacity and
weak 0-step (current-state) opacity do not coincide. It can
further be shown that unobservable transitions from secret
states to nonsecret states, as in our example, are the only
issues making the difference between strong 0-step opacity
and weak 0-step (current-state) opacity.

In the sequel, we consider only deterministic DESs where
there are no unobservable transitions from secret states to
nonsecret states. We call such systems normal.

We point out that every deterministic DES can be nor-
malized (in linear time) in such a way that the normal-
ization of a deterministic DES is a normal deterministic
DES that preserves the property of being strongly k-step
opaque. Therefore, considering, in the sequel, only normal
deterministic DESs is without loss of generality.

We now show how to reduce strong k-step opacity to weak
k-step opacity, which allows us to verify strong k-step
opacity by checking weak k-step opacity.
Construction 5. Let G = (Q,Σ, δ, q0) be a normal deter-
ministic DES, P : Σ∗ → Σ∗o be the observation, and QS be
the set of secret states. We construct a deterministic DES

p

r

q

s

G QS

QNS

=⇒

p q

r s

r′ s′

G′

Gns

Q′
S

Q′
NS

u u

Fig. 6. An illustration of Construction 5 transforming
strong k-step opacity to weak k-step opacity.

G′ = (Q ∪Q′NS ,Σ ∪ {u}, δ′, q0)

as a disjoint union ofG andGns = (Q′NS ,Σ, δns, q
′
0), where

Gns is obtained from G by removing all secret states and
corresponding transitions, and Q′NS = {q′ | q ∈ QNS} is a
copy of QNS disjoint from Q. We use a new unobservable
event u to connect Gns to G so that we initialize δ′ := δ ∪
δns, and extend δ′ by additional transitions (q, u, q′) for
every q ∈ QNS , cf. Fig. 6 for an illustration. The states of
Q′NS are the only nonsecret states of G′, and hence the set
of secret states of G′ is the set Q′S = Q. Finally, we define
P ′ : (Σ ∪ {u})∗ → Σ∗o. �

The following theorem describes the relationship between
strong k-step opacity and weak k-step opacity, and justifies
the correctness of Algorithm 2.
Theorem 6. Let G = (Q,Σ, δ, q0) be a normal determinis-
tic DES, and let G′ = (Q∪Q′NS ,Σ∪{u}, δ′, q0) be the DES
obtained from G by Construction 5. Then, the DES G is
strongly k-step opaque with respect to QS and P if and
only if the DES G′ is weakly k-step opaque with respect to
Q′S , Q

′
NS , and P

′, where Q′S , Q
′
NS , and P

′ are as defined
in Construction 5. 2

Algorithm 2: Verification of strong k-step opacity
Input : A normal deterministic DES

G = (Q,Σ, δ, q0), QS ⊆ Q, Σo ⊆ Σ, and
k ∈ N∞.

Output: true iff G is strongly k-step opaque with
respect to QS and P : Σ∗ → Σ∗o

1 Transform G to G′ by Construction 5
2 Use Algorithm 1 on G′ with the set of secret

states Q′S , the set of nonsecret states Q′NS ,
observable events Σo, and k

3 return the answer of Algorithm 1

We now illustrate the algorithm by an example. In partic-
ular, besides illustrating the algorithm, we also illustrate
that the reasoning about strong k-step opacity is not only
intuitively, but also practically more difficult than the
reasoning about weak k-step opacity.

1 2 3 4

5 6 7 8

a b a

c
u1

a b a

c

Fig. 7. A DES G.

1 2 3 4

5 6 7 8

1′ 2′ 3′

5′ 7′ 8′

a b a

c
u1

a b a

c

a b

a

u2 u2 u2

u2 u2 u2

Fig. 8. The DES G′ resulting from Construction 5 applied
to G.

We adopt the DES G from Falcone and Marchand (2014)
depicted in Fig. 7, where events a, b, c are observable, the
event u1 is unobservable, and states 4 and 6 are secret.
Falcone and Marchand (2014) claim that G is strongly
one-step opaque. Using our transformation to weak k-step
opacity and our algorithm verifying weak k-step opacity,
we show that it is not the case.

Since the DES G is normal, we proceed by the application
of Construction 5, resulting in the DES G′ depicted in
Fig. 8. In particular, G′ was constructed from G by adding
one new unobservable event u2 and six new nonsecret
states, namely Q′NS = {1′, 2′, 3′, 5′, 7′, 8′}, and by making
all the states 1 through 8 the secret states of G′, that is,
Q′S = {1, 2, 3, 4, 5, 6, 7, 8}.
Now, we apply Algorithm 1 to G′ with the secret states
Q′S , the nonsecret states Q′NS , observable events Σo =
{a, b, c}, and k = 1. The observer G′obs of G′, and the
automaton H are depicted (without the transitions to
state ∅) in Fig. 9. The automaton C = P (G′) × H has
eight initial states forming the set Y as depicted in Fig. 10.
Since states (2, ∅) and (6, ∅) of C are reachable from
states (4, {8′}), (8, {8′}) ∈ Y , respectively, in one step,
G′ is not weakly one-step opaque; and hence G is neither
strongly one-step opaque. Indeed, looking at the DES G
and observing the string abac, the intruder reveals that G
is either in the secret state 6 at that instant, or must have
been in the secret state 4 one step ago.

Algorithms verifying strong k-step opacity have been in-
vestigated in the literature. Falcone and Marchand (2014)
have designed an algorithm based on the k-delay trajectory
estimation. However, they have not analyzed the complex-
ity of their algorithm. Recently, Ma et al. (2021) designed
another algorithm with the complexity O(`2(k+2)n), where
` is the number of observable events and n is the number
of states of the input DES. Even more recently, Winten-
berg et al. (2022) discussed and experimentally compared
algorithms based on the construction of a secret observer
with complexity O(`(k + 3)n), on the reverse comparison
with complexity O((n+m)(k+1)2n), where m ≤ `n2, and
on the construction of the k-delay trajectory estimator of
Falcone and Marchand (2014), which they estimate to be
of complexity O(`(`+ 1)k2n).

