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Abstract

Opacity is an important system-theoretic property expressing whether a system may reveal its secret to a passive observer (an intruder)
who knows the structure of the system but has only limited observations of its behavior. Several notions of opacity have been discussed in
the literature, including current-state opacity, 𝑘-step opacity, and infinite-step opacity. We investigate weak and strong 𝑘-step opacity, the
notions that generalize both current-state opacity and infinite-step opacity, and ask whether the intruder is not able to decide, at any time
instant, when respectively whether the system was in a secret state during the last 𝑘 observable steps. We design a new algorithm verifying
weak 𝑘-step opacity, the complexity of which is lower than the complexity of existing algorithms and does not depend on the parameter 𝑘 ,
and show how to use it to verify strong 𝑘-step opacity by reducing strong 𝑘-step opacity to weak 𝑘-step opacity. The complexity of the
resulting algorithm is again better than the complexity of existing algorithms and does not depend on the parameter 𝑘 .
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1 Introduction

Opacity is an information-flow property used to study secu-
rity and privacy questions of discrete-event systems, commu-
nication protocols, and computer systems. Besides security
and privacy, an interesting application of opacity is its abil-
ity to express other state-estimation properties. In particular,
Lin (2011) has shown how to express and verify observabil-
ity, diagnosability, and detectability in terms of opacity.

Opacity guarantees that a system prevents an intruder from
revealing its secret. The intruder is a passive observer that
knows the structure of the system but has only limited ob-
servations of system’s behavior. Intuitively, the intruder es-
timates the behavior of the system, and the system is opaque
if for every secret behavior, there is a nonsecret behavior
that looks the same to the intruder. The secret is modeled as
a set of secret states or as a set of secret behaviors. Model-
ing the secret as a set of secret states results in state-based
opacity, introduced by Bryans et al. (2005, 2008) for Petri
nets and transition systems, and adapted to automata by Sa-

★ This work is an extended version of Balun and Masopust (2022b)
that was accepted for presentation at WODES 2022. Supported by
the Ministy of Education, Youths and Sports under the INTER-
EXCELLENCE project LTAUSA19098 and by IGA PrF 2022 018
and 2023 026. Corresponding author: T. Masopust.

Email addresses: jiri.balun01@upol.cz (Jiří Balun),
tomas.masopust@upol.cz (Tomáš Masopust).

boori and Hadjicostis (2007). Modeling the secret as a set
of secret behaviors results in language-based opacity, intro-
duced by Badouel et al. (2007) and Dubreil et al. (2008).
See the overview by Jacob et al. (2016) for more details.

Many notions of opacity have been discussed in the litera-
ture, including initial-state opacity and current-state opacity.
While initial-state opacity prevents the intruder from reveal-
ing, at any time instant, whether the system started in a secret
state, current-state opacity prevents the intruder “only” from
revealing whether the system is currently in a secret state.
This, however, does not exclude the possibility that the in-
truder later realizes that the system was in a secret state at a
former step of the computation. For instance, if the intruder
estimates that the system is in one of two possible states and,
in the next step, the system proceeds by an observable event
enabled only in one of the states, then the intruder reveals
the state in which the system was one step ago.

Saboori and Hadjicostis (2007, 2012) addressed this issue
and introduce the notion of weak 𝑘-step opacity. Weak 𝑘-step
opacity requires that the intruder is not able to ascertain the
secret in the current state and 𝑘 subsequent observable steps.
For 𝑘 = 0 and 𝑘 = ∞, weak 𝑘-step opacity coincides with
current-state opacity and infinite-step opacity, respectively.
The notion of infinite-step opacity may be confusing in the
context of finite automata, because an 𝑛-state automaton is
infinite-step opaque if and only if it is (2𝑛 − 2)-step opaque,
see Yin and Lafortune (2017).
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The verification of weak 𝑘-step opacity has been intensively
studied in the literature, resulting in (at least) five different
approaches: (1) the secret observer approach with complex-
ity 𝑂 (ℓ2𝑛(𝑘+3) ), where 𝑛 is the number of states and ℓ is
the number of observable events, (2) the reverse compari-
son approach with complexity 𝑂 ((𝑛 + 𝑚) (𝑘 + 1)3𝑛), where
𝑚 ≤ ℓ𝑛2 is the number of transitions in an involved NFA,
(3) the state estimator approach of Saboori and Hadjicostis
(2011) with complexity 𝑂 (ℓ(ℓ+1)𝑘2𝑛), (4) the two-way ob-
server approach of Yin and Lafortune (2017) with complex-
ity 𝑂 (min{𝑛22𝑛, 𝑛ℓ𝑘2𝑛}), already corrected by Lan et al.
(2020), and (5) the projected automaton approach of Balun
and Masopust (2021) of complexity 𝑂 ((𝑘 + 1)2𝑛 (𝑛+𝑚ℓ2));
see also Wintenberg et al. (2022) for more details on the state
complexity and an experimental comparison. The reader can
see that the complexity of all the algorithms depends on the
parameter 𝑘 . A partial exception is the two-way observer al-
gorithm that does not depend on the parameter 𝑘 if ℓ𝑘 > 2𝑛,
that is, if 𝑘 is larger than the number of states divided by
the logarithm of the number of observable events.

In this paper, we design a new algorithm verifying weak
𝑘-step opacity, the complexity of which does not depend on
the parameter 𝑘 . The state complexity of our algorithm is
𝑂 (𝑛2𝑛) and the time complexity is 𝑂 ((𝑛 + 𝑚)2𝑛), where 𝑛
is the number of states of the input automaton and 𝑚 ≤ ℓ𝑛2

is the number of transitions of the projected input automa-
ton. Hence, our algorithm is faster than all the existing al-
gorithms, with the exception of a very small parameter 𝑘;
namely, if 𝑘 is smaller than 2 log(𝑛)/log(ℓ), where 𝑛 is the
number of states of the input automaton and ℓ is its number
of observable events, then the algorithms based on the state
estimator and on the two-way observer are, in the worst-case,
faster than our algorithm.

However, Falcone and Marchand (2015) have later noticed
that even weak 𝑘-step opacity may not be as confidential
as intuitively expected. In particular, the intruder may real-
ize that the system was in a secret state, although it cannot
deduce the exact time when this has happened (see an ex-
ample in Section 4 or in Falcone and Marchand (2015) for
more details). This problem motivated Falcone and Marc-
hand (2015) to introduce strong 𝑘-step opacity as the notion
of 𝑘-step opacity with a higher level of confidentiality. The
idea is that whereas weak 𝑘-step opacity prevents the in-
truder from revealing the exact time when the system was in
a secret state during the last 𝑘 observable steps, strong 𝑘-step
opacity prevents the intruder from revealing that the system
was in a secret state during the last 𝑘 observable steps.

Ma et al. (2021) pointed out without proofs that strong and
weak 𝑘-step opacity are incomparable in the sense that nei-
ther strong 𝑘-step opacity implies weak 𝑘-step opacity nor
vice versa. In fact, under the assumption that there are no
neutral states (states that are neither secret nor nonsecret),
which is assumed in most of the literature, including this pa-
per, strong 𝑘-step opacity implies weak 𝑘-step opacity (see
Appendix A for more details).

However, the verification of one type of 𝑘-step opacity can-
not be directly used for the verification of the other. We show
how to do it indirectly. Namely, we construct a polynomial-
time transformation of strong 𝑘-step opacity to weak 𝑘-step
opacity, which makes it possible to verify strong 𝑘-step opac-
ity by the algorithms for weak 𝑘-step opacity. In addition,
using our new algorithm verifying weak 𝑘-step opacity re-
sults in a new algorithm to verify strong 𝑘-step opacity with
a lower complexity that does not depend on the parameter 𝑘 .

2 Preliminaries

We assume that the reader is familiar with discrete-event sys-
tems, see Cassandras and Lafortune (2021) for more details.
For a set 𝑆, |𝑆 | denotes the cardinality of 𝑆, and 2𝑆 denotes
the power set of 𝑆. An alphabet Σ is a finite nonempty set
of events. A string over Σ is a sequence of events from Σ;
the empty string is denoted by 𝜀. The set of all finite strings
over Σ is denoted by Σ∗. A language 𝐿 over Σ is a subset of
Σ∗. For a string 𝑢 ∈ Σ∗, |𝑢 | denotes the length of 𝑢.

A nondeterministic finite automaton (NFA) over an alphabet
Σ is a structure 𝐺 = (𝑄, Σ, 𝛿, 𝐼, 𝐹), where 𝑄 is a finite set
of states, 𝐼 ⊆ 𝑄 is a nonempty set of initial states, 𝐹 ⊆ 𝑄

is a set of marked states, and 𝛿 : 𝑄 × Σ → 2𝑄 is a transition
function that can be extended to the domain 2𝑄 × Σ∗ by
induction; we often consider the transition function 𝛿 as the
corresponding relation 𝛿 ⊆ 𝑄 × Σ × 𝑄. In addition, for a
set 𝑆 ⊆ Σ∗, we define 𝛿(𝑄, 𝑆) = ∪𝑠∈𝑆 𝛿(𝑄, 𝑠). For a set
𝑄0 ⊆ 𝑄, the set 𝐿𝑚 (𝐺,𝑄0) = {𝑤 ∈ Σ∗ | 𝛿(𝑄0, 𝑤) ∩ 𝐹 ≠ ∅}
is the language marked by 𝐺 from the states of 𝑄0, and
𝐿 (𝐺,𝑄0) = {𝑤 ∈ Σ∗ | 𝛿(𝑄0, 𝑤) ≠ ∅} is the language
generated by 𝐺 from the states of𝑄0. The languages marked
and generated by 𝐺 are defined as 𝐿𝑚 (𝐺) = 𝐿𝑚 (𝐺, 𝐼) and
𝐿 (𝐺) = 𝐿 (𝐺, 𝐼), respectively. The NFA 𝐺 is deterministic
(DFA) if |𝐼 | = 1 and |𝛿(𝑞, 𝑎) | ≤ 1 for every 𝑞 ∈ 𝑄 and
𝑎 ∈ Σ. In this case, we identify the singleton 𝐼 = {𝑞0} with
its element 𝑞0, and simply write 𝐺 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹) instead
of 𝐺 = (𝑄, Σ, 𝛿, {𝑞0}, 𝐹).

A discrete-event system (DES) 𝐺 over Σ is an NFA over Σ
together with the partition of Σ into Σ𝑜 and Σ𝑢𝑜 of observ-
able and unobservable events, respectively. If we want to
specify that the DES is modeled by a DFA, we talk about
deterministic DES. If the marked states are irrelevant, we
omit them and simply write 𝐺 = (𝑄, Σ, 𝛿, 𝐼).

The state estimation is modeled by projection 𝑃 : Σ∗ → Σ∗
𝑜,

which is a morphism for concatenation defined by 𝑃(𝑎) = 𝜀
if 𝑎 ∈ Σ𝑢𝑜, and 𝑃(𝑎) = 𝑎 if 𝑎 ∈ Σ𝑜. The action of 𝑃 on a
string 𝑎1𝑎2 · · · 𝑎𝑛 is to erase all unobservable events, that is,
𝑃(𝑎1𝑎2 · · · 𝑎𝑛) = 𝑃(𝑎1)𝑃(𝑎2) · · · 𝑃(𝑎𝑛). The definition can
be readily extended to languages.

Let 𝐺 be a DES over Σ, and let 𝑃 : Σ∗ → Σ∗
𝑜 be the cor-

responding projection. The projected automaton of 𝐺 is the
NFA 𝑃(𝐺) obtained from 𝐺 by replacing every transition
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(𝑝, 𝑎, 𝑞) by (𝑝, 𝑃(𝑎), 𝑞), followed by the standard elimina-
tion of the 𝜀-transitions. In particular, if 𝛿 is the transition
function of 𝐺, then the transition function 𝛾 : 𝑄 ×Σ𝑜 → 2𝑄
of 𝑃(𝐺) is defined as 𝛾(𝑞, 𝑎) = 𝛿(𝑞, 𝑃−1 (𝑎)). The projected
automaton 𝑃(𝐺) is an NFA over Σ𝑜 with the same states as
𝐺 that recognizes the language 𝑃(𝐿𝑚 (𝐺)) and that can be
constructed in polynomial time, see Hopcroft et al. (2006).

We call the DFA constructed from 𝑃(𝐺) by the standard
subset construction a full observer of 𝐺. The accessible part
of the full observer of 𝐺 is called an observer of 𝐺, cf. Cas-
sandras and Lafortune (2021). The full observer has expo-
nentially many states compared with 𝐺. In the worst case,
the same holds for the observer as well, see Wong (1998);
Jirásková and Masopust (2012) for more details.

For two DESs 𝐺𝑖 = (𝑄𝑖 , Σ, 𝛿𝑖 , 𝐼𝑖), 𝑖 = 1, 2, over the com-
mon alphabet Σ, the product automaton of 𝐺1 and 𝐺2 is
defined as the DES 𝐺1×𝐺2 = (𝑄1×𝑄2, Σ, 𝛿, 𝐼1× 𝐼2), where
𝛿((𝑞1, 𝑞2), 𝑎) = 𝛿1 (𝑞1, 𝑎)×𝛿2 (𝑞2, 𝑎), for every pair of states
(𝑞1, 𝑞2) ∈ 𝑄1 × 𝑄2 and every event 𝑎 ∈ Σ. Notice that the
definition does not restrict the state space of the product au-
tomaton to its reachable part.

3 Verification of Weak k-Step Opacity

In this section, we recall the definition of weak 𝑘-step opacity
for DESs, and design a new algorithm to verify weak 𝑘-step
opacity. To this end, we denote byN∞ = N∪{∞} the set of all
nonnegative integers together with their limit. For 𝑘 ∈ N∞,
weak 𝑘-step opacity asks whether the intruder cannot reveal
the secret of a system in the current and 𝑘 subsequent states.

Definition 1. Given a DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼) and 𝑘 ∈ N∞.
System 𝐺 is weakly 𝑘-step opaque (𝑘-SO) with respect to
the sets 𝑄𝑆 of secret and 𝑄𝑁𝑆 of nonsecret states and ob-
servation 𝑃 : Σ∗ → Σ∗

𝑜 if for every string 𝑠𝑡 ∈ 𝐿 (𝐺) with
|𝑃(𝑡) | ≤ 𝑘 and 𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅, there exists a string
𝑠′𝑡′ ∈ 𝐿 (𝐺) such that 𝑃(𝑠) = 𝑃(𝑠′), 𝑃(𝑡) = 𝑃(𝑡′), and
𝛿(𝛿(𝐼, 𝑠′) ∩𝑄𝑁𝑆 , 𝑡

′) ≠ ∅.

Algorithm 1 describes our new algorithm verifying weak
𝑘-step opacity. The idea of the algorithm is as follows. We
first compute the observer of 𝐺, denoted by 𝐺𝑜𝑏𝑠 , and the
projected automaton of𝐺, denoted by 𝑃(𝐺). Then, for every
reachable state 𝑋 of 𝐺𝑜𝑏𝑠 , we add the pairs (𝑥, 𝑋 ∩𝑄𝑁𝑆) to
the set 𝑌 , where 𝑥 is a secret state of 𝑋 and 𝑋 ∩𝑄𝑁𝑆 is the
set of all nonsecret states of 𝑋 . Intuitively, in these states, the
intruder estimates that 𝐺 may be in the secret state 𝑥 or in
the nonsecret states of 𝑋 ∩𝑄𝑁𝑆 . To verify that the intruder
does not reveal the secret state, we need to check that every
possible path of length up to 𝑘 starting in 𝑥 is accompanied
by a path with the same observation starting in a nonsecret
state of 𝑋∩𝑄𝑁𝑆 . To this end, we construct the automaton 𝐻
as the part of the full observer of 𝐺 consisting only of states
reachable from the states forming the second components
of the pairs in 𝑌 , and the automaton C = 𝑃(𝐺) × 𝐻 as the
product automaton of the projected automaton of 𝐺 and 𝐻.

Algorithm 1. Verification of weak 𝑘-step opacity
Require: A DES 𝐺 = (𝑄, Σ, 𝛿, 𝐼), 𝑄𝑆 , 𝑄𝑁𝑆 ⊆ 𝑄, Σ𝑜 ⊆ Σ,

and 𝑘 ∈ N∞.
Ensure: true if and only if𝐺 is weakly 𝑘-step opaque with

respect to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 : Σ∗ → Σ∗
𝑜

1: Set 𝑌 := ∅
2: Compute the observer 𝐺𝑜𝑏𝑠 of 𝐺
3: Compute the projected automaton 𝑃(𝐺) of 𝐺
4: for every state 𝑋 of 𝐺𝑜𝑏𝑠 do
5: for every state 𝑥 ∈ 𝑋 ∩𝑄𝑆 do
6: add state (𝑥, 𝑋 ∩𝑄𝑁𝑆) to set 𝑌
7: end for
8: end for
9: Construct 𝐻 as the part of the full observer of 𝐺 acces-

sible from the states of the second components of 𝑌
10: Compute the product automaton C = 𝑃(𝐺) × 𝐻
11: Use the Breadth-First Search (BFS) of Algorithm 2 to

mark all states of C reachable from the states of 𝑌 in at
most 𝑘 steps

12: if C contains a marked state of the form (𝑞, ∅) then
13: return false
14: else
15: return true
16: end if

In C, all transitions are observable, and every path from a
secret state 𝑥 is synchronized with all the possible paths with
the same observation starting in the states of 𝑋∩𝑄𝑁𝑆 . Thus,
if there is a path from the secret state 𝑥 of length up to 𝑘
that is not accompanied by a path with the same observation
from a state of 𝑋 ∩ 𝑄𝑁𝑆 , then this path from the state 𝑥 in
𝑃(𝐺) ends up in a state, say, 𝑞, whereas all paths in 𝐻 with
the same observation from the state 𝑋 ∩𝑄𝑁𝑆 end up in the
state ∅. Here, 𝑋 ∩ 𝑄𝑁𝑆 and ∅ are understood as the states
of the full observer of 𝐺. Thus, if the DES 𝐺 is not weakly
𝑘-step opaque, there is a state of 𝑌 from which a state of
the from (𝑞, ∅) is reachable in at most 𝑘 steps. Therefore,
we search the automaton C and mark all its states that are
reachable from a state of 𝑌 in at most 𝑘 steps. If a state of the
from (𝑞, ∅) is marked, then 𝐺 is not weakly 𝑘-step opaque;
otherwise, it is.

We prove the correctness of Algorithm 1 and analyze its
complexity in detail below. Intuitively, the correctness fol-
lows from the fact that the BFS visits all nodes at distance 𝑑
before visiting any nodes at distance 𝑑 + 1. In other words,
all states of C reachable from the states of 𝑌 in at most 𝑘
steps are visited (and marked) before any state at distance
𝑘 + 1. The implementation of the BFS is, however, the key
step to obtain the claimed complexity. Namely, the classical
BFS of Cormen et al. (2009) maintains an array to store the
shortest distances (aka the number of hops) of every node to
an initial node. Since storing a number less than or equal to
𝑘 requires log(𝑘) bits, using the classical BFS requires the
space of size 𝑂 (log(𝑘)𝑛2𝑛) to store the shortest distance of
every state of C to a state of 𝑌 , because C has 𝑂 (𝑛2𝑛) states.
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Algorithm 2. The Breadth-First Search used in Algorithm 1
Require: A DES 𝐺 = (𝑉, Σ, 𝛿, 𝐼), a set 𝑆 ⊆ 𝑉 , 𝑘 ∈ N∞
Ensure: 𝐺 with all states at distance at most 𝑘 from the

states of 𝑌 marked
1: Initialize the queue 𝑄 := ∅
2: Enqueue number 0 to 𝑄
3: Mark every node 𝑠 ∈ 𝑆 and enqueue it to 𝑄
4: Color every node 𝑢 ∈ 𝑉 − 𝑆 white
5: while 𝑄 ≠ ∅ do
6: 𝑢 := Dequeue(𝑄)
7: if 𝑢 ∉ 𝑉 and 𝑢 = 𝑘 then
8: Terminate, states at distance ≤ 𝑘 were visited
9: else if 𝑢 ∉ 𝑉 and 𝑢 < 𝑘 then

10: Enqueue 𝑢 + 1 to 𝑄
11: else if 𝑢 ∈ 𝑉 is a state of 𝐺 then
12: for every state 𝑣 reachable in one step from 𝑢 do
13: if the color of 𝑣 is white then
14: Mark state 𝑣 and enqueue it to 𝑄
15: end if
16: end for
17: Color 𝑢 black
18: end if
19: end while

For our purposes, we do not need to know the shortest dis-
tance of every state to a state of𝑌 , but we rather need to keep
track of the number of hops from the states of 𝑌 made so far.

We can achieve this by modifying the classical BFS so that
we do not store the shortest distances for every state of C,
but only the current distance. We store the current distance
in the queue used by the BFS, see Algorithm 2. In particular,
we first push number 0 to the queue, followed by all the
states of 𝑌 . Assuming that 𝑘 > 0, number 0 is processed in
such a way that it is dequeued from the queue, and number
1 is enqueued. After processing all the states of 𝑌 from the
queue, that is, having number 1 at the head of the queue, we
know that all the elements of the queue after number 1 are
the states at distance one from the states of 𝑌 and not less.
The algorithm proceeds this way until it has either visited
all the states of C or the number stored in the queue is 𝑘 .
The algorithm marks all states of C that it visits.

This approach requires to store only one log(𝑘)-bit number
at a time rather than 𝑛2𝑛 such numbers, and hence the com-
plexity of the algorithm then basically follows from the fact
that the distance is bounded by the number of states of C,
and not by the parameter 𝑘 .

Since Algorithm 2 is a minor modification of the BFS of
Cormen et al. (2009), very similar arguments show its cor-
rectness and complexity. For this reason, we do not further
discuss the correctness and complexity of Algorithm 2.

Before we prove Theorem 2 below showing that 𝐺 is weakly
𝑘-step opaque if and only if no state of the form (·, ∅) is
marked in C, we illustrate Algorithm 1 in the following two
examples.
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(a) A DES 𝐺.
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(b) Automata 𝐺𝑜𝑏𝑠 and 𝐻.

Figure 1. A DES 𝐺 (a) and the observer 𝐺𝑜𝑏𝑠 (b), the solid part.
The automaton 𝐻 forming the relevant part of the full observer of
𝐺 is obtained from 𝐺𝑜𝑏𝑠 by adding the dashed part; neither state
∅ nor the missing transitions to it are depicted in 𝐺𝑜𝑏𝑠 and 𝐻.

2, {4} 3, ∅b

a, b

Figure 2. The reachable part of C1, where the single state of 𝑌 is
denoted by the little arrow.

In the first example, we consider one-step opacity of the DES
𝐺 depicted in Figure 1(a) where all events are observable,
state 2 is secret, and state 4 is nonsecret. The other states are
neutral, meaning that they are neither secret nor nonsecret.1
The observer 𝐺𝑜𝑏𝑠 of 𝐺 is depicted in Figure 1(b). Since 𝐺
has no unobservable events, the projected automaton 𝑃(𝐺) =
𝐺. Now, only the state 𝑋 = {2, 4} of 𝐺𝑜𝑏𝑠 contains a secret
state, and hence intersecting it with 𝑄𝑆 results in the set
𝑌 = {(2, {4})}. Notice that state {4} is not in the observer
𝐺𝑜𝑏𝑠 , and therefore we need to add it to 𝐻 together with all
the states that are reachable from state {4} in the full observer
of 𝐺. The resulting automaton 𝐻 is depicted in Figure 1(b)
and is formed by the observer 𝐺𝑜𝑏𝑠 together with the dashed
state {4} and the dashed transition from {4} to {5}. Notice
that, by the definition of the (full) observer, all the missing
transitions in Figure 1(b) indeed lead to state ∅, for instance,
𝛿({1}, 𝑏) = 𝛿({5}, 𝑎) = ∅. However, to keep the figures
simple, we do not depict state ∅ and the transitions to state ∅.
The marked part of the automaton C1 = 𝑃(𝐺) ×𝐻 reachable
from the states of𝑌 in at most one step is depicted in Figure 2.
Since state (3, ∅) is marked in C1, 𝐺 is not one-step opaque;
indeed, observing the string 𝑎𝑏, the intruder reveals that 𝐺
must have been in the secret state 2 one step ago.

To illustrate an affirmative case, we again consider the DES
𝐺, but this time we assume that the event 𝑐 is unobservable.
We denote by �̃� the DES𝐺 where events 𝑎, 𝑏 are observable,
the event 𝑐 is unobservable, state 2 is secret, and state 4 is
nonsecret. The projected automaton 𝑃(�̃�) and the observer
�̃�𝑜𝑏𝑠 are depicted in Figure 3. The only state of �̃�𝑜𝑏𝑠 con-
taining a secret state is the state 𝑋 = {2, 4, 5}, which results
in the set𝑌 = {(2, {4})}. Again, state {4} is not in �̃�𝑜𝑏𝑠 , and
hence we construct the relevant part �̃� of the full observer

1 The meaning of neutral states is not yet clear in the literature.
They are fundamental in language-based opacity, but questionable
in state-based opacity. In any case, we cannot simply handle neutral
states as nonsecret states.
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(a) The automaton 𝑃(�̃�).
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(b) Automata �̃�𝑜𝑏𝑠 and �̃�

Figure 3. The automaton 𝑃(�̃�) (a) and the observer �̃�𝑜𝑏𝑠 (b),
the solid part. The automaton �̃� forming the relevant part of the
full observer of �̃� is obtained from �̃�𝑜𝑏𝑠 by adding the dashed
part; neither state ∅ nor the missing transitions to it are depicted
in 𝐺𝑜𝑏𝑠 and 𝐻.

2, {4} 3, {5} 3, ∅b

b

a

a, b

Figure 4. The reachable part of C2, where the single state of 𝑌 is
denoted by the little arrow.

of �̃� by extending �̃�𝑜𝑏𝑠 by state {4} and all the reachable
states from it. The result (without state ∅ and the transitions
to state ∅) is depicted in Figure 3(b), both the solid and the
dashed part. The marked part of C2 = 𝑃(�̃�) × �̃� is depicted
in Figure 4. Since no state of the form (·, ∅) is marked in
C2, �̃� is one-step opaque.

We now prove the correctness of our algorithm.

Theorem 2. A DES 𝐺 is weakly 𝑘-step opaque with respect
to 𝑄𝑆 , 𝑄𝑁𝑆 , and 𝑃 if and only if Algorithm 1 returns true.