Analysing the complexity of Algorithm 2, it can be shown
that, for a normal deterministic DES with n states, Con-

{1, 1′, 5, 5′} {2, 2′, 6} {3, 3′, 7, 7′} {4, 8, 8′}

{1′, 5′} {2′} {3′} {3′, 7′} {8′}

a b a

c

a b a

Fig. 9. The observer G′obs of G′, the solid part. The automaton H forming the relevant part of the full observer of G′
is obtained from G′obs by adding the dashed part.

1, {1′, 5′} 2, {2′}

2′, {2′}

3, {3′}

3′, {3′}

3, {3′, 7′} 4, {8′} 2, ∅

5, {1′, 5′} 6, {2′} 7, {3′}

7′, {3′}

7, {3′, 7′} 8, {8′} 6, ∅

8′, {8′}

a

a

b

b

a c

a b

b

a c

a

Fig. 10. The relevant part of C, where the depicted states
are reachable from the set Y in one step.

struction 5 results in a deterministic DES with at most 2n
states, and that the observer of the resulting DES has at
most 2n states. Hence, the worst-case state complexity of
Algorithm 2 is O(n2n), and the time complexity is thus
O((n+m)2n). In any case, the complexity of Algorithm 2
does not depend on the parameter k.

5. CONCLUSIONS

We investigated and discussed the relation between the no-
tions of weak and strong k-step opacity. We designed a new
algorithm verifying weak k-step opacity that, compared
with the existing algorithms, does not depend on k, and
that has a lower complexity than the existing algorithms.
Then, we discussed strong k-step opacity and transformed
it to weak k-step opacity in linear time, obtaining thus a
new algorithm to verify strong k-step opacity.

Finally, we point out that in the extended version (Balun
and Masopust, 2022), we further discuss a modification of
Algorithm 2 where the input is not restricted to normal
deterministic DES. Namely, in the first step, the algorithm
normalizes the input and then proceeds as Algorithm 2.
Although the normalization produces a DES with up to
twice more states compared with the input DES, we show
that the worst-case complexity remains unchanged.

ACKNOWLEDGEMENTS

We gratefully acknowledge suggestions and comments of
the anonymous referees.

REFERENCES
Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud,

B., and Darondeau, P. (2007). Concurrent secrets.
Discrete Event Dynamic Systems, 17, 425–446.

Balun, J. and Masopust, T. (2021). Comparing the notions
of opacity for discrete-event systems. Discrete Event
Dynamic Systems, 31, 553–582.

Balun, J. and Masopust, T. (2022). Verifying weak and
strong k-step opacity in discrete-event systems. doi:
10.48550/arXiv.2204.01286. Preprint, extended version.

Bryans, J.W., Koutny, M., Mazaré, L., and Ryan, P.Y.A.
(2008). Opacity generalised to transition systems. Inter-
national Journal of Information Security, 7(6), 421–435.

Bryans, J.W., Koutny, M., and Ryan, P.Y. (2005). Mod-
elling opacity using Petri nets. Electronic Notes in
Theoretical Computer Science, 121, 101–115.

Cassandras, C.G. and Lafortune, S. (eds.) (2021). In-
troduction to Discrete Event Systems. Springer, third
edition.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C.
(2009). Introduction to Algorithms. MIT Press.

Dubreil, J., Darondeau, P., and Marchand, H. (2008).
Opacity enforcing control synthesis. In WODES, 28–35.

Falcone, Y. and Marchand, H. (2014). Enforcement and
validation (at runtime) of various notions of opacity.
Discrete Event Dynamic Systems, 25, 531–570.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2006).
Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley.

Jacob, R., Lesage, J.J., and Faure, J.M. (2016). Overview
of discrete event systems opacity: Models, validation,
and quantification. Annual Reviews in Control, 41, 135–
146.

Jirásková, G. and Masopust, T. (2012). On a structural
property in the state complexity of projected regular
languages. Theoretical Computer Science, 449, 93–105.

Lan, H., Tong, Y., Guo, J., and Giua, A. (2020). Com-
ments on “A new approach for the verification of infinite-
step and K-step opacity using two-way observers” [Au-
tomatica 80 (2017) 162–171]. Automatica, 122, 109290.

Ma, Z., Yin, X., and Li, Z. (2021). Verification and
enforcement of strong infinite- and k-step opacity using
state recognizers. Automatica, 133, 109838.

Saboori, A. and Hadjicostis, C.N. (2011). Verification of
K-step opacity and analysis of its complexity. IEEE
Transactions on Automation Science and Engineering,
8(3), 549–559.

Saboori, A. and Hadjicostis, C.N. (2007). Notions of
security and opacity in discrete event systems. In IEEE
CDC, 5056–5061.

Saboori, A. and Hadjicostis, C.N. (2012). Verification
of infinite-step opacity and complexity considerations.
IEEE Transactions on Automatic Control, 57(5), 1265–
1269.

Wintenberg, A., Blischke, M., Lafortune, S., and Ozay,
N. (2022). A general language-based framework for
specifying and verifying notions of opacity. Discrete
Event Dynamic Systems, 32, 253–289.

Wong, K. (1998). On the complexity of projections of
discrete-event systems. In WODES, 201–206.

Yin, X. and Lafortune, S. (2017). A new approach for
the verification of infinite-step and K-step opacity using
two-way observers. Automatica, 80, 162–171.