Proof. If 𝐺 = (𝑄, Σ, 𝛿, 𝐼) is not weakly 𝑘-step opaque, then
there is 𝑠𝑡 ∈ 𝐿 (𝐺) such that |𝑃(𝑡) | ≤ 𝑘 , 𝛿(𝛿(𝐼, 𝑠) ∩𝑄𝑆 , 𝑡) ≠
∅, and 𝛿(𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩𝑄𝑁𝑆 , 𝑃

−1𝑃(𝑡)) = ∅. We have two
cases.

(i) If 𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩𝑄𝑁𝑆 = ∅, then 𝐺 is not weakly 𝑘-step
opaque. Algorithm 1 detects this case, because for the state
𝑋 = 𝛿(𝐼, 𝑃−1𝑃(𝑠)) of the observer of 𝐺, we have that 𝑋 ∩
𝑄𝑆 ⊇ 𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 ≠ ∅ and 𝑋 ∩ 𝑄𝑁𝑆 = ∅, and hence there
is 𝑞 ∈ 𝑋 ∩ 𝑄𝑆 resulting in adding the pair (𝑞, ∅) to the set
𝑌 in line 6.

(ii) If 𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑁𝑆 = 𝑍 ≠ ∅, then all pairs of the
form (𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩ 𝑄𝑆) × {𝑍} are added to 𝑌 . Since
𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅, there is a pair (𝑧, 𝑍) ∈ 𝑌 such
that generating the string 𝑃(𝑡) in the automaton 𝑃(𝐺) from
state 𝑧 changes the state to a state 𝑞. On the other hand,
𝛿(𝑍, 𝑃−1𝑃(𝑡)) = ∅ implies that generating 𝑃(𝑡) in the full
observer of 𝐺 from state 𝑍 changes the state to state ∅,
and hence the pair (𝑞, ∅) is reachable in C from the state
(𝑧, 𝑍) ∈ 𝑌 in at most |𝑃(𝑡) | ≤ 𝑘 steps. In both cases, Algo-
rithm 1 marks (𝑞, ∅), and returns false.

On the other hand, if 𝐺 is weakly 𝑘-step opaque, we show
that no pair of the form (𝑞, ∅) is reachable in C from a
state of 𝑌 in at most 𝑘 steps. For the sake of contradiction,
we assume that a pair (𝑞, ∅) is marked in C. However, this

means that, in 𝐺, there is a string 𝑠 and a state 𝑧 ∈ 𝑄

such that 𝑧 ∈ 𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , the state of the observer of 𝐺
reached under the string 𝑃(𝑠) is 𝑋 = 𝛿(𝐼, 𝑃−1𝑃(𝑠)), and,
for 𝑍 = 𝑋 ∩ 𝑄𝑁𝑆 , the pair (𝑞, ∅) is reachable in C from
the pair (𝑧, 𝑍) ∈ 𝑌 by a string 𝑤 ∈ Σ∗

𝑜 of length at most 𝑘 .
In particular, there is a string 𝑡 ∈ 𝑃−1 (𝑤) such that when
𝐺 generates 𝑡, it changes its state from 𝑧 to 𝑞. Therefore,
𝑞 ∈ 𝛿(𝛿(𝐼, 𝑠) ∩ 𝑄𝑆 , 𝑡) ≠ ∅. However, 𝛿(𝛿(𝐼, 𝑃−1𝑃(𝑠)) ∩
𝑄𝑁𝑆 , 𝑃

−1 (𝑤)) = 𝛿(𝑍, 𝑃−1 (𝑤)) = ∅, because generating 𝑤
in C changes the pair (𝑧, 𝑍) to (𝑞, ∅), and hence the full
observer of 𝐺 changes its state from 𝑍 to ∅ when generating
𝑤. This shows that 𝐺 is not weakly 𝑘-step opaque, which is
a contradiction. □

We now discuss the complexity of our algorithm.

Theorem 3. The space and time complexity of Algorithm 1
is 𝑂 (𝑛2𝑛) and 𝑂 ((𝑛 + 𝑚)2𝑛), respectively, where 𝑛 is the
number of states of the input DES 𝐺 and 𝑚 is the number
of transitions of 𝑃(𝐺). In particular, 𝑚 ≤ ℓ𝑛2, where ℓ is
the number of observable events.

Proof. Computing the observer and the projected NFA of𝐺,
lines 2 and 3, takes time 𝑂 (ℓ2𝑛) and 𝑂 (𝑚 +𝑛), respectively.
The cycle on lines 4–8 takes time 𝑂 (𝑛2𝑛). Constructing the
part 𝐻 of the full observer of 𝐺, line 9, takes time 𝑂 (ℓ2𝑛).
Constructing C, line 10, takes time 𝑂 (𝑛2𝑛 + 𝑚2𝑛), where
𝑂 (𝑛2𝑛) is the number of states and 𝑂 (𝑚2𝑛) is the number
of transitions of C. The bounds come from the fact that we
create at most 2𝑛 copies of the automaton 𝑃(𝐺). The BFS
takes time linear in the size of C, and the condition of line 11
can be processed during the BFS. Since 𝑚 ≥ ℓ, the proof is
complete. □

We now briefly review the complexity of existing algorithms
verifying weak 𝑘-step opacity. First, notice that the com-
plexity of existing algorithms is exponential, which seems
unavoidable because the problem is PSpace-complete, see
Balun and Masopust (2021, 2022a) for more details.2 In
particular, Saboori and Hadjicostis (2011) designed an algo-
rithm with complexity𝑂 (ℓ(ℓ+1)𝑘2𝑛), where 𝑛 is the number
of states and ℓ is the number of observable events. Consid-
ering the verification of weak ∞-step opacity, Saboori and
Hadjicostis (2012) designed an algorithm with complexity
𝑂 (ℓ2𝑛2+𝑛). Yin and Lafortune (2017) introduced the notion
of a two-way observer and applied it to the verification of
weak 𝑘-step opacity with complexity 𝑂 (min{𝑛22𝑛, 𝑛ℓ𝑘2𝑛}),
and to the verification of weak ∞-step opacity with com-
plexity 𝑂 (𝑛22𝑛); the formulae already include a correc-
tion by Lan et al. (2020). Balun and Masopust (2021) de-
signed algorithms verifying weak 𝑘-step opacity and weak
∞-step opacity with complexities𝑂 ((𝑘+1)2𝑛 (𝑛+𝑚ℓ2)) and
𝑂 ((𝑛 + 𝑚ℓ)2𝑛), respectively, where 𝑚 ≤ ℓ𝑛2 is the number

2 It is a long-standing open problem of computer science whether
PSpace-complete problems can be solved in polynomial time.
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of transitions in the projected automaton. These algorithms
outperform the two-way observer if 𝑘 is polynomial in 𝑛 or
larger than 2𝑛 − 2, since weak (2𝑛−2)-step opacity and weak
∞-step opacity coincide, see Yin and Lafortune (2017). Win-
tenberg et al. (2022) discussed and experimentally compared
four approaches to the verification of weak 𝑘-step opacity
based on (i) the secret observer, (ii) the reverse comparison,
(iii) the state estimator, and (iv) the two-way observer. Their
respective state complexities are 𝑂 (2𝑛(𝑘+3) ), 𝑂 (𝑛(𝑘 +1)3𝑛),
𝑂 ((ℓ + 1)𝑘2𝑛), and 𝑂 (min{2𝑛, ℓ𝑘}2𝑛).3

Notice that these bounds are formulated only in the number
of states of the constructed automata, disregarding the num-
ber of transitions and the time of the construction. Therefore,
the time-complexity bounds differ from the state-complexity
bounds at least by the factor of ℓ, if the constructed au-
tomata are deterministic, or by a factor of 𝑚 ≤ ℓ𝑛2 if the
construction of the automaton involves an NFA, such as
in the case of the reverse comparison. Namely, the time-
complexity bounds are 𝑂 (ℓ2𝑛(𝑘+3) ) for the secret observer,
where 𝑛 is the number of states and ℓ is the number of ob-
servable events, 𝑂 ((𝑛 + 𝑚) (𝑘 + 1)3𝑛) for the reverse com-
parison, where 𝑚 ≤ ℓ𝑛2 is the number of transitions in an
involved NFA, 𝑂 (ℓ(ℓ + 1)𝑘2𝑛) for the state estimator, and
𝑂 (min{𝑛22𝑛, 𝑛ℓ𝑘2𝑛}) for the two-way observer.

As the reader may notice, the above complexities depend on
the parameter 𝑘 . A partial exception is the two-way observer
that does not depend on 𝑘 if ℓ𝑘 ≥ 2𝑛, that is, if 𝑘 is larger
than the number of states divided by the logarithm of the
number of observable events.

Since the complexity of Algorithm 1 is𝑂 ((𝑛+𝑚)2𝑛), where
𝑛 is the number of states of the input DES 𝐺 and 𝑚 ≤ ℓ𝑛2 is
the number of transitions of the projected automaton of 𝐺, it
does not depend on the parameter 𝑘 and, in general, outper-
forms the existing algorithms. An exception is the case of a
very small parameter 𝑘 . In particular, if 𝑘 < 2 log(𝑛)/log(ℓ),
the algorithms based on the state estimator and on the two-
way observer are, in the worst-case, faster than our algo-
rithm. Notice that this theoretical result agrees with the ex-
perimental results of Wintenberg et al. (2022).

4 Verification of Strong k-Step Opacity

Although weak 𝑘-step opacity seems confidential enough,
Falcone and Marchand (2015) have pointed out that it is ac-
tually not as confidential as intuitively expected. Namely,
the intruder may realize that the system previously was in
a secret state, though it is not able to deduce the exact
time when that happened, see Falcone and Marchand (2015)
for more details and examples. Consequently, they defined
strong 𝑘-step opacity as a variation of 𝑘-step opacity with a
higher level of confidentiality.

3 The state complexity of the two-way observer is correct. The
correction of Lan et al. (2020) consists in adding a time bound
to compute the intersection of two sets, and hence it does not
influence the number of states.

1 2 3 4
a u a

Figure 5. A deterministic DES that is not confidential enough. The
secret state is double circled.

Before we recall the definition of strong 𝑘-step opacity as
formulated by Falcone and Marchand (2015), we illustrate
the problem with weak 𝑘-step opacity. To this end, we con-
sider the system depicted in Figure 5, where state 2 is secret
and the other states are nonsecret, and where the event 𝑎 is
observable and the event 𝑢 is unobservable. Observing the
string 𝑎𝑎, the intruder realizes that the system must have
been in the secret state 2, though it cannot say whether it was
one or two steps ago. Actually, even observing the string 𝑎
already reveals that the system currently is or one step ago
was in the secret state 2.

In accordance with Falcone and Marchand (2015), we con-
sider strong 𝑘-step opacity only for deterministic DES where
all states that are not secret are nonsecret, that is, 𝑄𝑁𝑆 =

𝑄−𝑄𝑆 . It means that every state has its own secret/nonsecret
status and there are no neutral states.

Definition 4. Given a deterministic DES 𝐺 = (𝑄, Σ, 𝛿, 𝑞0)
and 𝑘 ∈ N∞. System 𝐺 is strongly 𝑘-step opaque (𝑘-SSO)
with respect to the set 𝑄𝑆 of secret states and observation
𝑃 : Σ∗ → Σ∗

𝑜 if for every string 𝑠 ∈ 𝐿 (𝐺), there exists a
string 𝑤 ∈ 𝐿 (𝐺) such that 𝑃(𝑠) = 𝑃(𝑤) and for every prefix
𝑤′ of 𝑤, if |𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 𝑘 , then 𝛿(𝑞0, 𝑤

′) ∉ 𝑄𝑆 .

Notice that whereas weak 𝑘-step opacity prevents the in-
truder from revealing the exact time when the system was in
a secret state during the last 𝑘 observable steps, strong 𝑘-step
opacity prevents the intruder from revealing that the system
was in a secret state during the last 𝑘 observable steps.

For an illustration, we again consider the system depicted
in Figure 5, where state 2 is secret and event 𝑢 is unobserv-
able. The system is weakly one-step opaque, but not strongly
one-step opaque, because for 𝑠 = 𝑎𝑢𝑎, the only 𝑤 with the
same observation as 𝑠 is 𝑤 = 𝑎𝑢𝑎, and hence the prefixes
𝑤′ for which |𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 1 are the strings 𝑤′ = 𝑎,
𝑤′ = 𝑎𝑢, and 𝑤′ = 𝑎𝑢𝑎. However, for 𝑤′ = 𝑎, we obtain that
𝛿(1, 𝑎) = 2 ∈ 𝑄𝑆 , which violates the definition of strong
one-step opacity.

In fact, the system is neither strongly 0-step opaque, because
for 𝑠 = 𝑎𝑢, the only 𝑤 with the same observation as 𝑠 are
the strings 𝑎𝑢 and 𝑎, and therefore the prefixes 𝑤′ for which
|𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 0 is either 𝑤′ = 𝑎 or 𝑤′ = 𝑎𝑢. However,
for 𝑤′ = 𝑎, we obtain that 𝛿(1, 𝑎) = 2 ∈ 𝑄𝑆 , which violates
the definition of strong 0-step opacity. On the other hand, the
system is obviously current-state opaque. Consequently, the
notions of strong 0-step opacity and current-state opacity4

do not coincide.

4 Current-state opacity is a synonym for weak 0-step opacity.

6



We show in Theorem 8 below that unobservable transitions
from secret states to nonsecret states, as in our example, are
the only issues making the difference between strong 0-step
opacity and weak 0-step (current-state) opacity. To this end,
we define the notion of a normal DES.

4.1 Normalization

In what follows, we call the systems where there are no un-
observable transitions from secret states to nonsecret states
normal. For systems that are not normal, we provide a con-
struction to normalize them, that is, we eliminate unobserv-
able transitions from secret states to nonsecret states without
affecting the property of being strongly 𝑘-step opaque.

Construction 5. Let 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) be a deterministic
DES, 𝑘 ∈ N∞, 𝑄𝑆 ⊆ 𝑄 be the set of secret states, and
𝑃 : Σ∗ → Σ∗

𝑜 be the observations. We construct

𝐺𝑛𝑜𝑟𝑚 = (𝑄𝑛, Σ, 𝛿𝑛, 𝑞0)

where 𝑄𝑛 = 𝑄 ∪ 𝑄′ for 𝑄′ = {𝑞′ | 𝑞 ∈ 𝑄} being a dis-
joint copy of 𝑄, and the transition function 𝛿𝑛 is defined as
follows. We initialize 𝛿𝑛 := 𝛿 and further modify it in the
following four steps:

(1) For every 𝑝 ∈ 𝑄𝑆 , 𝑞 ∈ 𝑄𝑁𝑆 , and 𝑢 ∈ Σ𝑢𝑜, we replace
the transition (𝑝, 𝑢, 𝑞) by (𝑝, 𝑢, 𝑞′) in 𝛿𝑛.

(2) For every unobservable transition (𝑝, 𝑢, 𝑞) in 𝛿, that is,
𝑢 ∈ Σ𝑢𝑜, we add the transition (𝑝′, 𝑢, 𝑞′) to 𝛿𝑛.

(3) For every observable transition (𝑞, 𝑎, 𝑟) in 𝛿, that is,
𝑎 ∈ Σ𝑜, we add the transition (𝑞′, 𝑎, 𝑟) to 𝛿𝑛.

(4) We remove unreachable states and corresponding tran-
sitions.

The set of secret states of 𝐺𝑛𝑜𝑟𝑚 is the set 𝑄𝑆
𝑛 = 𝑄𝑆 ∪𝑄′. ⋄

In the sequel, we call 𝐺𝑛𝑜𝑟𝑚 the normalization of 𝐺. If 𝐺
and 𝐺𝑛𝑜𝑟𝑚 coincide, we say that 𝐺 is normal.

To illustrate Construction 5, consider the system depicted
in Figure 6 (left). Its normalization 𝐺𝑛𝑜𝑟𝑚 is depicted in
the same figure (right). States 2 and 3 of 𝐺 are secret,
events 𝑎 and 𝑏 are observable, and 𝑢 is unobservable. The
normalization 𝐺𝑛𝑜𝑟𝑚 of 𝐺 initially contains five new se-
cret states 1′, 2′, 3′, 4′, 5′. Step (1) of Construction 5
replaces transitions (2, 𝑢, 4) and (3, 𝑢, 4) by (2, 𝑢, 4′) and
(3, 𝑢, 4′), respectively, step (2) adds four unobservable tran-
sitions (1′, 𝑢, 2′), (2′, 𝑢, 4′), (3′, 𝑢, 4′), and (4′, 𝑢, 5′), and
step (3) adds the observable transitions (1′, 𝑎, 3), (2′, 𝑎, 4),
(4′, 𝑎, 5) and (5′, 𝑏, 5). Finally, step (4) eliminates unreach-
able states 1′, 2′, 3′, and the corresponding transitions.

The following lemma compares the behaviors of 𝐺 and its
normalization 𝐺𝑛𝑜𝑟𝑚.

Lemma 6. Let 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) be a deterministic DES,
and let 𝑄𝑆 ⊆ 𝑄 be the set of secret states. Let 𝐺𝑛𝑜𝑟𝑚 be the
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Figure 6. A deterministic DES 𝐺 (left) and its normalization
𝐺𝑛𝑜𝑟𝑚 (right). Secret states are double circled.

normalization of 𝐺 obtained by Construction 5. Then, for
every 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ, the following holds:

(1) For 𝑎 ∈ Σ𝑢𝑜, 𝛿(𝑞0, 𝑤𝑎) = 𝑝 if and only if 𝛿𝑛 (𝑞0, 𝑤𝑎) ∈
{𝑝, 𝑝′}, where 𝑝′ ∈ 𝑄′ is a copy of 𝑝 ∈ 𝑄;

(2) For 𝑎 ∈ Σ𝑜, 𝛿(𝑞0, 𝑤𝑎) = 𝛿𝑛 (𝑞0, 𝑤𝑎);
(3) 𝐿 (𝐺) = 𝐿 (𝐺𝑛𝑜𝑟𝑚).

Proof. We prove (1) and (2) by induction on the length of
𝑤. The induction hypothesis is that either 𝛿(𝑞0, 𝑤) = 𝑝 =

𝛿𝑛 (𝑞0, 𝑤), or 𝛿(𝑞0, 𝑤) = 𝑝 and 𝛿𝑛 (𝑞0, 𝑤) = 𝑝′.

To prove (1), let 𝑎 be unobservable. We first consider the
case 𝛿(𝑞0, 𝑤) = 𝛿𝑛 (𝑞0, 𝑤) = 𝑝. First, if 𝑝 is nonsecret, Con-
struction 5 adds every transition (𝑝, 𝑎, 𝑞) ∈ 𝛿 to 𝛿𝑛. On the
other hand, if 𝑝 is secret, 𝛿𝑛 contains the transition (𝑝, 𝑎, 𝑞′)
for every transition (𝑝, 𝑎, 𝑞) ∈ 𝛿 with 𝑞 ∈ 𝑄𝑁𝑆 , and the
transition (𝑝, 𝑎, 𝑞) for every transition (𝑝, 𝑎, 𝑞) ∈ 𝛿 with
𝑞 ∈ 𝑄𝑆 . In both cases, Construction 5 adds no other transi-
tion from state 𝑝 to 𝛿𝑛, and hence 𝛿(𝑞0, 𝑤𝑎) = 𝛿(𝑝, 𝑎) = 𝑞
if and only if 𝛿𝑛 (𝑞0, 𝑤𝑎) = 𝛿𝑛 (𝑝, 𝑎) ∈ {𝑞, 𝑞′}. Notice that
this case also covers the base case of the induction, since for
𝑤 = 𝜀, 𝛿(𝑞0, 𝑤) = 𝛿𝑛 (𝑞0, 𝑤) = 𝑞0.

Now, we consider the case 𝛿𝑛 (𝑞0, 𝑤) = 𝑝′ and 𝛿(𝑞0, 𝑤) = 𝑝.
Since Construction 5 adds the transition (𝑝′, 𝑎, 𝑞′) to 𝛿𝑛
for every unobservable transition (𝑝, 𝑎, 𝑞) ∈ 𝛿, we have
that 𝛿(𝑞0, 𝑤𝑎) = 𝛿(𝑝, 𝑎) = 𝑞 if and only if 𝛿𝑛 (𝑞0, 𝑤𝑎) =

𝛿𝑛 (𝑝′, 𝑎) = 𝑞′.

To prove (2), let 𝑎 be observable. We first consider the case
𝛿(𝑞0, 𝑤) = 𝛿𝑛 (𝑞0, 𝑤) = 𝑝. Then, from the state 𝑝, Construc-
tion 5 adds to 𝛿𝑛 all and only the observable transitions of
𝛿, and hence 𝛿(𝑝, 𝑎) = 𝛿𝑛 (𝑝, 𝑎).

Now, we consider the case 𝛿𝑛 (𝑞0, 𝑤) = 𝑝′ and 𝛿(𝑞0, 𝑤) = 𝑝.
Then, Construction 5 adds the transition (𝑝′, 𝑎, 𝑞) to 𝛿𝑛
for every observable transition (𝑝, 𝑎, 𝑞) ∈ 𝛿, and therefore
𝛿(𝑞0, 𝑤𝑎) = 𝛿(𝑝, 𝑎) = 𝛿𝑛 (𝑝′, 𝑎) = 𝛿𝑛 (𝑞0, 𝑤𝑎).

Finally, 𝐿 (𝐺) = 𝐿 (𝐺𝑛𝑜𝑟𝑚) of (3) follows from (1) and (2),
since, for every 𝑤 ∈ Σ∗, 𝛿(𝑞0, 𝑤) is undefined if and only if
𝛿𝑛 (𝑞0, 𝑤) is undefined. □

The following lemma describes the meaning of normaliza-
tion and states the main properties of a normalized DES.
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Lemma 7. For a deterministic DES 𝐺 = (𝑄, Σ, 𝛿, 𝑞0),
𝑘 ∈ N∞, the set of secret states 𝑄𝑆 , and the observation
𝑃 : Σ∗ → Σ∗

𝑜, let 𝐺𝑛𝑜𝑟𝑚 be the normalization of 𝐺 obtained
by Construction 5. Then, the following holds true:

(1) 𝐺𝑛𝑜𝑟𝑚 is deterministic;
(2) In 𝐺𝑛𝑜𝑟𝑚, there is no nonsecret state reachable from a

secret state by a sequence of unobservable events, that
is, 𝛿𝑛 (𝑄𝑆

𝑛 , 𝑃
−1 (𝜀)) ∩ (𝑄𝑛 −𝑄𝑆

𝑛) = ∅;
(3) 𝐺 is 𝑘-SSO with respect to 𝑄𝑆 and 𝑃 if and only if

𝐺𝑛𝑜𝑟𝑚 is 𝑘-SSO with respect to 𝑄𝑆
𝑛 and 𝑃.

Proof. To prove (1), we analyze the steps of Construction 5
creating 𝛿𝑛. First, 𝛿𝑛 is defined as 𝛿, which is deterministic.
Then, step (1) replaces some unobservable transitions, which
is an operation that preserves determinism of 𝛿𝑛. Step (2)
adds the transition (𝑝′, 𝑢, 𝑞′) for every unobservable tran-
sition (𝑝, 𝑢, 𝑞) in 𝐺. Similarly, step (3) adds the transition
(𝑞′, 𝑎, 𝑝) for every observable transition (𝑞, 𝑎, 𝑝) in𝐺. Since
𝐺 is deterministic, steps (2) and (3) preserve determinism.
Altogether, 𝐺𝑛𝑜𝑟𝑚 is deterministic.

To prove (2), step (1) of Construction 5 replaces all unob-
servable transitions from a secret state to a nonsecret state by
transitions from a secret state to a new secret state. Step (2)
adds unobservable transitions only between the new states,
which are all secret. Since no unobservable transition is de-
fined from the new states to the old states, there is no non-
secret state in 𝐺𝑛𝑜𝑟𝑚 reachable from a secret state by a se-
quence of unobservable events.

To prove the first direction of (3), we assume that 𝐺 is
𝑘-SSO with respect to 𝑄𝑆 and 𝑃, and show that then 𝐺𝑛𝑜𝑟𝑚

is 𝑘-SSO with respect to 𝑄𝑆
𝑛 and 𝑃. To this end, we show

that for every string 𝑠 ∈ 𝐿 (𝐺𝑛𝑜𝑟𝑚), there exists a string
𝑤 ∈ 𝐿 (𝐺𝑛𝑜𝑟𝑚) such that 𝑃(𝑠) = 𝑃(𝑤) and, for every prefix
𝑤′ of 𝑤, if |𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 𝑘 , then 𝛿𝑛 (𝑞0, 𝑤

′) ∉ 𝑄𝑆
𝑛 .

Thus, let 𝑠 ∈ 𝐿 (𝐺𝑛𝑜𝑟𝑚) be an arbitrary string. Then, by
Lemma 6, 𝑠 ∈ 𝐿 (𝐺𝑛𝑜𝑟𝑚) = 𝐿 (𝐺), and since 𝐺 is 𝑘-SSO
with respect to 𝑄𝑆 and 𝑃, there is a string �̃� ∈ 𝐿 (𝐺) such
that 𝑃(𝑠) = 𝑃(�̃�) and, for every prefix �̃�′ of �̃�, if |𝑃(�̃�) | −
|𝑃(�̃�′) | ≤ 𝑘 , then 𝛿(𝑞0, �̃�

′) ∉ 𝑄𝑆 . By defining 𝑤 = �̃�,
we obtain that the string 𝑤 ∈ 𝐿 (𝐺) = 𝐿 (𝐺𝑛𝑜𝑟𝑚) and that
𝑃(𝑠) = 𝑃(𝑤). It remains to show that for every prefix 𝑤′ of
𝑤, if |𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 𝑘 , then 𝛿𝑛 (𝑞0, 𝑤

′) ∉ 𝑄𝑆
𝑛 . To this

end, let 𝑥𝑦 = 𝑤 be the decomposition of 𝑤, where 𝑥 is the
shortest prefix of 𝑤 such that |𝑃(𝑤) | − |𝑃(𝑥) | ≤ 𝑘 . Then, 𝑥
is either empty or ends with an observable event. Hence, by
Lemma 6, 𝛿(𝑞0, 𝑥) = 𝛿𝑛 (𝑞0, 𝑥) = 𝑞 ∈ 𝑄 in 𝐺. However, for
every prefix 𝑦′ of 𝑦, the string 𝑥𝑦′ is a prefix of �̃� satisfying
|𝑃(�̃�) | − |𝑃(𝑥𝑦′) | ≤ 𝑘 , and hence 𝛿(𝑞0, 𝑥𝑦

′) ∉ 𝑄𝑆 . In other
words, the computation of 𝛿(𝑞, 𝑦) in 𝐺 does not go through
a secret state, and therefore the same sequence of transitions
exists in 𝐺𝑛𝑜𝑟𝑚, that is, 𝛿(𝑞0, 𝑥𝑦

′) = 𝛿𝑛 (𝑞0, 𝑥𝑦
′) ∉ 𝑄𝑆

𝑛 =

𝑄𝑆 ∪ 𝑄′. Since every prefix 𝑤′ of 𝑤 satisfying |𝑃(𝑤) | −
|𝑃(𝑤′) | ≤ 𝑘 is of the form 𝑤′ = 𝑥𝑦′, where 𝑦′ is a prefix
of 𝑦, we have shown that 𝛿𝑛 (𝑞0, 𝑤

′) ∉ 𝑄𝑆
𝑛 , which was to be

shown.

To prove the other direction, we assume that 𝐺 is not 𝑘-SSO
with respect to 𝑄𝑆 and 𝑃, and show that neither the 𝐺𝑛𝑜𝑟𝑚

is 𝑘-SSO with respect to𝑄𝑆
𝑛 and 𝑃. To this end, let 𝑠 ∈ 𝐿 (𝐺)

be a string violating 𝑘-SSO in𝐺; that is, for every 𝑤 ∈ 𝐿 (𝐺)
such that 𝑃(𝑠) = 𝑃(𝑤), there exists a prefix 𝑤′ of 𝑤 such that
|𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 𝑘 and 𝛿(𝑞0, 𝑤

′) = 𝑞𝑤 ∈ 𝑄𝑆 . However,
by Lemma 6, 𝑤 ∈ 𝐿 (𝐺𝑛𝑜𝑟𝑚) = 𝐿 (𝐺) and 𝛿𝑛 (𝑞0, 𝑤

′) ∈
{𝑞𝑤 , 𝑞′𝑤}. Since both states 𝑞𝑤 , 𝑞′𝑤 ∈ 𝑄𝑆

𝑛 = 𝑄𝑆 ∪ 𝑄′ are
secret in 𝐺𝑛𝑜𝑟𝑚, we conclude that 𝐺𝑛𝑜𝑟𝑚 is not 𝑘-SSO with
respect to 𝑄𝑆

𝑛 and 𝑃. □

4.2 Weak versus Strong 0-Step Opacity

In this section, we discuss the relationship between strong
0-step opacity and weak 0-step (current-state) opacity for
normal deterministic DES. The following result character-
izes the relationship between these two notions and fixes the
claim of Ma et al. (2021) stating that strong 0-step opac-
ity reduces to current-state opacity, which is not the case as
shown in the example of Figure 5.

Theorem 8. A normal deterministic DES 𝐺 = (𝑄, Σ, 𝛿, 𝑞0)
is strongly 0-step opaque with respect to 𝑄𝑆 and 𝑃 if and
only if 𝐺 is weakly 0-step opaque with respect to𝑄𝑆 ,𝑄𝑁𝑆 =

𝑄 −𝑄𝑆 , and 𝑃.

Proof. We first assume that 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) is 0-SSO with
respect to 𝑄𝑆 and 𝑃. To show that 𝐺 is 0-SO with respect
to 𝑄𝑆 and 𝑃, let 𝑠𝑡 ∈ 𝐿 (𝐺) be such that |𝑃(𝑡) | ≤ 0 and
𝛿(𝑞0, 𝑠) ∈ 𝑄𝑆 . Since 𝑠𝑡 ∈ 𝐿 (𝐺) and 𝐺 is deterministic,
𝛿(𝑞0, 𝑠𝑡) is defined. Therefore, we need to show that there
is a string 𝑠′𝑡′ ∈ 𝐿 (𝐺) such that 𝑃(𝑠) = 𝑃(𝑠′), 𝑃(𝑡) =

𝑃(𝑡′), and 𝛿(𝑞0, 𝑠
′) ∈ 𝑄𝑁𝑆 = 𝑄 −𝑄𝑆 . However, since 𝐺 is

𝑘-SSO with respect to 𝑄𝑆 and 𝑃, there is a string 𝑤 ∈ 𝐿 (𝐺)
such that 𝑃(𝑤) = 𝑃(𝑠𝑡) and, for every prefix 𝑤′ of 𝑤 with
|𝑃(𝑤) |− |𝑃(𝑤′) | = 0, 𝛿(𝑞0, 𝑤

′) ∈ 𝑄−𝑄𝑆 . Let 𝑤′ be any, but
fixed, such prefix of 𝑤. We set 𝑠′ = 𝑤′ and 𝑠′𝑡′ = 𝑤. Then,
𝑃(𝑠′) = 𝑃(𝑤′) = 𝑃(𝑤) = 𝑃(𝑠𝑡) = 𝑃(𝑠), 𝑃(𝑡′) = 𝜀 = 𝑃(𝑡),
and 𝛿(𝑞0, 𝑠

′) = 𝛿(𝑞0, 𝑤
′) ∈ 𝑄 − 𝑄𝑆 = 𝑄𝑁𝑆 . Thus, we have

shown that 𝐺 is 0-SO with respect to 𝑄𝑆 and 𝑃.5

For the other direction, we assume that 𝐺 is not 0-SSO with
respect to 𝑄𝑆 and 𝑃. To show that 𝐺 is neither 0-SO with
respect to 𝑄𝑆 and 𝑃, we need to find a string 𝑠𝑡 ∈ 𝐿 (𝐺)
with |𝑃(𝑡) | ≤ 0 and 𝛿(𝑞0, 𝑠) ∈ 𝑄𝑆 such that, for every
string 𝑠′𝑡′ ∈ 𝐿 (𝐺) with 𝑃(𝑠) = 𝑃(𝑠′) and 𝑃(𝑡) = 𝑃(𝑡′), the
state 𝛿(𝑞0, 𝑠

′) ∈ 𝑄𝑆 . However, from the assumption that 𝐺
is not 0-SSO with respect to 𝑄𝑆 and 𝑃, we have a string
𝑠𝑡 ∈ 𝐿 (𝐺) such that 𝛿(𝑞0, 𝑠) ∈ 𝑄𝑆 , |𝑃(𝑡) | ≤ 0, and, for
every string 𝑤 ∈ 𝐿 (𝐺) with 𝑃(𝑠𝑡) = 𝑃(𝑤), there is a prefix
𝑤′ of 𝑤 such that |𝑃(𝑤) | − |𝑃(𝑤′) | = 0 and 𝛿(𝑞0, 𝑤

′) ∈ 𝑄𝑆 .
To complete the proof, we show that for every 𝑠′𝑡′ ∈ 𝐿 (𝐺)
with 𝑃(𝑠) = 𝑃(𝑠′) and 𝑃(𝑡) = 𝑃(𝑡′), the state 𝛿(𝑞0, 𝑠

′) is
secret. To this end, let 𝑥𝑦 = 𝑠′𝑡′ be the decomposition of

5 Notice that the proof does not hold if we admit neutral states,
that is, 𝑄𝑁𝑆 ≠ 𝑄 −𝑄𝑆 . However, it is not the case in this paper.
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Figure 7. An illustration of Construction 9 transforming strong
𝑘-step opacity to weak 𝑘-step opacity.

𝑠′𝑡′ such that 𝑦 is the longest suffix of 𝑠′𝑡′ consisting only of
unobservable events. Notice that 𝑥 is a prefix of 𝑠′, because
𝑃(𝑡′) = 𝑃(𝑡) = 𝜀. Since 𝑃(𝑠𝑡) = 𝑃(𝑥), there must be a
prefix 𝑥′ of 𝑥 such that |𝑃(𝑥) | − |𝑃(𝑥′) | = 0 and 𝛿(𝑞0, 𝑥

′) ∈
𝑄𝑆 . However, the last event of 𝑥 is observable, and hence
the only prefix 𝑥′ of 𝑥 for which |𝑃(𝑥) | − |𝑃(𝑥′) | = 0 is
𝑥′ = 𝑥, and therefore 𝛿(𝑞0, 𝑥) = 𝛿(𝑞0, 𝑥

′) ∈ 𝑄𝑆 . Since
𝐺 is normal, there are no nonsecret states reachable from
the secret state 𝛿(𝑞0, 𝑥) under a sequence of unobservable
events. In particular, 𝛿(𝑞0, 𝑠

′) = 𝛿(𝑞0, 𝑥𝑦
′) ∈ 𝑄𝑆 , where 𝑦′

is a prefix of 𝑦 for which 𝑠′ = 𝑥𝑦′; recall that 𝑦 is the longest
suffix of 𝑠′𝑡′ consisting only of unobservable events. Thus,
we have shown that 𝐺 is not 0-SO. □

4.3 Weak versus Strong k-Step Opacity

In this section, we show how to reduce strong 𝑘-step opacity
to weak 𝑘-step opacity. In the construction, we assume that𝐺
is a normal deterministic DES. By Lemma 7, this assumption
is without loss of generality, because if 𝐺 is not normal,
then we can consider 𝐺𝑛𝑜𝑟𝑚 instead.

Construction 9. Let 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) be a normal deter-
ministic DES, 𝑃 : Σ∗ → Σ∗

𝑜 be the observation projection,
and 𝑄𝑆 be the set of secret states. We construct

𝐺′ = (𝑄 ∪𝑄′
𝑁𝑆 , Σ ∪ {𝑢}, 𝛿′, 𝑞0)

as a disjoint union of 𝐺 and 𝐺𝑛𝑠 = (𝑄′
𝑁𝑆
, Σ, 𝛿𝑛𝑠 , 𝑞

′
0), where

𝐺𝑛𝑠 is obtained from 𝐺 by removing all secret states and
corresponding transitions, and 𝑄′

𝑁𝑆
= {𝑞′ | 𝑞 ∈ 𝑄𝑁𝑆} is a

copy of 𝑄𝑁𝑆 disjoint from 𝑄. We use a new unobservable
event 𝑢 to connect𝐺𝑛𝑠 to𝐺 so that we initialize 𝛿′ := 𝛿∪𝛿𝑛𝑠
and extend 𝛿′ by additional transitions (𝑞, 𝑢, 𝑞′) for every
𝑞 ∈ 𝑄𝑁𝑆 , cf. Figure 7 for an illustration. The states of
𝑄′

𝑁𝑆
are the only nonsecret states of 𝐺′, that is, the set of

secret states of 𝐺′ is the set 𝑄′
𝑆
= 𝑄. Finally, we define the

projection 𝑃′ : (Σ ∪ {𝑢})∗ → Σ∗
𝑜. ⋄

The following theorem describes the relationship between
strong 𝑘-step opacity and weak 𝑘-step opacity, and justifies
the correctness of Algorithm 3 below.

Theorem 10. Let 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) be a normal determin-
istic DES, and let 𝐺′ be the DES obtained from 𝐺 by Con-
struction 9. Then, 𝐺 is strongly 𝑘-step opaque with respect

to 𝑄𝑆 and 𝑃 if and only if 𝐺′ is weakly 𝑘-step opaque with
respect to 𝑄′

𝑆
, 𝑄′

𝑁𝑆
, and 𝑃′, where 𝑄′

𝑆
, 𝑄′

𝑁𝑆
, and 𝑃′ are

defined in Construction 9.

Proof. For the first implication, we assume that 𝐺 is 𝑘-SSO
with respect to 𝑄𝑆 and 𝑃, and we show that 𝐺′ is 𝑘-SO with
respect to 𝑄′

𝑆
, 𝑄′

𝑁𝑆
, and 𝑃′. To this end, let 𝑠𝑡 ∈ 𝐿 (𝐺′) be

such that |𝑃′ (𝑡) | ≤ 𝑘 and 𝛿′ (𝑞0, 𝑠) ∈ 𝑄′
𝑆
. We need to show

that there is a string 𝑠′𝑡′ ∈ 𝐿 (𝐺′) such that 𝑃′ (𝑠) = 𝑃′ (𝑠′),
𝑃′ (𝑡) = 𝑃′ (𝑡′), and 𝛿′ (𝑞0, 𝑠

′) ∈ 𝑄′
𝑁𝑆

.

Let 𝑃𝑢 denote the projection that removes every occurrence
of event 𝑢, that is, 𝑃𝑢 (𝑎) = 𝑎 for 𝑎 ∈ Σ, and 𝑃𝑢 (𝑢) = 𝜀. We
first show that 𝑃𝑢 (𝑠𝑡) ∈ 𝐿 (𝐺). Indeed, if 𝑠𝑡 does not contain
𝑢, then 𝑃𝑢 (𝑠𝑡) = 𝑠𝑡 ∈ 𝐿 (𝐺). If 𝑠𝑡 contains 𝑢, then, by the
construction of 𝐺′, any string of 𝐿 (𝐺′) contains at most one
occurrence of 𝑢. Since 𝛿′ (𝑞0, 𝑠) ∈ 𝑄′

𝑆
, we have that 𝑢 occurs

in 𝑡. Let 𝑠𝑡 = 𝑠𝑡1𝑢𝑡2. Then, there are states 𝑝, 𝑟 ∈ 𝑄 in 𝐺′

such that 𝛿′ (𝑞0, 𝑠𝑡1) = 𝑝, 𝛿′ (𝑝, 𝑢) = 𝑝′, and 𝛿′ (𝑝′, 𝑡2) = 𝑟 ′.
However, by the construction, this means that 𝛿(𝑞0, 𝑠𝑡1) = 𝑝
and 𝛿(𝑝, 𝑡2) = 𝑟 in 𝐺, and hence 𝑃𝑢 (𝑠𝑡) = 𝑠𝑡1𝑡2 ∈ 𝐿 (𝐺).

Since 𝐺 is 𝑘-SSO with respect to 𝑄𝑆 and 𝑃, there exists a
string 𝑤 ∈ 𝐿 (𝐺) such that 𝑃(𝑃𝑢 (𝑠𝑡)) = 𝑃(𝑤) and, for every
prefix 𝑤′ of 𝑤, if |𝑃(𝑤) |− |𝑃(𝑤′) | ≤ 𝑘 , then 𝛿(𝑞0, 𝑤

′) ∉ 𝑄𝑆 .
Since 𝑃′ (𝑠𝑡) = 𝑃(𝑃𝑢 (𝑠𝑡)) = 𝑃(𝑤), we define 𝑥𝑦 = 𝑤 to be
a (fixed) decomposition of 𝑤 such that 𝑃′ (𝑠) = 𝑃(𝑥) and
𝑃′ (𝑡) = 𝑃(𝑦). Then, |𝑃(𝑤) | − |𝑃(𝑥) | = |𝑃′ (𝑠𝑡) | − |𝑃′ (𝑠) | =
|𝑃′ (𝑡) | ≤ 𝑘 , which implies that 𝛿(𝑞0, 𝑥) = 𝛿′ (𝑞0, 𝑥) = 𝑞 for
some state 𝑞 that is not secret in 𝐺. Therefore, the transition
(𝑞, 𝑢, 𝑞′) ∈ 𝛿′, and hence 𝛿′ (𝑞0, 𝑥𝑢) = 𝑞′ ∈ 𝑄′

𝑁𝑆
. Since the

state 𝛿(𝑞0, 𝑥𝑦
′) ∉ 𝑄𝑆 for every prefix 𝑦′ of 𝑦, because 𝑥𝑦′ is

a prefix of 𝑤 with |𝑃(𝑤) |− |𝑃(𝑥𝑦′) | ≤ 𝑘 , the computation of
𝛿(𝑞, 𝑦) in𝐺 does not go through a secret state. Therefore, the
same sequence of transitions is enabled in 𝐺′ from state 𝑞′.
Setting now 𝑠′ = 𝑥𝑢 and 𝑡′ = 𝑦 implies that 𝑃′ (𝑠) = 𝑃′ (𝑠′),
𝑃′ (𝑡) = 𝑃′ (𝑡′), 𝛿′ (𝑞0, 𝑠

′) ∈ 𝑄′
𝑁𝑆

, and 𝛿′ (𝑞0, 𝑠
′𝑡′) is defined,

which proves that 𝐺′ is weakly 𝑘-step opaque.

To prove the other direction, we assume that 𝐺 is not 𝑘-SSO
with respect to 𝑄𝑆 and 𝑃, and we show that 𝐺′ is not 𝑘-SO
with respect to 𝑄′

𝑆
, 𝑄′

𝑁𝑆
, and 𝑃′. To this end, we need to

show that there is a string 𝑠𝑡 ∈ 𝐿 (𝐺′) such that |𝑃′ (𝑡) | ≤ 𝑘 ,
𝛿′ (𝑞0, 𝑠) ∈ 𝑄′

𝑆
, and for every 𝑠′𝑡′ ∈ 𝐿 (𝐺′) such that 𝑃′ (𝑠) =

𝑃′ (𝑠′) and 𝑃′ (𝑡) = 𝑃′ (𝑡′), the state 𝛿′ (𝑞0, 𝑠
′) ∉ 𝑄′

𝑁𝑆
.

However, since 𝐺 is not 𝑘-SSO with respect to 𝑄𝑆 and 𝑃,
there exists a string 𝑣 ∈ 𝐿 (𝐺) such that, for every string
𝑤 ∈ 𝐿 (𝐺) with 𝑃(𝑤) = 𝑃(𝑣), there is a prefix 𝑤′ of 𝑤 such
that |𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 𝑘 and 𝛿(𝑞0, 𝑤

′) ∈ 𝑄𝑆 . In particular,
there is a prefix 𝑣′ of 𝑣 such that |𝑃(𝑣) | − |𝑃(𝑣′) | ≤ 𝑘 and
𝛿(𝑞0, 𝑣

′) ∈ 𝑄𝑆 .

Let 𝑥𝑦 = 𝑣 be the decomposition of 𝑣 such that 𝑦 is the
longest suffix of 𝑣 containing at most 𝑘 observable events.
We set 𝑠 = 𝑥 and 𝑡 = 𝑦, for which we have that |𝑃(𝑡) | ≤ 𝑘 ,
𝛿′ (𝑞0, 𝑠𝑡) is defined, and, since neither 𝑠 nor 𝑡 contains the
event 𝑢, the state 𝛿′ (𝑞0, 𝑠) ∈ 𝑄′

𝑆
. It remains to show that for
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every string 𝑠′𝑡′ ∈ 𝐿 (𝐺′) with 𝑃′ (𝑠′) = 𝑃′ (𝑠) and 𝑃′ (𝑡′) =
𝑃′ (𝑡), the state 𝛿′ (𝑞0, 𝑠

′) ∉ 𝑄′
𝑁𝑆

. We distinguish two cases.

In the first case, we assume that 𝛿(𝑞0, 𝑃
−1𝑃(𝑠)) ∩𝑄𝑁𝑆 = ∅,

and we consider any string 𝑠′𝑡′ ∈ 𝐿 (𝐺′) such that 𝑃′ (𝑠′) =
𝑃′ (𝑠) and 𝑃′ (𝑡′) = 𝑃′ (𝑡). If 𝑠′ does not contain the event
𝑢, then 𝑠′ ∈ 𝑃−1𝑃(𝑠), and therefore 𝛿′ (𝑞0, 𝑠

′) = 𝛿(𝑞0, 𝑠
′) ∈

𝑄𝑆 ⊆ 𝑄′
𝑆
. If, on the other hand, 𝑠′ contains the event 𝑢, then

𝑠′ = 𝑠1𝑢𝑠2 where neither 𝑠1 nor 𝑠2 contains the event 𝑢. But
then 𝛿′ (𝑞0, 𝑠

′) = 𝑟 ′, where 𝑟 ′ is a copy of 𝑟 = 𝛿(𝑞0, 𝑠1𝑠2).
Since 𝑠1𝑠2 ∈ 𝑃−1𝑃(𝑠), the state 𝑟 = 𝛿(𝑞0, 𝑠1𝑠2) ∈ 𝑄𝑆 , and
hence 𝑟 ′ ∉ 𝑄′

𝑁𝑆
by construction. In both cases, 𝛿′ (𝑞0, 𝑠

′) ∉
𝑄′

𝑁𝑆
, which was to be shown.

In the second case, let 𝛿(𝑞0, 𝑃
−1𝑃(𝑠)) ∩𝑄𝑁𝑆 = 𝑍 ≠ ∅, and

consider any string 𝑠′𝑡′ ∈ 𝐿 (𝐺′) with 𝑃′ (𝑠′) = 𝑃′ (𝑠) and
𝑃′ (𝑡′) = 𝑃′ (𝑡). Using the projection 𝑃𝑢 removing the event
𝑢, we set 𝑧 := 𝑃𝑢 (𝑠′𝑡′) ∈ 𝐿 (𝐺). Recall that the string 𝑠𝑡 does
not contain the event 𝑢, that is, 𝑃′ (𝑠𝑡) = 𝑃(𝑠𝑡), and therefore
𝑃(𝑧) = 𝑃(𝑃𝑢 (𝑠′𝑡′)) = 𝑃′ (𝑠′𝑡′) = 𝑃′ (𝑠𝑡) = 𝑃(𝑠𝑡) = 𝑃(𝑣).
Since 𝐺 is not 𝑘-SSO with respect to 𝑄𝑆 and 𝑃, there is
a prefix 𝑧′ of 𝑧 such that |𝑃(𝑧) | − |𝑃(𝑧′) | ≤ 𝑘 and 𝑞𝑠 :=
𝛿(𝑞0, 𝑧

′) ∈ 𝑄𝑆 . In particular, by the choice of 𝑠, we have
that |𝑃(𝑠) | ≤ |𝑃(𝑧′) |. Furthermore, 𝐺 is normal, and hence
there is no nonsecret state reachable from the secret state 𝑞𝑠
by a sequence of unobservable events.

In particular, the prefix 𝑃𝑢 (𝑠′) of the string 𝑧 = 𝑃𝑢 (𝑠′)𝑃𝑢 (𝑡′)
satisfies 𝑃(𝑃𝑢 (𝑠′)) = 𝑃′ (𝑠′) = 𝑃′ (𝑠) = 𝑃(𝑠), where the last
equality comes from the fact that 𝑠 does not contain the event
𝑢. Then 𝑃𝑢 (𝑠′) ∈ 𝑃−1𝑃(𝑠), and hence if 𝛿(𝑞0, 𝑃𝑢 (𝑠′)) ∈
𝑄𝑁𝑆 , then 𝛿(𝑞0, 𝑃𝑢 (𝑠′)) ∈ 𝑄𝑁𝑆 ∩ 𝑍 . Thus, assume that
𝛿(𝑞0, 𝑃𝑢 (𝑠′)) ∈ 𝑄𝑁𝑆 ∩ 𝑍 . Then, the string 𝑃𝑢 (𝑠′) is a strict
prefix of 𝑧′; otherwise, if 𝑧′ was a strict prefix of 𝑃𝑢 (𝑠′), then
we would have that |𝑃(𝑧′) | ≤ |𝑃(𝑃𝑢 (𝑠′)) | = |𝑃(𝑠) |, which,
together with |𝑃(𝑠) | ≤ |𝑃(𝑧′) |, would give that |𝑃(𝑧′) | =
|𝑃(𝑃𝑢 (𝑠′)) | = |𝑃(𝑠) |, and hence the nonsecret state 𝑞𝑛𝑠 =

𝛿(𝑞0, 𝑃𝑢 (𝑠′)) would be reachable from the secret state 𝑞𝑠 by
a sequence of unobservable events, which is a contradiction
with the normality of 𝐺. Consequently, generating the string
𝑃𝑢 (𝑡′) from the state 𝑞𝑛𝑠 , 𝐺 must go through the secret state
𝑞𝑠 . In other words, 𝑞𝑠 is reachable from the state 𝑞𝑛𝑠 by a
prefix of 𝑃𝑢 (𝑡′).

Thus, in 𝐺′, state 𝛿′ (𝑞0, 𝑠
′) ∈ {𝑞𝑛𝑠 , 𝑞′𝑛𝑠}, where 𝑞′𝑛𝑠 ∈ 𝑍 ′ =

{𝑞′ | 𝑞 ∈ 𝑍} ⊆ 𝑄′
𝑁𝑆

. If 𝛿′ (𝑞0, 𝑠
′) = 𝑞𝑛𝑠 ∈ 𝑄′

𝑆
, we are done.

If 𝛿′ (𝑞0, 𝑠
′) = 𝑞′𝑛𝑠 ∈ 𝑄′

𝑁𝑆
, we show that 𝛿′ (𝑞′𝑛𝑠 , 𝑡′) is unde-

fined, which contradicts the assumption that 𝑠′𝑡′ ∈ 𝐿 (𝐺′),
and hence 𝛿′ (𝑞0, 𝑠

′) = 𝑞′𝑛𝑠 ∈ 𝑄′
𝑁𝑆

cannot happen. Indeed,
if 𝛿′ (𝑞0, 𝑠

′) ∈ 𝑄′
𝑁𝑆

, then 𝑃𝑢 (𝑡′) = 𝑡′. Since the computa-
tion of 𝛿(𝑞𝑛𝑠 , 𝑡′) = 𝛿(𝑞𝑛𝑠 , 𝑃𝑢 (𝑡′)) in 𝐺 goes through the se-
cret state 𝑞𝑠 , the computation of 𝛿′ (𝑞′𝑛𝑠 , 𝑡′) in 𝐺′ has to go
through the state 𝑞′𝑠 , which is the primed copy of the state
𝑞𝑠 . But the computation 𝛿′ (𝑞′𝑛𝑠 , 𝑡′) is performed in the au-
tomaton 𝐺𝑛𝑠 , which is obtained from 𝐺 by removing all se-
cret states and corresponding transitions. Since 𝑞′𝑠 is a copy
of a secret state, it does not exist in 𝐺𝑛𝑠 , and hence it does
not belong to 𝑄′

𝑁𝑆
. Therefore, 𝛿′ (𝑞′𝑛𝑠 , 𝑡′) is undefined.

Algorithm 3. Verification of strong 𝑘-step opacity
Require: A deterministic DES 𝐺 = (𝑄, Σ, 𝛿, 𝑞0), 𝑄𝑆 ⊆ 𝑄,

Σ𝑜 ⊆ Σ, and 𝑘 ∈ N∞.
Ensure: true if and only if 𝐺 is strongly 𝑘-step opaque

with respect to 𝑄𝑆 and 𝑃 : Σ∗ → Σ∗
𝑜

1: Let 𝐺𝑛𝑜𝑟𝑚 be the normalization of 𝐺 by Construction 5
2: Transform 𝐺𝑛𝑜𝑟𝑚 to 𝐺′ by Construction 9
3: Use Algorithm 1 on 𝐺′ with the set of secret states 𝑄′

𝑆
,

the set of nonsecret states 𝑄′
𝑁𝑆

, observable events Σ𝑜,
and 𝑘

4: return the answer of Algorithm 1

We have thus shown that 𝐺′ is not 𝑘-step opaque. □

Both Construction 5 and Construction 9 are polynomial and
preserve the number of observable events. Therefore, Theo-
rem 10 and the existing results (Balun and Masopust, 2021,
Table 1) immediately imply the following result.

Theorem 11. Deciding whether a given deterministic DES
𝐺 is strongly 𝑘-step opaque is (i) coNP-complete if 𝐺 has
only a single observable event, and (ii) PSpace-complete if
𝐺 has at least two observable events. □

The motivation to consider the case of a single observable
event comes from the timed discrete-event systems frame-
work of Brandin and Wonham (1994), where the only ob-
servable event is the tick of the global clock.

4.4 Verifying Strong k-Step Opacity

Theorem 10 gives us a clue how to verify strong 𝑘-step opac-
ity of a given deterministic DES with the help of the veri-
fication algorithm for weak 𝑘-step opacity from Section 3.
This idea is formulated as Algorithm 3. Before analyzing
the complexity of Algorithm 3 and comparing it with the
existing algorithms, we illustrate it by two examples.

As the first example, we adopt the DES 𝐺 from Falcone and
Marchand (2015) depicted in Figure 8 (left), where events
𝑎, 𝑏, 𝑐 are observable, event 𝑢1 is unobservable, and states 4
and 6 are secret. Falcone and Marchand (2015) claimed that
𝐺 is strongly one-step opaque. However, it is not the case, as
we show by using our transformation to weak 𝑘-step opacity.

1 2 3 4

5 6 7 8

a b a

c
u1

a b a

c
=⇒

1 2 3 4

5 6 7 8

1′ 2′ 3′

5′ 7′ 8′

a b a

c
u1

a b a

c

a b

a

u2 u2 u2

u2 u2 u2

Figure 8. A DES 𝐺 (left) and 𝐺′ (right), which is the result of
Construction 9.
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{1, 1′, 5, 5′} {2, 2′, 6} {3, 3′, 7, 7′} {4, 8, 8′}

{1′, 5′} {2′} {3′} {3′, 7′} {8′}

a b a

c

a b a

Figure 9. The observer 𝐺′𝑜𝑏𝑠 of 𝐺′, the solid part. The automaton
𝐻 forming the relevant part of the full observer of 𝐺′ is obtained
from 𝐺′𝑜𝑏𝑠 by adding the dashed part; state ∅ and the transitions
to it are not depicted.

1, {1′, 5′} 2, {2′}

2′, {2′}

3, {3′}

3′, {3′}

3, {3′, 7′} 4, {8′} 2, ∅

5, {1′, 5′} 6, {2′} 7, {3′}

7′, {3′}

7, {3′, 7′} 8, {8′} 6, ∅

8′, {8′}

a

a

b

b

a c

a b

b

a c

a

Figure 10. The part of 𝐶1 consisting of states reachable from the
states of 𝑌 in one step. The states of 𝑌 are denoted by little arrows.

Since 𝐺 is normal, Algorithm 3 proceeds directly to the ap-
plication of Construction 9, which results in the DES 𝐺′ de-
picted in Figure 8 (right). Namely, 𝐺′ was constructed from
𝐺 by adding six new nonsecret states and one new unobserv-
able event 𝑢2, and by making states 1 through 8 secret, that is,
𝑄′

𝑆
= {1, 2, 3, 4, 5, 6, 7, 8} and 𝑄′

𝑁𝑆
= {1′, 2′, 3′, 5′, 7′, 8′}.

Applying Algorithm 1 to 𝐺′, 𝑄′
𝑆
, 𝑄′

𝑁𝑆
, Σ𝑜 = {𝑎, 𝑏, 𝑐},

and 𝑘 = 1 results in the observer 𝐺′𝑜𝑏𝑠 of 𝐺′ and the au-
tomaton 𝐻 depicted in Figure 9. The set 𝑌 and the part of
C1 = 𝑃(𝐺′) × 𝐻 reachable from the states of 𝑌 in one step
are depicted in Figure 10. Since, e.g., state (2, ∅) is reach-
able in C1 in one step from the state (4, {8′}) ∈ 𝑌 , 𝐺′ is not
weakly one-step opaque. By Theorem 10, 𝐺 is not strongly
one-step opaque. Indeed, observing the string 𝑎𝑏𝑎𝑐 in 𝐺,
the intruder reveals that 𝐺 is either in the secret state 6 at
that time instant or must have been in the secret state 4 one
step ago.

As the second example, we consider the DES �̃� obtained
from 𝐺 by replacing the transitions (4, 𝑐, 2) and (8, 𝑐, 6) by
the transitions (4, 𝑐, 3) and (8, 𝑐, 7), respectively, see Fig-
ure 11. Then, Construction 9 results in the DES �̃�′ with
�̃�′

𝑆
= {1, 2, 3, 4, 5, 6, 7, 8} and �̃�′

𝑁𝑆
= {1′, 2′, 3′, 5′, 7′, 8′}.

1 2 3 4

5 6 7 8

a b a

c

u1

a b a

c

=⇒
1 2 3 4

5 6 7 8

1′ 2′ 3′

5′ 7′ 8′

a b a

c

u1

a b a

c

a b

a

c

u2 u2 u2

u2 u2 u2

Figure 11. A DES �̃� (left) and the DES �̃�′ obtained by Construc-
tion 9 (right).

{1, 1′, 5, 5′} {2, 2′, 6} {3, 3′, 7, 7′} {4, 8, 8′}

{1′, 5′} {2′} {3′} {3′, 7′} {8′} {7′}

a b a

c

a b a a

c

Figure 12. The observer �̃�′𝑜𝑏𝑠 of �̃�′, the solid part. The automaton
�̃� forming the relevant part of the full observer of �̃�′ is obtained
from �̃�′𝑜𝑏𝑠 by adding the dashed part; state ∅ and the transitions
to it are not depicted.

1, {1′, 5′} 2, {2′}

2′, {2′}

3, {3′}

3′, {3′}

3, {3′, 7′} 4, {8′} 3, {7′}

5, {1′, 5′} 6, {2′} 7, {3′}

7′, {3′}

7, {3′, 7′} 8, {8′} 7, {7′}

8′, {8′} 7′, {7′}

a

a

b

b

a c

a b

b

a c

a c

Figure 13. The part of 𝐶2 consisting of states reachable from the
states of 𝑌 in one step. The states of 𝑌 are denoted by little arrows.

Applying Algorithm 1 to �̃�′, �̃�′
𝑆
, �̃�′

𝑁𝑆
, Σ𝑜 = {𝑎, 𝑏, 𝑐}, and

𝑘 = 1 results in the observer �̃�′𝑜𝑏𝑠 of �̃�′ and the automa-
ton �̃� depicted in Figure 12. The set 𝑌 and the part of
C2 = 𝑃(�̃�′) × �̃� reachable from the states of 𝑌 in one step
are depicted in Figure 13. Since no state of the form (𝑞, ∅) is
reachable from a state of𝑌 in one step, �̃�′ is weakly one-step
opaque. By Theorem 10, �̃� is strongly one-step opaque.

4.5 Complexity Analysis of Algorithm 3

Algorithms verifying strong 𝑘-step opacity have been inves-
tigated in the literature. In particular, Falcone and Marchand
(2015) designed an algorithm based on a 𝑘-delay trajectory
estimation, but they did not analyze its complexity. The com-
plexity analyses in the literature are inconsistent. While Ma
et al. (2021) state that the complexity is 𝑂 (ℓ2𝑛2+𝑛), where
𝑛 is the number of states and ℓ is the number of observable
events of the verified deterministic DES, Wintenberg et al.
(2022) state that the state complexity is 𝑂 ((ℓ + 1)𝑘2𝑛). Ac-
cording to (Falcone and Marchand, 2015, Definition 7), how-
ever, the 𝑘-delay trajectory estimator has 𝑂 (2𝑛𝑘+1 ·2𝑘 ) states.

Recently, Ma et al. (2021) designed another algorithm with
complexity 𝑂 (ℓ2(𝑘+2)𝑛), and even more recently, Winten-
berg et al. (2022) discussed and experimentally compared
algorithms based on (i) the secret observer with complexity
𝑂 (ℓ(𝑘 + 3)𝑛), on (ii) the reverse comparison with complex-
ity 𝑂 ((𝑛 + 𝑚) (𝑘 + 1)2𝑛), where 𝑚 ≤ ℓ𝑛2 is the number of
transitions in the involved projected NFA, and on (iii) the
construction of the 𝑘-delay trajectory estimator of Falcone
and Marchand (2015), which they claim to be of complexity
𝑂 (ℓ(ℓ + 1)𝑘2𝑛).

We now analyze the complexity of Algorithm 3 and show
that its worst-case complexity is better than the complexity
of existing algorithms. Namely, we show that the space and
time complexity of Algorithm 3 is𝑂 (𝑛2𝑛) and𝑂 ((𝑛+𝑚)2𝑛),
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respectively, where 𝑛 is the number of states of𝐺 and𝑚 is the
number of transitions of 𝑃(𝐺). Notice that the complexity
does not depend on the parameter 𝑘 .

Before we prove this result, notice that 𝑚 ≤ ℓ𝑛2, where ℓ is
the number of observable events. Since ℓ𝑛2 is the maximum
number of transitions in an 𝑛-state NFA with ℓ events, 𝑚 is
often significantly smaller than ℓ𝑛2.

For a deterministic DES with 𝑛 states, Construction 5 results
in a normalized DES with up to 2𝑛 states, and hence it may
seem that the observer of the normalized DES could have up
to 22𝑛 states. The following lemma shows that the observer
of the normalized DES has in fact at most 2𝑛 states.

Lemma 12. Let 𝐺 be an 𝑛-state deterministic DES, and
let 𝐺𝑛𝑜𝑟𝑚 be its normalization obtained by Construction 5.
Then, the observer of 𝐺𝑛𝑜𝑟𝑚 has at most 2𝑛 states.

Proof. Let 𝐺 = (𝑄, Σ, 𝛿, 𝑞0) be a deterministic DES with
𝑛 states, and let Σ𝑢𝑜 be the set of unobservable events. The
application of Construction 5 on 𝐺 results in the determin-
istic DES 𝐺𝑛𝑜𝑟𝑚 = (𝑄𝑛, Σ, 𝛿𝑛, 𝑞0), where 𝑄𝑛 ⊆ 𝑄∪𝑄′ and
𝑄′ = {𝑞′ | 𝑞 ∈ 𝑄} is a disjoint copy of 𝑄. All states of
𝑄𝑛 are reachable in 𝐺𝑛𝑜𝑟𝑚 by construction. The observer
𝐺𝑜𝑏𝑠

𝑛𝑜𝑟𝑚 = (𝑋𝑜𝑏𝑠 , Σ𝑜, 𝛿𝑜𝑏𝑠 , 𝑥0) of 𝐺𝑛𝑜𝑟𝑚 is defined as fol-
lows. The set of states is the subset of the power set of 𝑄𝑛,
namely, 𝑋𝑜𝑏𝑠 ⊆ 2𝑄𝑛 . The initial state is the unobservable
reach (UR) of the initial state of the automaton 𝐺𝑛𝑜𝑟𝑚, that
is, 𝑥0 := 𝑈𝑅(𝑞0) = 𝛿𝑛 (𝑞0, Σ

∗
𝑢𝑜). The transition function 𝛿𝑜𝑏𝑠

is defined for every 𝑋 ∈ 𝑋𝑜𝑏𝑠 and every observable event
𝑎 ∈ Σ𝑜 as the unobservable reach of the states reachable in
𝐺𝑛𝑜𝑟𝑚 from the states of 𝑋 by the event 𝑎, that is,

𝛿𝑜𝑏𝑠 (𝑋, 𝑎) := 𝑈𝑅(𝛿𝑛 (𝑋, 𝑎))

where, for every 𝑌 ⊆ 𝑄𝑛, 𝑈𝑅(𝑌 ) = 𝛿𝑛 (𝑌, Σ∗
𝑢𝑜). By item (2)

of Lemma 6,
𝛿𝑛 (𝑋, 𝑎) ⊆ 𝑄 ,

and hence every state of the observer of 𝐺𝑛𝑜𝑟𝑚 is uniquely
determined by a subset of 𝑄. In particular, we define an in-
jective mapping 𝑓 : 𝑋𝑜𝑏𝑠 → 2𝑄 assigning subsets of𝑄 to the
states of the observer of𝐺𝑛𝑜𝑟𝑚 as follows: 𝑓 (𝑥0) = {𝑞0}, and
for every state 𝑌 ≠ 𝑥0 of the observer of 𝐺𝑛𝑜𝑟𝑚, we pick and
fix a state 𝑋 ∈ 𝑋𝑜𝑏𝑠 such that 𝛿𝑜𝑏𝑠 (𝑋, 𝑎) = 𝑌 , for some ob-
servable event 𝑎 ∈ Σ𝑜, and we define 𝑓 (𝑌 ) = 𝛿𝑛 (𝑋, 𝑎). Such
a state 𝑋 exists because every state of the observer is reach-
able. Then, 𝑌 = 𝛿𝑜𝑏𝑠 (𝑋, 𝑎) = 𝑈𝑅(𝛿𝑛 (𝑋, 𝑎)) = 𝑈𝑅( 𝑓 (𝑌 )),
and we have that if 𝑓 (𝑌1) = 𝑓 (𝑌2), then 𝑌1 = 𝑈𝑅( 𝑓 (𝑌1)) =
𝑈𝑅( 𝑓 (𝑌2)) = 𝑌2, which shows that the mapping 𝑓 is injec-
tive. Consequently, the number of states of the observer of
𝐺𝑛𝑜𝑟𝑚 is bounded by the number of subsets of the set 𝑄,
which is 2𝑛. □

Notice that Lemma 12 does not claim that the number of
states of the observer of 𝐺 and of the observer of its nor-
malization 𝐺𝑛𝑜𝑟𝑚 coincide. It only provides an upper bound
on the worst-case complexity.

Similarly, for a normal deterministic DES 𝐺 with 𝑛 states,
Construction 9 results in a deterministic DES 𝐺′ with up to
2𝑛 states. The second lemma shows that the observer of 𝐺′

has as many states as the observer of 𝐺.

Lemma 13. Let 𝐺 be a normal deterministic DES with 𝑛
states, and let 𝐺′ be obtained from 𝐺 by Construction 9.
Then, the numbers of states of the observer of 𝐺′ and of the
observer of 𝐺 coincide.

Proof. Let𝐺 = (𝑄, Σ, 𝛿, 𝑞0) be a normal deterministic DES,
and let 𝐺′ = (𝑄∪𝑄′

𝑁𝑆
, Σ∪{𝑢}, 𝛿′, 𝑞0) be the DES obtained

from 𝐺 by Construction 9. Recall that 𝐺′ is obtained as a
disjoint union of 𝐺 and 𝐺𝑛𝑠 , where 𝐺𝑛𝑠 is a copy of 𝐺
without the secret states and the corresponding transitions,
𝑄′

𝑁𝑆
= {𝑞′ | 𝑞 ∈ 𝑄𝑁𝑆} is a copy of 𝑄𝑁𝑆 disjoint from 𝑄,

and the event 𝑢 is unobservable. For every reachable state
𝑆 of the observer of 𝐺′, we show that 𝑆 contains a state
𝑝′ ∈ 𝑄′

𝑁𝑆
if and only if 𝑆 contains the corresponding state

𝑝 ∈ 𝑄𝑁𝑆 . Consequently, the observer of𝐺′ and the observer
of 𝐺 have the same number of states.

To prove one direction, let 𝑆 be a reachable state of the
observer of 𝐺′. If 𝑆 contains a state 𝑝 ∈ 𝑄𝑁𝑆 , then the
unobservable transition (𝑝, 𝑢, 𝑝′) of 𝐺′ implies that 𝑆 also
contains the state 𝑝′ ∈ 𝑄′

𝑁𝑆
.

To prove the other direction, let 𝑆 be a reachable state of the
observer of 𝐺′, and assume that a state 𝑝′ ∈ 𝑄′

𝑁𝑆
belongs

to 𝑆. Then, for every string 𝑤 ∈ 𝑃′ (𝐿 (𝐺′)) under which
the state 𝑆 is reachable from the initial state {𝑞0} in the
observer of 𝐺′, there exists a string 𝑤′ ∈ 𝐿 (𝐺′) such that
𝑃′ (𝑤′) = 𝑤 and 𝛿′ (𝑞0, 𝑤

′) = 𝑝′. Since 𝑞0 ∈ 𝑄, 𝑝′ ∈ 𝑄′
𝑁𝑆

,
and every string of 𝐿 (𝐺′) contains at most one occurrence
of the event 𝑢, we can partition the string 𝑤′ = 𝑤1𝑢𝑤2 so
that 𝛿′ (𝑞0, 𝑤1) = 𝑟, 𝛿′ (𝑟, 𝑢) = 𝑟 ′, and 𝛿′ (𝑟 ′, 𝑤2) = 𝑝′, for
some state 𝑟 ∈ 𝑄. However, 𝛿′ (𝑟 ′, 𝑤2) = 𝑝′ is executed in
𝐺𝑛𝑠 , which is obtained from 𝐺 by removing all secret states.
Therefore, 𝛿(𝑟, 𝑤2) = 𝑝must be defined in𝐺. Altogether, we
have shown that 𝛿(𝑞0, 𝑤1𝑤2) = 𝑝 is defined in 𝐺, and hence
the string 𝑤1𝑤2 ∈ 𝐿 (𝐺). Since 𝑤 = 𝑃′ (𝑤′) = 𝑃′ (𝑤1𝑤2),
we have shown that 𝑝 ∈ 𝑆. □

We can now prove the following result analyzing the com-
plexity of Algorithm 3.

Theorem 14. The space and time complexity of Algorithm 3
is 𝑂 (𝑛2𝑛) and 𝑂 ((𝑛 + 𝑚)2𝑛), respectively, where 𝑛 is the
number of states of 𝐺 and 𝑚 is the number of transitions of
𝑃(𝐺), that is, 𝑚 ≤ ℓ𝑛2, where ℓ is the number of observable
events.

Proof. Let 𝐺 be an 𝑛-state deterministic DES. In the first
step, we construct the normalization 𝐺𝑛𝑜𝑟𝑚 of 𝐺 with at
most 2𝑛 states, the observer of which has at most 2𝑛 states
by Lemma 12. Then, we apply Algorithm 1 to 𝐺′ obtained
from 𝐺𝑛𝑜𝑟𝑚 by Construction 9. In particular, by Lemma 13,
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we compute the observer 𝐺′𝑜𝑏𝑠 of 𝐺′ with at most 2𝑛 states,
and the projected automaton 𝑃(𝐺′) with at most 4𝑛 states.
Then, for every reachable state 𝑋 of 𝐺′𝑜𝑏𝑠 , and for every
𝑥 ∈ 𝑋 ∩ 𝑄′

𝑆
, we add the pair (𝑥, 𝑋 ∩ 𝑄′

𝑁𝑆
) to the set 𝑌 .

This computation takes time 𝑂 (𝑛2𝑛). Afterwards, we con-
struct the automaton 𝐻 as the part of the full observer of
𝐺′ that is accessible from the states of the second compo-
nents of 𝑌 . Since 𝐻 consists only of the subsets of 𝑄′

𝑁𝑆
, of

which there is at most 2𝑛, the automaton 𝐻 has𝑂 (2𝑛) states.
The automaton C = 𝑃(𝐺′) × 𝐻 thus has 𝑂 (𝑛2𝑛) states and
𝑂 (𝑚2𝑛) transitions, the sum of which is the time complex-
ity of the BFS applied to mark states of C reachable from
the states of 𝑌 in at most 𝑘 steps. Therefore, the state com-
plexity of Algorithm 3 is 𝑂 (𝑛2𝑛) and the time complexity
is 𝑂 (𝑛2𝑛 + (𝑛 + 𝑚)2𝑛) = 𝑂 ((𝑛 + 𝑚)2𝑛). □

Comparing the complexity𝑂 ((𝑛+𝑚)2𝑛) of Algorithm 3 with
the complexity of the existing algorithms, the reader may see
that (1) the complexity of Algorithm 3 does not depend on
the parameter 𝑘 , and (2) it is better than the complexity of the
existing algorithms, because the minimum of the worst-case
complexities 𝑂 (ℓ2𝑛𝑘+1 ·2𝑘 ), 𝑂 (ℓ2(𝑘+2)𝑛), 𝑂 (ℓ(𝑘 + 3)𝑛), and
𝑂 ((𝑛 +𝑚) (𝑘 + 1)2𝑛) of the existing algorithms discussed at
the beginning of this subsection is 𝑂 ((𝑛 + 𝑚)2𝑛) for 𝑘 = 1,
and 𝑂 ((𝑛 + 𝑚) (𝑘 + 1)2𝑛) = 𝑂 ((𝑛 + 𝑚)22𝑛) for 𝑘 ∈ 𝑂 (2𝑛).
Notice that the minimum worst-case complexity for large 𝑘
is significantly higher than the complexity 𝑂 ((𝑛 +𝑚)2𝑛) of
Algorithm 3. In fact, the complexity of Algorithm 3, and the
minimum worst-case complexity of the existing algorithms
for very small 𝑘 , coincide. However, while the existing al-
gorithms can handle only inputs with a very small 𝑘 with
this complexity, our algorithm can handle inputs with 𝑘 of
arbitrary value with this complexity. Consequently, our algo-
rithm improves the complexity of the verification of strong
𝑘-step opacity.

5 Conclusions

We investigated and discussed the relationship between the
notions of weak and strong 𝑘-step opacity. We designed an
algorithm verifying weak 𝑘-step opacity that, compared with
the existing algorithms, does not depend on the parameter
𝑘 , and has a lower worst-case complexity than the existing
algorithms. We further discussed strong 𝑘-step opacity and
transformed it to weak 𝑘-step opacity in linear time, obtain-
ing thus an algorithm to verify strong 𝑘-step opacity. Again,
this algorithm does not depend on the parameter 𝑘 , and has
a lower worst-case complexity than the existing algorithms.

Finally, we point out that the complexity of our algorithms
may be further optimized. For instance, rather than elimi-
nating 𝜀-transitions in 𝑃(𝐺), we may suitably redefine the
product of two NFAs for NFAs with 𝜀-transitions. In this
case, the parameter 𝑚 in the complexity formula would be
bounded by ℓ𝑛 rather than ℓ𝑛2. We leave these and further
optimizations for the future work.
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A Relation between Strong and Weak 𝑘-Step Opacity

As already mentioned in the introduction, Ma et al. (2021)
pointed out that strong 𝑘-step opacity and weak 𝑘-step opac-
ity are incomparable in the sense that neither strong 𝑘-step
opacity implies weak 𝑘-step opacity nor the other way round.

We now show that under the assumption that the set of states
is partitioned into secret and nonsecret states, disregarding
neutral states, which is a common assumption in the liter-
ature (Saboori and Hadjicostis, 2011; Yin and Lafortune,
2017), including this paper, the two notions are comparable.
This fact was also recently pointed out by Wintenberg et al.
(2022).

Theorem 15. Let 𝐺 = (𝑄, Σ, 𝛿, 𝑖) be a deterministic DES,
and let 𝑘 ∈ N∞. If 𝐺 is 𝑘-SSO with respect to 𝑄𝑆 and 𝑃,
then 𝐺 is 𝑘-SO with respect to 𝑄𝑆 , 𝑄 −𝑄𝑆 , and 𝑃.

Proof. Assume that 𝐺 is 𝑘-SSO with respect to 𝑄𝑆 and 𝑃.
We show that 𝐺 is 𝑘-SO with respect to 𝑄𝑆 , 𝑄𝑁𝑆 = 𝑄−𝑄𝑆 ,
and 𝑃. To this end, we consider any string 𝑠𝑡 ∈ 𝐿 (𝐺) with
|𝑃(𝑡) | ≤ 𝑘 such that 𝛿(𝑖, 𝑠) = 𝑞𝑠 ∈ 𝑄𝑆; since 𝑠𝑡 ∈ 𝐿 (𝐺), we
have 𝛿(𝑞𝑠 , 𝑡) is defined. Since 𝐺 is 𝑘-SSO, there is a string
𝑤 ∈ 𝐿 (𝐺) such that 𝑃(𝑠𝑡) = 𝑃(𝑤) and for every prefix 𝑤′

of 𝑤, if |𝑃(𝑤) | − |𝑃(𝑤′) | ≤ 𝑘 , then 𝛿(𝑖, 𝑤′) ∉ 𝑄𝑆 . Because
𝑃(𝑠𝑡) = 𝑃(𝑤), the string 𝑤 can be written as 𝑤 = 𝑠′𝑡′,
where 𝑃(𝑠) = 𝑃(𝑠′) and 𝑃(𝑡) = 𝑃(𝑡′). Since 𝑠′ is a prefix
of 𝑤 = 𝑠′𝑡′, and |𝑃(𝑠′𝑡′) | − |𝑃(𝑠′) | = |𝑃(𝑡′) | = |𝑃(𝑡) | ≤ 𝑘 ,
we have 𝛿(𝑖, 𝑠′) ∉ 𝑄𝑆 , that is, 𝛿(𝑖, 𝑠′) ∈ 𝑄𝑁𝑆 . But then the
string 𝑠′𝑡′ ∈ 𝐿 (𝐺) is such that 𝑃(𝑠) = 𝑃(𝑠′), 𝑃(𝑡) = 𝑃(𝑡′),
𝛿(𝑖, 𝑠′) = 𝑞𝑛𝑠 ∈ 𝑄𝑁𝑆 , and 𝛿(𝑞𝑛𝑠 , 𝑡′) is defined, because
𝑠′𝑡′ = 𝑤 ∈ 𝐿 (𝐺); therefore, 𝐺 is 𝑘-SO with respect to 𝑄𝑆 ,
𝑄 −𝑄𝑆 , and 𝑃. □

It can be seen in the previous proof that if there are neutral
states, then the implication does not hold in general.
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